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Abstract

+ Key message Self-thinning lines are species- and climate-
specific, and they should be used when assessing the capacity
of different forest stands to increase biomass/carbon storage.
« Context The capacity of forests to store carbon can help to
mitigate the effects of atmospheric CO, rise and climate change.
The self-thinning relationship (average size measure ~ stand
density) has been used to identify the potential capacity of bio-
mass storage at a given density and to evaluate the effect of stand
management on stored carbon. Here, a study that shows how the
self-thinning line varies with species and climate is presented.

« Aims Our main objective is thus testing whether species
identity and climate affect the self-thinning line and therefore
the potential amount of carbon stored in living biomass.
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+ Methods The Ecological and Forest Inventory of Catalonia
was used to calculate the self-thinning lines of four common
coniferous species in Catalonia, NE Iberian Peninsula (Pinus
halepensis, Pinus nigra, Pinus sylvestris and Pinus uncinata).
Quadratic mean diameter at breast height was chosen as the
average size measure. The self-thinning lines were used to
predict the potential diameter at a given density and study
the effect of environmental variability.

+ Results Species-specific self-thinning lines were obtained.
The self-thinning exponent was consistent with the predicted
values of —3/2 and —4/3 for mass-based scaling for all species
except P. sylvestris. Species identity and climatic variability
within species affected self-thinning line parameters.

+ Conclusion Self-thinning lines are species-specific and are
affected by climatic conditions. These relationships can be
used to refine predictions of the capacity of different forest
stands to increase biomass/carbon storage.

Keywords Self-thinning rule - Quadratic mean diameter -
Stand density - Stand dynamics - Forest management - Carbon
sequestration

1 Introduction

Forests store approximately 45 % of terrestrial carbon, consti-
tute around 50 % of terrestrial primary production and can
sequester large amounts of carbon annually (Bonan 2008;
Pan et al. 2011) and thus mitigate the rise of atmospheric
CO, and global warming. Carbon sequestration is particularly
high in young, secondary forests, which dominate many areas
in the temperate zone (Bonan 2008; Pan et al. 2011). In sec-
ondary forests, developing trees accumulate mass, particularly
in the stem. However, while growing taller and bigger, trees in
secondary forests may compete strongly for available
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resources such as light, water and nutrients. Under conditions
of limited resource availability, weaker trees may become
suppressed and ultimately die. In other words, such forests
will gradually be dominated by fewer larger trees.

The concept of self-thinning lines (STLs) predicts a power
relationship between tree density and average tree size as closed
stands develop. In comparison with forest yield and models,
which reports tree size changes (volume or basal area) over
time, STLs do not consider time explicitly. In STLs, tree size
has been described by using different variables, including mass
(Yoda et al. 1963), mean stem diameter (Reineke 1933), or tree
height (Anfodillo et al. 2013). In logarithmic scales, STLs are
represented by a straight line. Since its first mention by Reineke
(1933), it has been acknowledged that the slope of this line may
vary between species. However, a possible constant value of
this slope has been widely discussed ever since (Weller 1987;
Lonsdale 1990; Enquist et al. 1998). Early studies used geomet-
ric models and predicted slope values of —3/2 when tree mass is
used as the size measure (Yoda et al. 1963). The slope value was
even considered a universal constant and referred to as the ‘self-
thinning rule’ (Westoby 1984). Later studies (West et al. 1997,
Enquist et al. 1998) used metabolic scaling theory and predicted
slope values of —4/3. Field studies suggested that the slope may
not be a universal constant and may vary between species
(Pretzsch 2006), environmental conditions (Deng et al. 2006),
or due to biotic interactions (Zhang et al. 2011).

Forest stands that differ in growing conditions are expected
to differ in the intercept of the STL (Palahi et al. 2003; Deng
et al. 2006). In terms of mass-based scaling, this implies that
some species can accumulate more carbon per forest area than
others, and forests may accumulate larger amounts of carbon
when resources are less limiting (e.g. Vayreda et al. 2012a). It
is well known, for example, that at a given stand density forest
trees in relatively rainy climates become larger than in rela-
tively dry conditions (Ryan and Yoder 1997). From this, the
development of forest stands of different species or of the
same species but in different climates could be expected to
differ in the intercept of the STL, but not necessarily in the
slope. This would make self-thinning line estimations a useful
tool to predict the potential of forest stands to accumulate
carbon and to compare their role in carbon sequestration. If
STLs are sensitive to species and climate conditions, they
could be used as a tool to assess climate change adaptation
and mitigation strategies. The STL concept could be used as a
predictive framework to characterize the potential of current
forest stands under specific climate conditions for accumulat-
ing carbon in future climate scenarios and could be used to
develop strategies to maximize carbon stocks to mitigate cli-
mate change effects (Luyssaert et al. 2011).

