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Let T be a triangular algebra. We say that D = {Dn : n ∈ N} ⊆
L(T ) is a Jordan higher derivable mapping at G if Dn(ST + TS) =∑

i+j=n(Di(S)Dj(T) +Di(T)Dj(S)) for any S, T ∈ T with ST = G. An

element G ∈ T is called a Jordan higher all-derivable point of T if

every Jordan higher derivable linear mapping D = {Dn}n∈N at G is a

higher derivation. In this paper, under some mild conditions on T ,

we prove that some elements of T are Jordan higher all-derivable

points. This extends some results in [6] to the case of Jordan higher

derivations.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let A be a ring (or algebra) with the unit I. An additive or linear mapping δ from A into itself is

called a derivation if δ(ST) = δ(S)T + Sδ(T) for any S, T ∈ A and is said to be a Jordan derivation

if δ(ST + TS) = δ(S)T + Sδ(T) + δ(T)S + Tδ(S) for any S, T ∈ A. We say that a mapping δ is

Jordan derivable at a given point G ∈ A if δ(ST + TS) = δ(S)T + Sδ(T) + δ(T)S + Tδ(S) for any

S, T ∈ A with ST = G, and G is called a Jordan all-derivable point of A if every Jordan derivable

mapping at G is a derivation. We say that D = {Dn} ⊆ L(A) is a Jordan higher derivable mapping at

G if Dn(ST + TS) = ∑
i+j=n(Di(S)Dj(T) + Di(T)Dj(S)) for any S, T ∈ A with ST = G. An element

G ∈ A is called a Jordan higher all-derivable point ofA if every Jordan higher derivable linearmapping

D = {Dn} at G is a higher derivation. There have been a number of papers on the study of conditions

under which derivations of operator algebras can be completely determined by the action on some

sets of operators. In [3], Jing showed that I is a Jordan all-derivable point of B(H) with H is a Hilbert

space. In [7], Zhu proved that every invertible operator in nest algebra is an all-derivable point in the
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strong operator topology. Also it was showed that every element in the algebra of all upper triangular

matrices is a Jordan all-derivable point by Sha and Zhu [6].

With the development of derivation, higher derivation has attractedmuch attention ofmathemati-

cians as an active subject of research in algebras. In [4] Xiao and Wei showed that any Jordan higher

derivation on a triangular algebra is a higher derivation. In this paper we will extend the conclusion

of [6] to the case of Jordan higher derivations. For other relative reference, see [1,2,5].

LetA and B be two unital rings (or algebras) with the unit I1, I2, andM be a unital (A, B)-bimodule,

which is faithfull as a left A-module and as a right B-module. The ring (or algebra)

T =
⎧⎨
⎩

⎡
⎣ a m

0 b

⎤
⎦ : a ∈ A,m ∈ M, b ∈ B

⎫⎬
⎭ ,

under the usual matrix operations is said to be a triangular algebra. We mainly proved that 0 and⎡
⎣ I1 X0

0 I2

⎤
⎦ are Jordan higher all-derivable points for any given point X0 ∈ M.

2. Jordan higher all-derivable points in ring algebras

In this section, we always assume that the characteristics of A and B are not 2 and 3, and for any

X ∈ A, Y ∈ B, there are some integers n1, n2 such that n1I1 − X and n2I2 − Y are invertible. The

following two theorems are the main results in this paper.

Theorem 2.1. Let D = (Dn)n∈N be a family of additive or linear mappings on T with D0 = idT (identical

mapping on T ). If D is Jordan higher derivable at 0, then D is a higher derivation.

Proof. For any T =
⎡
⎣ X Y

0 Z

⎤
⎦ ∈ T , we can write

Dn

⎛
⎝

⎡
⎣ X Y

0 Z

⎤
⎦

⎞
⎠ =

⎡
⎢⎣ δ11n (X) + ϕ11

n (Y) + τ 11
n (Z) δ12n (X) + ϕ12

n (Y) + τ 12
n (Z)

0 δ22n (X) + ϕ22
n (Y) + τ 22

n (Z)

⎤
⎥⎦ ,

where δ
ij
n : A → Aij , ϕ

ij
n : M → Aij , τ

ij
n : B → Aij , 1 � i � j � 2 are additive maps with A11 = A,

A12 = M, A22 = B. It follows from the fact D0 = idT that when i = j = 1, δ
ij
0 = idA, else δ

ij
0 = 0;

when i = 1, j = 2, ϕ
ij
0 = idM, else ϕ

ij
0 = 0; when i = j = 2 , τ

ij
0 = idB , else τ

ij
0 = 0.

We set S =
⎡
⎣ 0 W

0 0

⎤
⎦ and T =

⎡
⎣ X 0

0 0

⎤
⎦ for every X ∈ A,W ∈ M. Then ST = 0 and TS =

⎡
⎣ 0 XW

0 0

⎤
⎦.

So ⎡
⎢⎣ ϕ11

n (XW) ϕ12
n (XW)

0 ϕ22
n (XW)

⎤
⎥⎦ = Dn(ST + TS) = ∑

i+j=n

(Di(S)Dj(T) + Di(T)Dj(S))

= ∑
i+j=n

⎛
⎜⎝

⎡
⎢⎣ ϕ11

i (W) ϕ12
i (W)

0 ϕ22
i (W)

⎤
⎥⎦

⎡
⎢⎣ δ11j (X) δ12j (X)

0 δ22j (X)

⎤
⎥⎦

+
⎡
⎢⎣ δ11i (X) δ12i (X)

0 δ22i (X)

⎤
⎥⎦

⎡
⎢⎣ ϕ11

j (W) ϕ12
j (W)

0 ϕ22
j (W)

⎤
⎥⎦

⎞
⎟⎠
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= ∑
i+j=n

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ11
i (W)δ11j (X) + δ11i (X)ϕ11

j (W) ϕ11
i (W)δ12j (X) + δ11i (X)ϕ12

j (W)

+ϕ12
i (W)δ22j (X) + δ12i (X)ϕ22

j (W)

0 ϕ22
i (W)δ22j (X) + δ22i (X)ϕ22

j (W)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This implies that

ϕ11
n (XW) = ∑

i+j=n

(ϕ11
i (W)δ11j (X) + δ11i (X)ϕ11

j (W)), (1)

ϕ12
n (XW) = ∑

i+j=n

(ϕ11
i (W)δ12j (X) + δ11i (X)ϕ12

j (W) + ϕ12
i (W)δ22j (X) + δ12i (X)ϕ22

j (W)), (2)

and

ϕ22
n (XW) = ∑

i+j=n

(ϕ22
i (W)δ22j (X) + δ22i (X)ϕ22

j (W)) (3)

for any X ∈ A, W ∈ M. One obtains that

ϕ11
n (W) = ∑

i+j=n

(ϕ11
i (W)δ11j (I1) + δ11i (I1)ϕ

11
j (W)), (4)

ϕ22
n (W) = ∑

i+j=n

(ϕ22
i (W)δ22j (I1) + δ22i (I1)ϕ

22
j (W)) (5)

by taking X = I1 in Eqs. (1) and (3). Now we prove the fact that ϕ11
n (W) = 0 and ϕ22

n (W) = 0

by induction on n. When n = 0, it is easily verified that ϕ11
0 (W) = 0 and ϕ22

0 (W) = 0 from the

characterizations of ϕ11
0 and ϕ22

0 . When n = 1, ϕ11
1 (W) = 0 and ϕ22

1 (W) = 0 can be obtained by the

proof in [6, Theorem 2.1]. We assume that ϕ11
m (W) = 0 and ϕ22

m (W) = 0 for all 1 � m < n. In fact,

by the Eq. (4) and δ110 = idA, we have ϕ11
n (W) = ϕ11

n (W) + ϕ11
n (W) = 2ϕ11

n (W). Thus ϕ11
n (W) = 0.

Similarly combining Eq. (5) with the fact that δ220 (I1) = 0, we can get ϕ22
n (W) = 0 for any W ∈ M

and n ∈ N. For any X ∈ A, W ∈ M and Y ∈ B, setting S =
⎡
⎣ 0 W

0 Y

⎤
⎦ and T =

⎡
⎣ X 0

0 0

⎤
⎦, then ST = 0,

TS =
⎡
⎣ 0 XW

0 0

⎤
⎦. One gets

⎡
⎣ 0 ϕ12

n (XW)

0 0

⎤
⎦ = Dn(ST + TS) = ∑

i+j=n

(Di(S)Dj(T) + Di(T)Dj(S))

= ∑
i+j=n

⎛
⎝

⎡
⎣ τ 11

i (Y) ϕ12
i (W) + τ 12

i (Y)

0 τ 22
i (Y)

⎤
⎦

⎡
⎣ δ11j (X) δ12j (X)

0 δ22j (X)

⎤
⎦

+
⎡
⎣ δ11i (X) δ12i (X)

0 δ22i (X)

⎤
⎦

⎡
⎣ τ 11

j (Y) ϕ12
j (W) + τ 12

j (Y)

0 τ 22
j (Y)

⎤
⎦

⎞
⎠ .

Hence the following three equations hold∑
i+j=n

(τ 11
i (Y)δ11j (X) + δ11i (X)τ 11

j (Y)) = 0, (6)
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∑
i+j=n

(τ 22
i (Y)δ22j (X) + δ22i (X)τ 22

j (Y)) = 0, (7)

ϕ12
n (XW) = ∑

i+j=n

(τ 11
i (Y)δ12j (X) + ϕ12

i (W)δ22j (X) + τ 12
i (Y)δ22j (X)

+ δ11i (X)ϕ12
j (W) + δ11i (X)τ 12

j (Y) + δ12i (X)τ 22
j (Y)) (8)

for any X ∈ A, W ∈ M. One can see that∑
i+j=n

(τ 11
i (Y)δ11j (I1) + δ11i (I1)τ

11
j (Y)) = 0 (9)

by taking X = I1 in Eq. (6). Using Eq. (9) and induction, one has τ 11
n (Y) = 0 for every n ∈ N. Similarly

taking Y = I2 in Eq. (7), by inducting and using the fact that τ 22
0 (Y) = Y , we get δ22n (X) = 0 for every

n ∈ N and X ∈ A.

We can obtain that∑
i+j=n

(δ11i (X)τ 12
j (Y) + δ12i (X)τ 22

j (Y)) = 0 (10)

by δ22i (X) = 0, τ 11
i (Y) = 0 and takingW = 0 in Eq. (8).

By Eq. (2) and the fact that δ22n (X) = 0, ϕ11
n (W) = 0, ϕ22

n (W) = 0 and ϕ12
0 = idM, we have

ϕ12
n (XW) = ∑

i+j=n

δ11i (X)ϕ12
j (W). (11)

We claim that δ = {δ11n : n ∈ N} is a higher derivation onA. In fact, we know that δ111 is a derivation

by [6, Theorem 2.1]. It follows that δ111 (X1X2) = δ111 (X1)X2 + X1δ
11
1 (X2) for any X1, X2 in A. Now we

assume that δ11m (X1X2) = ∑
i+j=m δ11i (X1)δ

11
j (X2) for any 1 � m < n with m ∈ N. Summing up Eq.

(11) and ϕ12
0 = idM , we get

ϕ12
n (X1(X2W)) = ∑

i+j=n

δ11i (X1)ϕ
12
j (X2W)

= ∑
i+e=n

δ11i (X1)δ
11
e (X2)W + ∑

i+e+k=n,k>0

δ11i (X1)δ
11
e (X2)ϕ

12
k (W) (12)

for any X1, X2 ∈ A andW ∈ M. On the other hand

ϕ12
n ((X1X2)W) = ∑

i+j=n,j>0

δ11i (X1X2)ϕ
12
j (W) + δ11n (X1X2)W

= ∑
e+k+j=n,j>0

δ11e (X1)δ
11
k (X2)ϕ

12
j (W) + δ11n (X1X2)W (13)

for any X1, X2 ∈ A and W ∈ M. Combining Eq. (12) with Eq. (13), we get
[
δ11n (X1X2)

− ∑
e+i=n δ11i (X1)δ

11
e (X2)

]
W = 0. Since M is faithful, we get δ11n (X1X2) = ∑

i+j=n δ11i (X1)δ
11
j (X2),

i.e. δ = {δ11n : n ∈ N} is a higher derivation.