In this study, STLs of four coniferous tree species were
investigated over a wide climate and altitudinal gradient
in the north-east of the Iberian Peninsula. First, STLs
were fitted to see whether they follow the predicted slope
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of —1/2 or —4/9 for mean stem diameter, which is consistent
with a slope of —3/2 and —4/3 for mass (see Sect. 2.1).
Climate was also expected to impact self-thinning patterns
(slope and intercept) across and within species in different
ways, since the four species studied are adapted to different
climatic conditions and grow under different environmental
conditions. Particularly, populations at the lowest altitudes,
where the warmest and driest conditions occur, were expect-
ed to suffer from water stress and consequently to have
lower intercepts than other populations. At the higher altitu-
dinal end, the pattern may be reversed, as forest stands
would benefit from relatively low temperatures and greater
water availability.

2 Materials and methods
2.1 Self-thinning line

The self-thinning relationship is usually described by the fol-
lowing equation:

S=kN (1)

where S is the average size measure (e.g. in biomass (kg),
height (m) or stem diameter (cm)), N is the stand density
(trees haﬁl), k has the same dimension and unit as S and a is
a non-dimensional slope parameter. In logarithmic form, this
equation becomes,

log(S) = log(k)—alog(N) (2)

The slope of this equation (parameter @ in Egs. 1 and 2) can
be predicted from biophysical scaling relationships (e.g.
Solbrig et al. 1980; Enquist et al. 1998). For mean tree bio-
mass, slopes of —3/2 and —4/3 have been predicted. Under the
same assumptions as used by Begon et al. (1996), when using
stem diameter on the y-axis, these slopes translate into slopes
of —1/2 and —4/9, respectively. Empirical tests of these slopes
are not yet conclusive, but available data shows that most
slopes measured empirically are around these two theoretical
values (Weller 1987).

2.2 Study area and selected species

The selected area for this study is Catalonia, in the north-east
of Spain (Fig. 1b). This area covers a wide range in altitude
(from sea level to >3000 m above sea level), annual mean
temperature (0.0-17.3 °C) and annual precipitation (335—
1594 mm) in a relatively small area (32,000 km?) (Ninyerola
et al. 2000). In the present study, the four most abundant pine
species were selected because each species was represented by
more than 350 plots in the Ecological and Forestry Inventory
of Catalonia (IEFC; see next section) and provided a sufficient
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Fig. 1 Study area. a Distribution 300000 400000 500000
of the four pine species studied in a ‘
Catalonia. b Catalonia location in 50 Km
Europe (modified from
Kempeneers et al. (2011))
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statistical basis to test for differences in scaling relationships
(Fig. 1a). The altitudinal variation of Catalonia, especially due
to the Pyrenees, creates a wide climate gradient in a relatively
small area, with colder and wetter conditions towards higher
altitudes. The four studied pine species are abundant in the
study area, but they occupy very different areas in Catalonia
(Barbero et al. 1998): Pinus halepensis is only present in
Mediterranean coastal zones (<600 m above sea level),
Pinus nigra also occurs in mid elevations (600—-1000 m) in
mountainous Mediterranean areas, Pinus sylvestris occupies
higher elevations (800—1500 m) on Mediterranean mountain
tops and also in the Pyrenees, and Pinus uncinata is restricted
to high elevations (>1400 m) in the Pyrenees.

2.3 Data selection

STLs were estimated for each of the selected species by using
the online available IEFC (http://natura.uab.es/mirabosc/),
conducted by Centre for Ecological Research and Forestry
Applications (CREAF) between 1988 and 1998. This inven-
tory consists of 10,644 plots selected randomly from all the
forested area in Catalonia, at a density of ~1 plot km ™. Plots
were circular with a 10-m radius, and sampled forests had
different age structures. For this study, monospecific plots
(where a single species represented at least 80 % of the total
basal area) of the four pines were selected, including 1677

400000 500000

plots for P. halepensis, 902 plots for P. nigra, 1550 plots for
P, sylvestris and 399 plots for P. uncinata (Table 1, Fig. 1). All
trees with DBH > 5 cm were sampled in each plot (see IEFC
website for additional details on the inventory). For each plot,
the present study used tree density (trees ha ') and quadratic
mean diameter at breast height (QMD) (cm) to estimate the
STL. For the purpose of tree density and QMD calculations,
non-target species within a selected plot were included and
treated as target species. Annual precipitation (mm) (rain
and snow melt) and mean annual temperature (°C) data for
each plot was extracted from the Digital Climatic Atlas of
Catalonia (Ninyerola et al. 2000) which used data from mete-
orological stations.

Subsets of plots were selected to estimate the STLs. The
first criterion was omitting plots with very low stem density,
where self-thinning was unlikely to occur due to low compe-
tition between individuals. The minimum stand density at
which self-thinning was expected to occur was estimated in-
dividually for each species by using the segmented function in
the segmented R package (version 0.5-1.4), using 10-base
logarithms. The initial breakpoint guess needed in this func-
tion was 2.5 for all species.

Secondly, the range of densities present for each species
was divided into intervals of 50 trees ha ' (Fig. 2). Within
each of these intervals, we assumed that only the plots with
the highest QMD were subject to self-thinning; the others still
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Table 1  Summary of the monospecific sampled plots extracted from the IEFC inventory
Species DC n N P T
Min  Max Avg SD Min  Max Avg SD Min Max  Avg SD

P, halepensis ~ [5-10) 99 169 4441 1187.9 8723 375 875 5604  127.0 125 16.5 139 09
[10-15) 687 57 3825 941.4 529.0 375 875 571.2 114.4 11.5 16.5 139 1.0
[15-20) 621 75 2384 673.7 3387 375 1025 599.5 105.7 11.5 16.5 139 09
[20-25) 202 48 1515 469.3 2544 375 875 629.0 1087 11.5 16.5 13.8 1.1
[25-30) 57 92 830 376.7 161.3 425 825 647.8 86.1 11.5 15.5 137 1.1
[30-35) 10 107 505 348.7 128.8 425 825 655.0 113.5 11.5 14.5 134 1.1
[35-40) 1 158 158 158.0 - 525 525 525.0 - 135 135 135 -
[4045) 0 - - - - - - - - - - - -
[45-50) O - - - - - - - - - - - -

P. nigra [5-10) 46 183 6114 21092 14747 475 975 692.4 82.5 8.5 13.5 11.8 09
[10-15) 423 218 4844 14272 731.7 475 975 696.6 67.7 9.5 14.5 12.1 0.8
[15-20) 280 70 2691 8782 455.0 475 975 698.0 72.6 9.5 14.5 121 09
[20-25) 96 94 1391 594.7 2782 475 975 713.0 814 8.5 14.5 12.1 1.3
[25-30) 40 53 955 4222 207.7 575 925 726.3 83.6 8.5 14.5 12.5 1.7
[30-35) 8 40 638 344.6 190.2 625 925 756.3 1132 8.5 14.5 11.6 2.1
[3540) 7 178 488 343.0 1145 625 875 767.9 88.6 8.5 13.5 112 20
[40-45) 2 127 162 144.5 247 425 725 575.0  212.1 11.5 14.5 130 21
[45-50) O - - - - - - - - - - - -

P, sylvestris [5-10) 27 273 4974 2001.4 1168.6 675 1225 873.1 109.6 7.5 12.5 102 14
[10-15) 412 93 4317 1310.1 695.8 525 1225 866.1 106.3 5.5 13.5 104 15
[15-20) 627 73 3896 970.4 465.6 575 1175 868.3 102.6 5.5 13.5 10.0 1.6
[20-25) 300 80 1747 716.1 3144 625 1275 887.8 106.1 4.5 13.5 94 16
[25-30) 121 147 1413 641.0 2520 625 1275 8957 1014 4.5 13.5 89 18
[30-35) 43 89 795 463.6 172.8 625 1175 904.1 109.8 4.5 12.5 8.7 1.9
[3540) 15 192 678 399.7 152.1 675 1125 9283 109.3 7.5 12.5 8.8 1.4
[40-45) 3 214 597 430.0 196.1 925 1025 958.3 57.7 4.5 10.5 82 32
[45-50) 2 225 421 323.0 138.6 925 925 925.0 0.0 8.5 8.5 85 0.0