Letting S =
⎡
⎣ 0 −X−1WY

0 Y

⎤
⎦ and T =

⎡
⎣ X W

0 0

⎤
⎦ for any Y ∈ B,W ∈ M, and invertible X ∈ A. Then

ST = TS = 0. So we get
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⎡
⎣ 0 0

0 0

⎤
⎦ = Dn(ST + TS) = ∑

i+j=n

(Di(S)Dj(T) + Di(T)Dj(S))

= ∑
i+j=n

⎛
⎝

⎡
⎣ 0 −ϕ12

i (X−1WY) + τ 12
i (Y)

0 τ 22
i (Y)

⎤
⎦

⎡
⎣ δ11j (X) δ12j (X) + ϕ12

j (W)

0 0

⎤
⎦

+
⎡
⎣ δ11i (X) δ12i (X) + ϕ12

i (W)

0 0

⎤
⎦

⎡
⎣ 0 −ϕ12

j (X−1WY) + τ 12
j (Y)

0 τ 22
j (Y)

⎤
⎦

⎞
⎠ .

The above equation implies that

0 = ∑
i+j=n

[δ11i (X)(−ϕ12
j (X−1WY) + τ 12

j (Y)) + (δ12i (X) + ϕ12
i (W))τ 22

j (Y)]. (14)

By replacing W by λW in the above equation, dividing the equation by λ and letting λ → +∞, we

obtain that

0 = ∑
i+j=n

[−δ11i (X)ϕ12
j (X−1WY) + ϕ12

i (W)τ 22
j (Y)]. (15)

So we can get

0 = ∑
i+j=n

[−δ11i (I1)ϕ
12
j (WY) + ϕ12

i (W)τ 22
j (Y)] (16)

by setting X = I1 in the above equation. Since δ = {δ11n : n ∈ N} is a higher derivation, δ11n (I1) = 0

when n � 1. It follows from Eq. (16) that

ϕ12
n (WY) = ∑

i+j=n

ϕ12
i (W)τ 22

j (Y). (17)

We claim that τ = {τ 22
n : n ∈ N} is a higher derivation on B. In fact, by the proof of [6, Theorem

2.1] we know that τ 22
1 is a derivation. This implies that τ 22

1 (Y1Y2) = τ 22
1 (Y1)Y2 + Y1τ

22
1 (Y2) for any

Y1, Y2 ∈ B. We now assume that τ 22
m (Y1Y2) = ∑

i+j=m τ 22
i (Y1)τ

22
j (Y2) for all 1 � m < nwithm ∈ N.

It follows from Eq. (17) that

ϕ12
n (WY1Y2) = ϕ12

n (W(Y1Y2))

= Wτ 22
n (Y1Y2) + ∑

i+j=n,j<n

ϕ12
i (W)τ 22

j (Y1Y2)

= Wτ 22
n (Y1Y2) + ∑

i+e+k=n,i>0

ϕ12
i (W)τ 22

e (Y1)τ
22
k (Y2) (18)

for any Y1, Y2 ∈ B andW ∈ M. On the other hand by Eq. (17) and the fact thatM is a (A, B)-bimodule,

we have

ϕ12
n (WY1Y2) = ϕ12

n ((WY1)Y2)

= ∑
i+j=n

ϕ12
i (WY1)τ

22
j (Y2) = ∑

e+k+j=n

ϕ12
e (W)τ 22

k (Y1)τ
22
j (Y2)

= W
∑

k+j=n

τ 22
k (Y1)τ

22
j (Y2) + ∑

e+k+j=n,e>0

ϕ12
e (W)τ 22

k (Y1)τ
22
j (Y2). (19)

Combining Eq. (18) with Eq. (19), we get W[τ 22
n (Y1Y2) − ∑

k+j=n τ 22
k (Y1)τ

22
j (Y2)]W = 0. Since M is

faithful, we get τ 22
n (Y1Y2) = ∑

i+j=n τ 22
i (Y1)τ

22
j (Y2).
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Now we prove that (Dn)n∈N is a higher derivation. For any S =
⎡
⎣ X1 W1

0 Y1

⎤
⎦ , T =

⎡
⎣ X2 W2

0 Y2

⎤
⎦ ∈ T ,

where X1, X2 ∈ A, W1,W2 ∈ M and Y1, Y2 ∈ B. Summing up the above results and using the

definition of Dn, we obtain that

Dn(ST) = Dn

⎛
⎝

⎡
⎣ X1X2 X1W2 + W1Y2

0 Y1Y2

⎤
⎦

⎞
⎠

=
⎡
⎣ δ11n (X1X2) δ12n (X1X2) + ϕ12

n (X1W2 + W1Y2) + τ 12
n (Y1Y2)

0 τ 22
n (Y1Y2)

⎤
⎦ ,

and ∑
i+j=n

Di(S)Dj(T)

= ∑
i+j=n

⎛
⎝

⎡
⎣ δ11i (X1) δ12i (X1) + ϕ12

i (W1) + τ 12
i (Y1)

0 τ 22
i (Y1)

⎤
⎦

×
⎡
⎣ δ11j (X2) δ12j (X2) + ϕ12

j (W2) + τ 12
j (Y2)

0 τ 22
j (Y2)

⎤
⎦

⎞
⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δ11n (X1X2)
∑

i+j=n

(δ11i (X1)δ
12
j (X2) + δ11i (X1)τ

12
j (Y2) + δ12i (X1)τ

22
j (Y2)

+τ 12
i (Y1)τ

22
j (Y2)) + ϕ12

n (X1W2 + W1Y2)

0 τ 22
n (Y1Y2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

by Eq. (17) and the fact that both δ and τ are higher derivations. So D is a higher derivations if and only

if the equation

δ12n (X1X2) + ϕ12
n (X1W2 + W1Y2) + τ 12

n (Y1Y2)

= ∑
i+j=n

(δ11i (X1)δ
12
j (X2) + δ11i (X1)τ

12
j (Y2) + δ12i (X1)τ

22
j (Y2) + τ 12

i (Y1)τ
22
j (Y2))

+ ϕ12
n (X1W2 + W1Y2)

holds.