P. uncinta [5-10) 9 254 4151 1714.8 13586 975 1275 1125.0 86.6 6.5 9.5 76 09
[10-15) 69 108 4436 15725 9233 825 1275 980.8 111.0 4.5 10.5 6.7 1.5
[15-20) 123 195 2915 1176.5 508.6 675 1225 956.3 105.3 4.5 9.5 6.2 1.2
[20-25) 112 148 2089 868.2 3477 675 1275 970.5 108.8 4.5 9.5 60 13
[25-30) 64 183 1210 654.1 2476 825 1225 993.8 104.8 4.5 7.5 56 1.1
[30-35) 15 55 1055 5219 2672 925 1225 10183 120.8 45 7.5 5.3 1.1
[3540) 3 143 584 3237 2310 975 1125 1025.0 86.6 4.5 6.5 5.2 1.2
[4045) 4 108 525 286.3 1759 975 1225 1112.5 103.1 4.5 45 45 0.0

[45-50)

0 _ _ _ _ _ _ _ _ _ _ _ _

DC diameter class (cm), n number of plots, N tree density (trees ha! ), P precipitation (mm), T temperature (°C), Min minimum value, Max maximum
value, Avg average value, SD standard deviation

had space to growth. The selection criterion used was the 95th
percentile of plots with the highest QMD within each of the
density intervals. This criterion is arbitrary, but it provided a
sufficient sample of plots of each species to allow statistical
estimation of the STL and also allowed comparison of STLs
between species. STLs were thus estimated by using 73 plots
for P. halepensis, 87 plots for P. nigra, 109 plots for
P. sylvestris and 50 plots for P. uncinata.
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2.4 Statistical analysis

After log-transforming the QMD and density for each plot, the
STL and its standard error were calculated for each species
with a linear model by using the /m function in R software (R
Core Team). Results were retransformed. The regression was
estimated by using the ordinary least squares. The STLs were
also calculated by using the major axis method to be able to
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Fig. 2 Self-thinning lines for the
four pine species studied,
estimated from the QMD and
stand density relationships of
monospecific stands. Self-
thinning lines were calculated for
each species based on the plots
(the coloured ones) with the
highest QMD values (95 %
quantile) for successive density
bins (100 trees ha ). Data were
log-transformed, and for self-
thinning calculations, only plots
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transform the slope results (calculating the inverse) for their
comparison with other studies that used tree density as depen-
dent variable.

The intercepts and slopes estimated by the STL analysis
were compared among the pine species with confidence inter-
vals (CI) of 95 % assuming a normal distribution. Since inter-
cept and slope estimates were largely dependent, the STL
intercepts at the centred density were used and showed for
comparison purposes (Fig. 3). Using intercepts at centred den-
sity instead of values of log(k), the impact of slope variations
was minimized when the intercepts across species or across
plots were compared (see below). Therefore, the centred tree
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Fig. 3 Relationship between slope and intercept at midpoint density for
each of the four species. Error bars represent 95 % confidence intervals
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density as the arithmetic mean of the four mean densities per
species (N, ;) was calculated. For each species (i), the mean
density was calculated by using logarithmic values with the
following formula:

]vm,i = (Nmax,i + Nmin,i) /2.
where N, and N are, respectively, maximum and min-
imum logarithmic tree density for species i.

STLs were recalculated to show possible impacts of mean
annual temperature and mean annual precipitation on the STL
of different species. For each species, the averages of mean
temperature and mean precipitation of all plots were used to
differentiate subsets of plots growing under higher or lower
conditions of temperature and precipitation. The new species’
STLs were calculated by using these subsets of plots. The new
coefficients of the STLs were estimated and tested by using
the /m function in R as previously done.

Additional calculations were performed to analyse the re-
sults. The De Martonne aridity index (De Martonne 1926) was
used to estimate the conditions of aridity in which each species
grows. The aridity index was calculated for each plot and then
averaged for each species. We also studied the effect of stand
structure over STLs. Plots were classified as even aged or
uneven aged, with even-aged plots defined as those with trees
differing 5 years maximally and uneven aged with trees dif-
fering more than 5 years. Age data was only available for a
fraction of the plots used. We used the maximum difference of
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Table 2 Slopes and intercepts at

midpoint density (see Fig. 4) Species Slope + SE t value t value log(Int + SE) Int Int 1 Slope

calculated by each species self- (to—1/2)  (to—4/9) [em] [cm] (MA)

thinning line with its standard

error (SE) P halepensis ~ —0.533 +0.026  —1.267 —3.409 1.172 £ 0.006  14.85 79986  —1.777
P, nigra —0.540 + 0.023  -1.768 —4.195 1.204 £ 0.006  16.01 913.09 -1.787
P, sylvestris —0.589 £ 0.019  —4.655 —7.548 1.263 £0.005 1831 150558  —1.647
P, uncinata —0.571 £ 0.037  -1.938 —3.444 1.268 £0.009 1854 133372  —1.665

For each species, # values of slopes are showed for their comparison to hypothetical values of —1/2 and —4/9. Also,
retransformed intercepts at midpoint density (Int) and at 1 tree ha ' (Int 1) are showed. The Slope (MA) column
shows the slopes calculated by using the major axis method and the tree density as dependent variable

QMD calculated from even-aged plots with age data as a
threshold to classify all plots as even or uneven aged.

3 Results
3.1 Across species comparison of self-thinning line

The minimum tree density threshold where self-thinning take
place was 732 trees ha ' for P halepensis, 600 trees ha ' for
P, nigra, 579 trees ha ' for P. sylvestris and 581 trees ha ' for
P. uncinata.

The STL slopes of P. sylvestris was significantly steeper
than the range of expected values (between —1/2 and —4/9),
whereas P. uncinata, P. nigra and P. halepensis did not show
significant differences (Fig. 3). Slopes did not show signifi-
cant differences among species. Intercepts showed significant
differences between all species, except between P. sylvestris
and P. uncinata (Table 2, Fig. 3).

The intercept increased for species growing on higher alti-
tudes described by higher precipitation and colder conditions.
The same species order was found by using the aridity index
(Table 3).

3.2 Effects of climate on the self-thinning line

STLs estimated from plots growing in areas with higher aver-
age temperatures did not significantly differ from STLs esti-
mated from plots growing in areas with lower average tem-
peratures, except for P. sylvestris (Table 4, Fig. 4). The STL of
P, sylvestris growing in colder conditions had a significantly

Table 3  Aridity index of the four species

Species Min Max Avg SD
P, halepensis 14.3 24.4 222 5.0
P, nigra 16.3 51.4 30.7 3.7
P, sylvestris 24.4 80.6 44.0 6.5
P, uncinata 43.6 82.8 60.3 8.4

Min minimum value, Max maximum value, Avg average value, SD stan-
dard deviation
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higher intercept and steeper slope. Although not significantly
different, the STLs of P. nigra and P. uncinata seemed to have
higher intercepts and steeper slopes when estimated under
colder conditions.

Results showed significant differences among STLs
estimated from plots with higher annual precipitations com-
pared to STLs estimated from plots with lower annual precip-
itations for P. halepensis and P. uncinata (Table 4, Fig. 4).
P. halepensis’ STL showed a higher intercept when growing
in wetter conditions. Instead, P. uncinata’s STL had a higher
intercept when growing in dryer conditions. P. nigra seemed
to have higher intercepts and steeper slopes when it grows
under wetter conditions, but the differences were not
significant.

3.3 Effects of structure on the self-thinning lines

The maximum QMD difference calculated for even-aged plots
was 28.6 cm. Using this difference, we estimated that 80 % of
pine stands in Catalonia are even aged. The comparison be-
tween STLs’ slopes of even-aged and uneven-aged plots did
not show significant differences for any species (Fig. 4). Only
intercepts of P. sylvestris and P. uncinata estimated for
uneven-aged plots were significantly higher than the inter-
cepts estimated from even-aged plots. STLs estimated by
using all plots were not significantly different than STLs esti-
mated by using even-aged plots with also the exception of a
higher intercept of STLs estimated by using all plots of
P, sylvestris and P. uncinata.