We get that τ 22
n (I2) = 0(n � 1) from [4, Lemma 2.2]. So we can write

δ12n (X) = − ∑
i+j=n

δ11i (X)τ 12
j (I2)

by setting Y = I2 in Eq. (10). Letting X = I1 in the above equation, one gets δ12n (I1) = −τ 12
n (I2). So

δ12n (X) = ∑
i+j=n

δ11i (X)δ12j (I1). (20)

Similarly by taking X = I1 in Eq. (10) and noting the fact δ11n (I1) = 0(n � 1), we have

τ 12
n (Y) = − ∑

i+j=n

δ12i (I1)τ
22
j (Y). (21)

Thus it follows from Eq. (20) and Eq. (21) that



3078 J. Zhao, J. Zhu / Linear Algebra and its Applications 436 (2012) 3072–3086

δ12n (X1X2) + τ 12
n (Y1Y2) = ∑

i+j=n

δ11i (X1X2)δ
12
j (I1) − ∑

i+j=n

δ12i (I1)τ
22
j (Y1Y2)

= ∑
k+l+j=n

δ11k (X1)δ
11
l (X2)δ

12
j (I1) − ∑

i+k+l=n

δ12i (I1)τ
22
k (Y1)τ

22
l (Y2).

(22)

On the other hand∑
i+j=n

(δ11i (X1)δ
12
j (X2) + δ11i (X1)τ

12
j (Y2) + δ12i (X1)τ

22
j (Y2) + τ 12

i (Y1)τ
22
j (Y2))

= ∑
i+j=n

∑
k+l=j

δ11i (X1)δ
11
k (X2)δ

12
l (I1) − ∑

i+j=n

∑
k+l=j

δ11i (X1)δ
12
k (I1)τ

22
l (Y2)

+ ∑
i+j=n

∑
k+l=i

δ11k (X1)δ
12
l (I1)τ

22
j (Y2) − ∑

i+j=n

∑
k+l=i

δ11k (I1)τ
22
l (Y1)τ

22
j (Y2)

= ∑
i+k+l=n

δ11i (Xk)δ
11
k (X2)δ

12
l (I1) − ∑

j+k+l=n

δ12k (I1)τ
22
l (Y1)τ

22
j (Y2). (23)

Thus combining Eq. (22) with Eq. (23), we arrive at

δ12n (X1X2) + ϕ12
n (X1W2 + W1Y2) + τ 12

n (Y1Y2)

= ∑
i+j=n

(δ11i (X1)δ
12
j (X2) + δ11i (X1)τ

12
j (Y2) + δ12i (X1)τ

22
j (Y2)

+ τ 12
i (Y1)τ

22
j (Y2)) + ϕ12

n (X1W2 + W1Y2).

Finally we obtain the desired result. �

Theorem 2.2. Let D = {Dn} be a family of additive or linear mappings on T with D0 = idT . If D is Jordan

higher derivable at G =
⎡
⎣ I1 X0

0 I2

⎤
⎦, then D is a higher derivation.

Proof. We set S =
⎡
⎣ X 0

0 Y

⎤
⎦ and T =

⎡
⎣ X−1 X−1X0

0 Y−1

⎤
⎦ for every invertible element X ∈ A and Y ∈ B.

Then ST = G and TS =
⎡
⎣ I1 X−1X0Y

0 I2

⎤
⎦, so we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

2δ11n (I1) + 2τ 11
n (I2) 2δ12n (I1) + 2τ 12

n (I2)

+ϕ11
n (X0 + X−1X0Y) +ϕ12

n (X0 + X−1X0Y)

0 2δ22n (I1) + ϕ22
n (X0 + X−1X0Y) + 2τ 22

n (I2)

⎤
⎥⎥⎥⎥⎥⎥⎦

= Dn(ST + TS) = ∑
i+j=n

(Di(S)Dj(T) + Di(T)Dj(S))

= ∑
i+j=n

⎛
⎝

⎡
⎣ δ11i (X) + τ 11

i (Y) δ12i (X) + τ 12
i (Y)

0 δ22i (X) + τ 22
i (Y)

⎤
⎦



J. Zhao, J. Zhu / Linear Algebra and its Applications 436 (2012) 3072–3086 3079

×

⎡
⎢⎢⎢⎣

δ11j (X−1) + ϕ11
j (X−1X0) δ12j (X−1) + ϕ12

j (X−1X0)

+τ 11
j (Y−1) +τ 12

j (Y−1)

0 δ22j (X−1) + ϕ22
j (X−1X0) + τ 22

j (Y−1)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

δ11i (X−1) + ϕ11
i (X−1X0) δ12i (X−1) + ϕ12

i (X−1X0)

+τ 11
i (Y−1) +τ 12

i (Y−1)

0 δ22i (X−1) + ϕ22
i (X−1X0) + τ 22

i (Y−1)

⎤
⎥⎥⎥⎦

×
⎡
⎣ δ11j (X) + τ 11

j (Y) δ12j (X) + τ 12
j (Y)

0 δ22j (X) + τ 22
j (Y)

⎤
⎦

⎞
⎠ .

So according to the above matrix equation, we get

2δ11n (I1) + 2τ 11
n (I2) + ϕ11

n (X0 + X−1X0Y)

= ∑
i+j=n

[(δ11i (X) + τ 11
i (Y))(δ11j (X−1) + ϕ11

j (X−1X0) + τ 11
j (Y−1))

+ (δ11i (X−1) + ϕ11
i (X−1X0) + τ 11

i (Y−1))(δ11j (X) + τ 11
j (Y))], (24)

2δ12n (I1) + 2τ 12
n (I2) + ϕ12

n (X0 + X−1X0Y)

= ∑
i+j=n

[(δ11i (X) + τ 11
i (Y))(δ12j (X−1) + ϕ12

j (X−1X0) + τ 12
j (Y−1))

+ (δ12i (X) + τ 12
i (Y))(δ22j (X−1) + ϕ22

j (X−1X0) + τ 22
j (Y−1))

+ (δ11i (X−1) + ϕ11
i (X−1X0) + τ 11

i (Y−1))(δ12j (X) + τ 12
j (Y))

+ (δ12i (X−1) + ϕ12
i (X−1X0) + τ 12

i (Y−1))(δ22j (X) + τ 22
j (Y))], (25)

2δ22n (I1) + 2τ 22
n (I2) + ϕ22

n (X0 + X−1X0Y)

= ∑
i+j=n

[(δ22i (X) + τ 22
i (Y))(δ22j (X−1) + ϕ22

j (X−1X0) + τ 22
j (Y−1))

+ (δ22i (X−1) + ϕ22
i (X−1X0) + τ 22

i (Y−1))(δ22j (X) + τ 22
j (Y))]. (26)