4 Discussion

The four studied pine species occupied different altitudes and
climate zones in Catalonia, expressing their differences in
habitat requirements (Castro 1998). In this study, we explored
the effects of annual mean temperature and precipitation on
growth and stand development and on self-thinning lines in
particular. While valuable, this approach cannot trace more
subtle climate impacts, such as, for example, late summer
rainfall or other aspects of the regional climate, which are
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Fig. 4 Comparison of self-thinning lines for four pine species in
Catalonia growing in different climate conditions and with different
stand structures. The slope and the intercept at centred density of each
species is represented besides the slope and the intercept at centred

sometimes considered important determinants of stand growth
and development (Andreu et al. 2007). While the self-thinning
law was originally described for even-aged plant populations,
we quantified self-thinning lines by using both even-aged and
uneven-aged stands. We analysed how the selection of even-
aged plots would have affected STLs. We found that only the
intercept of P. sylvestris and P. uncinata showed significant
differences. However, slopes tend to be flatter, and the signif-
icant differences found in P. sylvestris’ STL slope compared
with the hypothesis of —1/2 would disappear. From this, we
conclude that uneven-aged stands may achieve higher inter-
cepts for their STL than even-aged stands, implying that they
can accumulate more biomass, which can be important for
managing forest for biomass or carbon accumulation.

The theoretical predictions of STL slopes of —1/2 and —4/9,
i.e. predictions that are based on allometric scaling (e.g.
Enquist et al. 1998), and assumptions for leaf distributions
within trees (Zeide and Pfeifer 1991; Sterck and Schieving
2007; Duursma et al. 2010) were tested. Species had slopes
that were similar to —1/2, but they all differed from —4/9. Only

density estimated for each species growing in climate extremes (from
top to bottom species mean temperature, precipitation, and structure).
Thin lines represent species STL

P sylvestris had a slope significantly steeper than —1/2. The
slope obtained for P. sylvestris by using the major axis method
and tree density as dependent variable (—1.647) is flatter than
values reported from other studies conducted with this species
in the same (—1.815 (Palahi et al. 2003)) or nearby regions of
Spain (—1.830 (del Rio et al. 2001)). This slope is also flatter
than most of the studies conducted in regions with more
favourable climates (e.g. —1.87 in the Italian Alps
(Vacchiano et al. 2008), between —1.750 and —1.762 in
Austria (Vospernik and Sterba 2015), with the exception of
Germany (between —1.445 and —1.695 according to Pretzsch
and Biber (2005)). This shows that slopes might be site or
context dependent, and given the strong dependency of slopes
on intercepts of STL, the ecological value of comparing slopes
is rather uncertain. For species comparisons, we therefore con-
sidered mid-density estimates of the QMD, thus reducing pos-
sible implications of intercept-slope interdependencies. As
mentioned before, the use of uneven-aged plots could explain
it, but additional research is required to clarify the steeper self-
thinning slope observed for P. sylvestris. There may be other
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Table 4 Slopes and intercepts at
midpoint density (see Fig. 4)
calculated by each species self-
thinning line under climate
extremes of temperature and
precipitation with its standard
error (SE)

Species Climate g ng  Slope = SE log(Int + SE)  Int[cm] Int1 [cm]
P, halepensis ~ High temperature 852 49  —0.554 £0.042 1.156 £0.009 14.32 906.55
Low temperature 824 45 —0.543 £0.041 1.153 £0.008 14.23 828.92
High precipitation 891 52 —0.582 £ 0.034 1.167 £ 0.007  14.69 1141.47
Low precipitation 785 45 —0.563 £0.051 1.123 £0.011  13.26 893.54
P, nigra High temperature 514 55 —0.478 £0.034 1.179 £ 0.007 15.10 540.91
Low temperature 355 65 —0.571+0.032 1.197 £0.008 15.74 1127.14
High precipitation 395 57 —0.580 + 0.034  1.202 + 0.008 1591 1222.83
Low precipitation 474 61 —0.469 +0.029 1.176 £ 0.007  14.99 502.45
P, sylvestris High temperature 741 71  —0.505 £ 0.028 1.217 £ 0.007 16.49 720.43
Low temperature 809 69  —0.628 £ 0.026  1.264 + 0.006  18.35 2018.97
High precipitation 659 63  —0.593 + 0.032  1.248 £ 0.008  17.70 1496.44
Low precipitation 891 74 —0.594 £ 0.027 1.246 + 0.007  17.63 1496.69
P, uncinata High temperature 209 46  —0.503 £0.042 1.241 £0.009 17.43 750.74
Low temperature 190 34 —-0575+£0.050 1261 £0.012 1823 1345.19
High precipitation 146 33 —0.586 £ 0.056  1.221 £0.014  16.62 1333.12
Low precipitation 253 43  —0.446 £0.045 1269 +0.010 18.56 521.06

Retransformed intercepts at midpoint density (Int) and at 1 tree ha! (Int 1) are showed. Total number of plots (ny);
number of plots in self-thinning phase (Ny)

reasons for a lack of more intra-specific differences, i.e. the
limited number of plots per species, the limited environmental
range occupied by each species or possible confounding fac-
tors such as differences in management history across plots
(Luyssaert et al. 2011) or in nutrient availability (Morris 2003;
Fernandez-Martinez et al. 2014).