We claim that δ11n (I1) = τ 11
n (I2) = ϕ11

n (X0) = 0 when n � 1 . In fact, we could obtain

2δ11n (I1) + 2τ 11
n (I2) + ϕ11

n (X0 + X0)

= ∑
i+j=n

[(δ11i (I1) + τ 11
i (I2))(δ

11
j (I1) + ϕ11

j (X0) + τ 11
j (I2))

+ (δ11i (I1) + ϕ11
i (X0) + τ 11

i (I2))(δ
11
j (I1) + τ 11

j (I2))] (27)

by setting X = I1 and Y = I2 in Eq. (24).When n = 1, the result that δ111 (I1) = τ 11
1 (I2) = ϕ11

1 (X0) = 0

holds according to the [6, Theorem 2.2]. So we assume that δ11m (I1) = τ 11
m (I2) = ϕ11

m (X0) = 0 for all

1 � m < n,m ∈ N. Combining Eq. (27) with the fact δ110 (I1) = I1, τ
11
0 (I2) = 0 and using the

induction hypothesis, we have

2δ11n (I1) + 2τ 11
n (I2) + 2ϕ11

n (X0) = δ11n (I1) + τ 11
n (I2) + δ11n (I1) + τ 11

n (I2)

+ 2δ11n (I1) + 2τ 11
n (I2) + 2ϕ11

n (X0).
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Hence δ11n (I1) + τ 11
n (I2) = 0(n � 1). Similarly we also can set that X = I1 and Y = −I2 in Eq.

(24). Using the induction hypothesis, we get δ11n (I1) − τ 11
n (I2) = −ϕ11

n (X0). Summing up the above

equations we get 2δ11n (I1) = −2τ 11
n (I2) = ϕ11

n (X0). �

Setting X = 1
2
I1 and Y = I2 in Eq. (24) and using δ11n (I1) + τ 11

n (I2) = 0, we have

3ϕ11
n (X0) = ∑

i+j=n

[(
1

2
δ11i (I1) + τ 11

i (I2)

)
(2δ11j (I1) + τ 11

j (I2) + 2ϕ11
j (X0))

+ (2δ11i (I1) + τ 11
i (I2) + 2ϕ11

i (X0))

(
1

2
δ11j (I1) + τ 11

j (I2)

)]
.

Thus combining 2δ11n (I1) = −2τ 11
n (I2) = ϕ11

n (X0) with the assumption and using δ110 (I1) = I1,

one obtains

3ϕ11
n (X0) = 1

2
(2δ11n (I1) + τ 11

n (I2) + 2ϕ11
n (X0)) + 2(δ11n (I1) + τ 11

n (I2)) + 2(δ11n (I1) + τ 11
n (I2))

+ 1

2
(2δ11n (I1) + τ 11

n (I2) + 2ϕ11
n (X0)).

So ϕ11
n (X0) = 4δ11n (I1)+ 5τ 11

n (I2). We can claim that δ11n (I1) = τ 11
n (I2) = ϕ11

n (X0) = 0. Hence the Eq.

(24) can be rewritten into

ϕ11
n (X−1X0Y) = ∑

i+j=n

[(δ11i (X) + τ 11
i (Y))(ϕ11

j (X−1X0) + τ 11
j (Y−1) + δ11j (X−1))

+ (δ11i (X−1) + ϕ11
i (X−1X0) + τ 11

i (Y−1))(δ11j (X) + τ 11
j (Y))]. (28)

Similarly by setting X = I1 and Y = I2 in Eq. (26) and using the induction, we can get δ22n (I1) +
τ 22
n (I2) = 0. We also can obtain δ22n (I1) = τ 22

n (I2) = ϕ22
n (X0) = 0 if we take X = I1 and Y = 1

2
I2 in

Eq. (26). Thus

ϕ22
n (X−1X0Y) = ∑

i+j=n

[(δ22i (X) + τ 22
i (Y))(ϕ22

j (X−1X0) + τ 22
j (Y−1) + δ22j (X−1))

+ (δ22i (X−1) + ϕ22
i (X−1X0) + τ 22

i (Y−1))(δ22j (X) + τ 22
j (Y))]. (29)

We take X = I1 and Y = I2 in Eq. (25), then we can get δ12n (I1) + τ 12
n (I2) = 0. Letting respectively

Y = I2 and Y = 1
2
I2 in Eq. (25) and using the above equation we have

ϕ12
n (X0 + X−1X0) = ∑

i+j=n

[δ11i (X)(δ12j (X−1) + ϕ12
j (X−1X0) + τ 12

j (I2))

+ (δ12i (X) + τ 12
i (I2))(δ

22
j (X−1) + ϕ22

j (X−1X0))

+ (δ11i (X−1) + ϕ11
i (X−1X0))(δ

12
j (X) + τ 12

j (I2))

+ (δ12i (X−1) + ϕ12
i (X−1X0) + τ 12

i (I2))δ
22
j (X)]

+ δ12n (X) + τ 12
n (I2) + δ12n (X−1) + ϕ12

n (X−1X0) + τ 12
n (I2), (30)

ϕ12
n

(
X0 + 1

2
X−1X0

)
= ∑

i+j=n

[δ11i (X)(δ12j (X−1) + ϕ12
j (X−1X0) + 2τ 12

j (I2))

+ (δ12i (X) + 1

2
τ 12
i (I2))(δ

22
j (X−1) + ϕ22

j (X−1X0))

+ (δ11i (X−1) + ϕ11
i (X−1X0))(δ

12
j (X) + 1

2
τ 12
j (I2))
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+ (δ12i (X−1) + ϕ12
i (X−1X0) + 2τ 12

i (I2))δ
22
j (X)]

+ 2δ12n (X) + τ 12
n (I2) + 1

2
δ12n (X−1) + 1

2
ϕ12
n (X−1X0) + τ 12

n (I2), (31)

which implies that

1

2
ϕ12
n (X−1X0) = ∑

i+j=n

[−δ11i (X)τ 12
j (I2) + 1

2
τ 12
i (I2)(δ

22
j (X−1) + ϕ22

j (X−1X0))

+ 1

2
(δ11i (X−1) + ϕ11

i (X−1X0))τ
12
j (I2) − τ 12

i (I2)δ
22
j (X)] − δ12n (X)

+1

2
δ12n (X−1) + 1

2
ϕ12
n (X−1X0).