The intercepts estimated here presented significant differ-
ences between most of the species (Fig. 3, Table 2). Those
differences in intercepts between species might partially result
from the different climate envelops occupied by those species
(Table 3). In line with these results, other studies suggest that
the intercept of the self-thinning lines is dependent on the site
index (Palahi et al. 2003). The variability of slopes seems less
affected by climatic conditions than the variability of inter-
cepts (Fig. 4, Table 4). Variability in STLs may also occur
due to methodological effects: low sample size (number of
plots, as seen from the high variance in results by Pretzsch
and Biber (2005)). Studies by using different methodologies,
such as selection of different quantiles, may not be compara-
ble. We believe that our results slightly underestimated the
intercept (see Fig. 2) because we used the 5 % of plots with
the highest QMD in each tree density interval. The estimated
intercept would be higher if we had selected a lower percent-
age of plots. But in this case, the sample size used to estimate
the STL would be lower. A similar trade-off was identified by
Vospernik and Sterba (2015) by using quantile regression.
Thus, the percentage of selected plots must be high enough
to estimate the slope with a reasonably low confidence inter-
val but low enough to estimate the ‘correct’ intercept.
Obviously, this problem is less severe when the proportion
of plots in self-thinning phase is high because the standard
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variation will be smaller or when the total number of plots is
high because then we can use a higher quantile and obtain the
same standard deviation.

Water stress is known to be a major growth-limiting factor in
lowland Mediterranean areas (Roda et al. 1999). Therefore, the
species at the lowest altitudes where the warmest and driest
conditions occur were expected to suffer from water stress
and consequently to have smaller intercepts than other species.
At the higher altitudinal end, the pattern may be reversed when
forest stands are not limited by water scarcity (Martinez-Vilalta
et al. 2008). Our results are largely in line with these expecta-
tions (Fig. 4). At the lowest altitude, P. halepensis had the
lowest STL intercept and its magnitude appeared to be limited
by low precipitation. For the species that occurred at higher
altitudes that are less drought stressed, the intercepts increased
and their magnitude seem to be limited by high temperatures
(e.g. P. sylvestris). For P. uncinata, which occurred at the
highest altitudes, the intercept was not significantly different
from P, sylvestris, but the high precipitations appeared to be
the limiting factor for the intercept. P. sylvestris is close to the
southern (and dry) limit of its distribution in Catalonia.
Previous studies have detected drought-induced decline in sev-
eral populations of this species in the study area (e.g. Vila-
Cabrera et al. 2013). However, we found size limitations due
to warm conditions but not due to precipitation in this species.

STLs have already been used to estimate the effects of land
use on carbon cycle (Luyssaert et al. 2011). Our study shows
how STLs may be used to predict carbon stocks in living
biomass depending on species and climate conditions. For
example, we can predict that increases in temperature may
reduce the potential carbon stock in P. sylvestris forests.
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Instead, P. halepensis seems to be more adapted to high
temperatures and therefore less affected by increases in
temperature, but it is more sensitive to water scarcity. Our
results suggest that a lower precipitation could reduce
potential carbon stocks in lowland pines but could be
beneficial for P uncinata growing in high altitudes. In line
with this result, Vayreda et al. (2012b) identified reductions
on carbon accumulations in Spanish forests due to recent
warming and due to lower water availability. Using the STLs,
we can identify which species are likely to grow to larger sizes
under new conditions and promote these species as a climate
change adaptation strategy. The utilization of such species will
likely enhance the carbon storage in forests and contribute to
climate change mitigation. With the study presented here, we
cannot estimate carbon stocks increment under specific climate
change scenarios because we do not know the exact shape of
the relationship between STL slopes and intercepts and climate.
Future work should be directed at relating changes in STLs to
changes in carbon content under future climate scenarios.
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