So

1

2

∑
i+j=n

[τ 12
i (I2)δ

22
j (X−1) + δ11i (X−1)τ 12

j (I2)

+ τ 12
i (I2)ϕ

22
j (X−1X0) + ϕ11

i (X−1X0)τ
12
j (I2)] + 1

2
δ12n (X−1)

= ∑
i+j=n

[δ11i (X)τ 12
j (I2) + τ 12

i (I2)δ
22
j (X)] + δ12n (X). (32)

Thus we get

1

2

∑
i+j=n

[τ 12
i (I2)δ

22
j (X) + δ11i (X)τ 12

j (I2) + τ 12
i (I2)ϕ

22
j (XX0) + ϕ11

i (XX0)τ
12
j (I2)] + 1

2
δ12n (X)

= ∑
i+j=n

[δ11i (X−1)τ 12
j (I2) + τ 12

i (I2)δ
22
j (X−1)] + δ12n (X−1) (33)

for any invertible X ∈ A by replacing X−1 by X in Eq. (32). It follows that

1

2

⎡
⎣1

2

∑
i+j=n

[τ 12
i (I2)δ

22
j (X) + δ11i (X)τ 12

j (I2) + τ 12
i (I2)ϕ

22
j (XX0) + ϕ11

i (XX0)τ
12
j (I2)] + 1

2
δ12n (X)

⎤
⎦

+ 1

2

∑
i+j=n

[τ 12
i (I2)ϕ

22
j (X−1X0) + ϕ11

i (X−1X0)τ
12
j (I2)]

= ∑
i+j=n

[δ11i (X)τ 12
j (I2) + τ 12

i (I2)δ
22
j (X)] + δ12n (X).

So

1

4

⎡
⎣ ∑
i+j=n

[τ 12
i (I2)δ

22
j (X) + δ11i (X)τ 12

j (I2)] + δ12n (X)

⎤
⎦

+ 1

4

∑
i+j=n

[τ 12
i (I2)ϕ

22
j (XX0) + ϕ11

i (XX0)τ
12
j (I2)]

+ 1

2

∑
i+j=n

[τ 12
i (I2)ϕ

22
j (X−1X0) + ϕ11

i (X−1X0)τ
12
j (I2)]

= ∑
i+j=n

[τ 12
i (I2)δ

22
j (X) + δ11i (X)τ 12

j (I2)] + δ12n (X) (34)

for any invertible X ∈ A.
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Similarly by letting X = I1 and X = 2I1 in Eq. (25), it is easily checked that

ϕ12
n (X0 + X0Y) = ∑

i+j=n

[τ 11
i (Y)(ϕ12

j (X0) + τ 12
j (Y−1) + δ12j (I1))

+ (δ12i (I1) + τ 12
i (Y))τ 22

j (Y−1) + τ 11
i (Y−1)(δ12j (I1) + τ 12

j (Y))

+ (ϕ12
i (X0) + τ 12

i (Y−1) + δ12i (I1))τ
22
j (Y)]

+ ϕ12
n (X0) + τ 12

n (Y−1) + 2δ12n (I1) + τ 12
n (Y), (35)

ϕ12
n

(
X0 + 1

2
X0Y

)
= ∑

i+j=n

[
τ 11
i (Y)

(
1

2
ϕ12
j (X0) + τ 12

j (Y−1) + 1

2
δ12j (I1)

)

+ (2δ12i (I1) + τ 12
i (Y))τ 22

j (Y−1) + τ 11
i (Y−1)(2δ12j (I1) + τ 12

j (Y))

+
(
1

2
ϕ12
i (X0) + τ 12

i (Y−1) + 1

2
δ12i (I1)

)
τ 22
j (Y)

]

+ ϕ12
n (X0) + 2τ 12

n (Y−1) + 2δ12n (I1) + 1

2
τ 12
n (Y), (36)

which implies that

1

2
ϕ12
n (X0Y) = ∑

i+j=n

[
1

2
τ 11
i (Y)(ϕ12

j (X0) + δ12j (I1)) − δ12i (I1)τ
22
j (Y−1)

− τ 11
i (Y−1)δ12j (I1) + 1

2
(ϕ12

i (X0) + δ12i (I1))τ
22
j (Y)

]

+ 1

2
τ 12
n (Y) − τ 12

n (Y−1). (37)

By considering Eq. (28) and ϕ11
n (X0) = 0 and letting X = I1 and X = 2I1 respectively, it is easily

verified that

ϕ11
n (X0Y) = ∑

i+j=n

[τ 11
i (Y)τ 11

j (Y−1) + τ 11
i (Y−1)τ 11

j (Y)] + 2τ 11
n (Y−1) + 2τ 11

n (Y), (38)

1

2
ϕ11
n (X0Y) = ∑

i+j=n

[τ 11
i (Y)τ 11

j (Y−1) + τ 11
i (Y−1)τ 11

j (Y)] + 4τ 11
n (Y−1) + τ 11

n (Y). (39)

When n = 0, τ 11
0 (Y) = 0. When n = 1, τ 11

1 (Y) = 0 according to [6, Theorem 2.2]. We assume

that τ 11
m (Y) = 0 for any Y ∈ B and 1 � m < n. So combining Eq. (38) with Eq. (39) and using the

induction hypothesis, we have

ϕ11
n (X0Y) = 2τ 11

n (Y−1) + 2τ 11
n (Y), (40)

1

2
ϕ11
n (X0Y) = 4τ 11

n (Y−1) + τ 11
n (Y). (41)

By direct computation, one can verify that τ 11
n (Y−1) = 0. There exists n ∈ N such that nI2 − Y is

invertible for any Y ∈ B and τ 11
n (I2) = 0, so τ 11

n (Y) = 0 for any Y ∈ B .

When n = 0, δ220 (X) = 0 for any X ∈ A. we have δ221 (X) = 0 by [6, Theorem 2.2]. So now we

assume that δ22m (X) = 0 for all 1 � m < n and X ∈ A. Taking respectively Y = I2 and Y = 2I2 in Eq.

(29) and using τ 22
n (I2) = 0, n � 1, τ 22

0 = idB we have
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ϕ22
n (X−1X0) = ∑

i+j=n

[δ22i (X)(δ22j (X−1) + ϕ22
j (X−1X0)) + (ϕ22

i (X−1X0) + δ22i (X−1))δ22j (X)]

+ 2δ22n (X) + 2ϕ22
n (X−1X0) + 2δ22n (X−1), (42)

and

2ϕ22
n (X−1X0) = ∑

i+j=n

[δ22i (X)(δ22j (X−1) + ϕ22
j (X−1X0)) + (ϕ22

i (X−1X0) + δ22i (X−1))δ22j (X)]

+ δ22n (X) + 4ϕ22
n (X−1X0) + 4δ22n (X−1). (43)

Combining the assumption and the above equations, we have the following equations:

−ϕ22
n (X−1X0) = 2δ22n (X) + 2δ22n (X−1),

−2ϕ22
n (X−1X0) = δ22n (X) + 4δ22n (X−1).

By direct computation, one can verify that δ22n (X) = 0 for any invertible X ∈ A and n ∈ N. Because

there is some integer n such that nI1 − X is invertible for every X ∈ A, the conclusion of δ22n (X) = 0

holds for every X ∈ A.

We set S =
⎡
⎣ X XW

0 Y

⎤
⎦ and T =

⎡
⎣ X−1 X−1X0 − WY−1

0 Y−1

⎤
⎦ for any Y ∈ B, W ∈ M, and for any

invertible X ∈ A, then ST = G and TS =
⎡
⎣ I1 X−1X0Y

0 I2

⎤
⎦. So combining δ12n (I1) + τ 12

n (I2) = 0 with

the characterization of D, we obtain the following equation:⎡
⎣ ϕ11

n (X−1X0Y) ϕ12
n (X0 + X−1X0Y)

0 ϕ22
n (X−1X0Y)

⎤
⎦

= Dn(ST + TS) = ∑
i+j=n

(Di(S)Dj(T) + Di(T)Dj(S))

= ∑
i+j=n

⎛
⎝

⎡
⎣ δ11i (X) + ϕ11

i (XW) δ12i (X) + ϕ12
i (XW) + τ 12

i (Y)

0 τ 22
i (Y) + ϕ22

i (XW)

⎤
⎦

⎡
⎣ δ11j (X−1) + ϕ11

j (X−1X0 − WY−1) δ12j (X−1) + ϕ12
j (X−1X0 − WY−1) + τ 12

j (Y−1)

0 τ 22
j (Y−1) + ϕ22

j (X−1X0 − WY−1)

⎤
⎦

+
⎡
⎣ δ11i (X−1) + ϕ11

i (X−1X0 − WY−1) δ12i (X−1) + ϕ12
i (X−1X0 − WY−1) + τ 12

i (Y−1)

0 τ 22
i (Y−1) + ϕ22

i (X−1X0 − WY−1)

⎤
⎦

⎡
⎣ δ11j (X) + ϕ11

j (XW) δ12j (X) + ϕ12
j (XW) + τ 12

j (Y)

0 τ 22
j (Y) + ϕ22

j (XW)

⎤
⎦

⎞
⎠ ,

which implies the following three equations:

ϕ11
n (X−1X0Y)

= ∑
i+j=n

[(δ11i (X) + ϕ11
i (XW))(δ11j (X−1) + ϕ11

j (X−1X0 − WY−1))

+ (δ11i (X−1) + ϕ11
i (X−1X0 − WY−1))(δ11j (X) + ϕ11

j (XW))], (44)
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ϕ12
n (X0 + X−1X0Y)

= ∑
i+j=n

[(δ11i (X) + ϕ11
i (XW))(δ12j (X−1) + ϕ12

j (X−1X0 − WY−1) + τ 12
j (Y−1))

+ (δ12i (X) + ϕ12
i (XW) + τ 12

i (Y))(τ 22
j (Y−1) + ϕ22

j (X−1X0 − WY−1))

+ (δ11i (X−1) + ϕ11
i (X−1X0 − WY−1))(δ12j (X) + ϕ12

j (XW) + τ 12
j (Y))

+ (δ12i (X−1) + ϕ12
i (X−1X0 − WY−1) + τ 12

i (Y−1))(τ 22
j (Y) + ϕ22

j (XW))], (45)

ϕ22
n (X−1X0Y)

= ∑
i+j=n

[(τ 22
i (Y) + ϕ22

i (XW))(τ 22
j (Y−1) + ϕ22

j (X−1X0 − WY−1))

+ (τ 22
i (Y−1) + ϕ22

i (X−1X0 − WY−1))(τ 22
j (Y) + ϕ22

j (XW))]. (46)

Now we take X = 2I1 and Y = I2 in Eq. (44) and Eq. (46), it is checked that

1

2
ϕ11
n (X0) = ∑

i+j=n

[
(2δ11i (I1) + 2ϕ11

i (W))

(
1

2
δ11j (I1) + ϕ11

j

(
1

2
X0 − W

))

(
1

2
δ11i (I1) + ϕ11

i

(
1

2
X0 − W

))
(2δ11j (I1) + 2ϕ11

j (W))

]
,

1

2
ϕ22
n (X0) = ∑

i+j=n

[
(τ 22

i (I2) + 2ϕ22
i (W))(τ 22

j (I2) + ϕ22
j

(
1

2
X0 − W

))

+ (τ 22
i (I2) + ϕ22

i

(
1

2
X0 − W

))
(τ 22

j (I2) + 2ϕ22
j (W))

]
.

By the fact that δ11n (I1) = 0(n � 1), τ 22
n (I2) = 0(n � 1) and ϕ11

n (X0) = 0, ϕ22
n (X0) = 0 for any

n � 0, it follows that

0 = 2ϕ11
n (W) + 4

∑
i+j=n

ϕ11
i (W)ϕ11

j (W),

0 = 2ϕ22
n (W) + 4

∑
i+j=n

ϕ22
i (W)ϕ22

j (W).

When n = 0, ϕ11
0 (W) = ϕ22

0 (W) = 0, When n = 1, ϕ11
1 (W) = ϕ22

1 (W) = 0, So we assume that

ϕ11
m (W) = ϕ22

m (W) = 0 for all 1 � m < n and W ∈ M. Combining the above equation with the

assumption, we get that ϕ11
n (W) = ϕ22

n (W) = 0 for all 1 � m < n.

By setting respectively Y = 1
2
I2 and Y = I2 in Eq. (45), the following two equations hold

ϕ12
n

(
X0 + 1

2
X−1X0

)
= ∑

i+j=n

[
δ11i (X)(δ12j (X−1) + ϕ12

j (X−1X0 − 2W) + 2τ 12
j (I2))

+ δ11i (X−1)

(
δ12j (X) + ϕ12

j (XW) + 1

2
τ 12
j (I2)

) ]
+ 2δ12n (X)

+ 2ϕ12
n (XW) + τ 12

n (I2) + 1

2
δ11n (X−1)

+ 1

2
ϕ12
n (X−1X0 − 2W) + τ 12

n (I2), (47)
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ϕ12
n (X0 + X−1X0) = ∑

i+j=n

[δ11i (X)(δ12j (X−1) + ϕ12
j (X−1X0 − W) + τ 12

j (I2))

+ δ11i (X−1)(δ12j (X) + ϕ12
j (XW) + τ 12

j (I2))] + δ12n (X)

+ ϕ12
n (XW) + τ 12

n (I2) + δ11n (X−1) + ϕ12
n (X−1X0 − W) + τ 12

n (I2). (48)

which implies that

−1

2
ϕ12
n (X−1X0) = ∑

i+j=n

[
−δ11i (X)ϕ12

j (W) + δ11i (X)τ 12
j (I2) + 1

2
δ11i (X−1)τ 12

j (I2)

]

+ δ12n (X) + ϕ12
n (XW) − 1

2
δ11n (X−1) − 1

2
ϕ12
n (X−1X0). (49)

It follows from Eq. (34) and the fact δ22n (X) = ϕ11
n (W) = ϕ22

n (W) = 0, we have

δ12n (X) = − ∑
i+j=n

δ11i (X)τ 12
j (I2). (50)

Hence combing Eq. (49) with Eq. (50), we can see that

ϕ12
n (XW) = ∑

i+j=n

δ11i (X)ϕ12
j (W)

for any invertible X ∈ A. There exists some n ∈ N such that nI1 − X is invertible for every X ∈ A, one

can check that

ϕ12
n (XW) = ∑

i+j=n

δ11i (X)ϕ12
j (W) (51)

for any X ∈ A.

Now we take respectively X = I1 and X = 2I1 in Eq. (45), one gets

ϕ12
n (X0 + X0Y) = ∑

i+j=n

[(δ12i (I1) + ϕ12
i (W) + τ 12

i (Y))τ 22
j (Y−1)

+ (δ12i (I1) + ϕ12
i (X0 − WY−1) + τ 12

i (Y−1))τ 22
j (Y)] + δ12n (I1)

+ ϕ12
n (X0 − WY−1) + τ 12

n (Y−1) + δ12n (I1) + τ 12
n (Y) + ϕ12

n (W), (52)

ϕ12
n (X0 + 1

2
X0Y) = ∑

i+j=n

[(2δ12i (I1) + 2ϕ12
i (W) + τ 12

i (Y))τ 22
j (Y−1)

+
(
1

2
δ12i (I1) + ϕ12

i

(
1

2
X0 − WY−1

)
+ τ 12

i (Y−1)

)
τ 22
j (Y)] + δ12n (I1)

+ 2ϕ12
n

(
1

2
X0 − WY−1

)
+ 2τ 12

n (Y−1) + δ12n (I1) + 1

2
τ 12
n (Y) + ϕ12

n (W),

(53)

which implies that

1

2
ϕ12
n (X0Y) = ∑

i+j=n

[
−(δ12i (I1) + ϕ12

i (W))τ 22
j (Y−1) + 1

2
(δ12i (I1) + ϕ12

i (X0))τ
22
j (Y)

]

+ ϕ12
n (WY−1) − τ 12

n (Y−1) + 1

2
τ 12
n (Y). (54)

Combining the above equation with Eq. (37) and the fact τ 11
n (Y) = 0, we get
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∑
i+j=n

[
−δ12i (I1)τ

22
j (Y−1) + 1

2
δ12i (I1)τ

22
j (Y) + 1

2
ϕ12
i (X0)τ

22
j (Y)

]
+ 1

2
τ 12
n (Y) − τ 12

n (Y−1)

= ∑
i+j=n

[
−δ12i (I1)τ

22
j (Y−1) + 1

2
δ12i (I1)τ

22
j (Y) + 1

2
ϕ12
i (X0)τ

22
j (Y)

]

− ∑
i+j=n

ϕ12
i (W)τ 22

j (Y−1) + 1

2
τ 12
n (Y) − τ 12

n (Y−1) + ϕ12
n (WY−1). (55)

So

ϕ12
n (WY−1) = ∑

i+j=n

ϕ12
i (W)τ 22

j (Y−1). (56)

Replacing Y by Y−1 in the above equation, we obtain for any invertible Y ∈ B

ϕ12
n (WY) = ∑

i+j=n

ϕ12
i (W)τ 22

j (Y). (57)

Since there is some integer n such that nI2 − Y is invertible for every Y ∈ B, it is easy to see that Eq.

(57) is true for every Y ∈ B andW ∈ M, Summing up Eq. (54) and Eq. (56), Eq. (57), we obtain that

∑
i+j=n

δ12i (I1)τ
22
j (Y−1) + τ 12

n (Y−1) = 1

2

⎡
⎣ ∑
i+j=n

δ12i (I1)τ
22
j (Y) + τ 12

n (Y)

⎤
⎦ . (58)

Thus

∑
i+j=n

δ12i (I1)τ
22
j (Y) + τ 12

n (Y) = 1

2

⎡
⎣ ∑
i+j=n

δ12i (I1)τ
22
j (Y−1) + τ 12

n (Y−1)

⎤
⎦ (59)

by replacing Y−1 by Y in the Eq. (58). Combining Eq. (58) with Eq. (59), we can obtain

1

2

⎡
⎣ ∑
i+j=n

δ12i (I1)τ
22
j (Y−1) + τ 12

n (Y−1)

⎤
⎦ = 2

⎡
⎣ ∑
i+j=n

δ12i (I1)τ
22
j (Y−1) + τ 12

n (Y−1)

⎤
⎦ .

So using the direct computation, we can claim that

τ 12
n (Y) = − ∑

i+j=n

δ12i (I1)τ
22
j (Y). (60)

Now summing up all the above equations and using similar arguments as that in the proof of Theo-

rem 2.1, it is easily checked that both {δ11n }n∈N and {τ 22
n }n∈N are higher derivations. Therefore it is also

an easy computation to see that {Dn}n∈N is a higher derivation. �
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