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Recently, Jachymski and Jóźwik proved that among various classes of contractions which
are introduced and studied in the metric fixed point theory, the Leader contractions
are greatest general contractions. In this article, we want to show how generalized
pseudodistances in uniform spaces can be used to obtain new and general results of Leader
type without complete graph assumptions about maps and without sequentially complete
assumptions about spaces, which was not done in the previous publications on this subject.
The definitions, results and methods presented here are new for maps in uniform and
locally convex spaces and even in metric spaces. Examples showing a difference between
our results and the well-known ones are given.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The studies of contractive fixed points in metric spaces inspired by Banach [1] and Caccioppoli [2] were developed sub-
stantially by Burton [3], Rakotch [4], Geraghty [5,6], Matkowski [7–9], Walter [10], Dugundji [11], Tasković [12], Dugundji
and Granas [13], Browder [14], Krasnosel’skiı̆ et al. [15], Boyd and Wong [16], Mukherjea [17], Meir and Keeler [18],
Leader [19], Jachymski [20,21], Jachymski and Jóźwik [22] and many others not mentioned in this paper.

It is worth noticing that some of the results of the papers of Jachymski [20,21] and Jachymski and Jóźwik [22], con-
cerning discussions, comparisons and corrections, are in fact essential tools in the proofs that among various classes of
contractions which are introduced and studied in the above mentioned papers the Leader contractions are the greatest
general contractions. In the complete metric spaces with τ -distances, beautiful generalizations of Leader’s result [19, The-
orem 3] are established by Suzuki [23, Theorem 4] and [24]. The above are some of the reasons why in metric spaces the
study of Leader contractions plays a particularly important part in the metric fixed point theory.

Recall, that the maps satisfying the following conditions (L1) and (L2) are called in literature Leader contractions and weak
Leader contractions, respectively.

Theorem 1.1. (See Leader [19, Theorem 3].) Let (X,d) be a metric space and let T : X → X be a map with a complete graph (i.e. closed
in Y 2 where Y is the completion of X). The following hold:

(a) T has a contractive fixed point if and only if (L1) ∀x,y∈X∀ε>0∃η>0∃r∈N∀i, j∈N{d(T [i](x), T [ j](y)) < ε + η ⇒ d(T [i+r](x),
T [ j+r](y)) < ε}.
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(b) T has a fixed point if and only if (L2) ∃x∈X∀ε>0∃η>0∃r∈N∀i, j∈N{d(T [i](x), T [ j](x)) < ε+η ⇒ d(T [i+r](x), T [ j+r](x)) < ε}. More-
over, if x, ε,η and r are as in (L2) and if limm→∞ T [m](x) = w, then ∀i∈N{d(T [i](x), T [i+r](x)) � η ⇒ d(T [i+r](x), w) � ε}.

By a contractive fixed point of T : X → X we mean a fixed point w of T in X such that, for each w0 ∈ X ,
limm→∞ T [m](w0) = w .

Recently, Włodarczyk and Plebaniak in [25] have studied among others the J -families of generalized pseudodistances
in uniform spaces which generalize distances of Tataru [27], w-distances of Kada et al. [28], τ -distances of Suzuki [29] and
τ -functions of Lin and Du [30] in metric spaces and distances of Vályi [31] in uniform spaces. Motivated by works reported
in [19,23,24,20–22], our main interest in this paper is the following

Question 1.1. If the spaces X are uniform with J -families of generalized pseudodistances, under what conditions does the
fixed point theorem of Leader type for maps T : X → X exist even in the case when the spaces X are not sequentially
complete and the maps T do not have complete graphs?

In this paper, in the uniform spaces, to answer affirmatively this question, we give the definition of the J -family of
generalized pseudodistances, we apply it to construct J -contractions of Leader type on X and we provide the conditions
guaranteeing the existence and uniqueness of fixed points of these contractions and the convergence to these fixed points
of all iterative sequences of these contractions. Also we construct weak J -contractions of Leader type on X and study the
existence of their fixed points. Our contractions essentially extend Leader type contractions introduced and studied in the
literature. Examples showing a fundamental difference between our results and the well-known ones are given. The results
and methods of investigation presented here are new for maps in uniform and locally convex spaces and even in metric
spaces.

2. Definitions, notations and statement of results

Let X be a Hausdorff uniform space with uniformity defined by a saturated family D = {dα: α ∈ A} of pseudometrics dα ,
α ∈ A, uniformly continuous on X2. If T : X → X , then, for each w0 ∈ X , we define a sequence (wm: m ∈ {0} ∪ N) starting
with w0 as follows ∀m∈{0}∪N{wm = T [m](w0)} where T [m] = T ◦ T ◦ · · · ◦ T (m-times) and T [0] = I X is an identity map on X .
Denote by Fix(T ) the set of all fixed points of T , i.e. Fix(T ) = {w ∈ X: w = T (w)}.

We start by defining the notions of J -family of generalized pseudodistances on X and J -contractions and weak J -
contractions of Leader type on X .

Definition 2.1. (See [25,26].) Let X be a uniform space. The family J = { Jα: X2 → [0,∞), α ∈ A} is said to be a J -family
of generalized pseudodistances Jα , α ∈ A, on X (J -family, for short) if the following two conditions hold:

(J 1) ∀α∈A∀x,y,z∈X { Jα(x, z) � Jα(x, y) + Jα(y, z)}; and
(J 2) For any sequence (xm: m ∈ N) in X such that

∀α∈A
{

lim
n→∞ sup

m>n
Jα(xn, xm) = 0

}
, (2.1)

if there exists a sequence (ym: m ∈ N) in X satisfying

∀α∈A
{

lim
m→∞ Jα(xm, ym) = 0

}
, (2.2)

then

∀α∈A
{

lim
m→∞dα(xm, ym) = 0

}
. (2.3)

In the following remark, we list some basic properties of J -families.

Remark 2.1. Let X be a Hausdorff uniform space and let J = { Jα : X2 → [0,∞), α ∈ A} be a J -family on X .

(a) From (J 1) and (J 2) it follows that if x �= y, x, y ∈ X , then ∃α∈A{ Jα(x, y) > 0∨ Jα(y, x) > 0}. Indeed, if ∀α∈A{ Jα(x, y) =
Jα(y, x) = 0}, then ∀α∈A{ Jα(x, x) = 0}, since, by (J 1), we get ∀α∈A{ Jα(x, x) � Jα(x, y) + Jα(y, x) = 0}. Now, defining
xm = x and ym = y for m ∈ N, we conclude that (2.1) and (2.2) hold. Consequently, by (J 2), we get (2.3) which implies
∀α∈A{dα(x, y) = 0}. However, X is a Hausdorff and hence, since x �= y, we have ∃α∈A{dα(x, y) �= 0}. Contradiction.

(b) If ∀α∈A∀x∈X { Jα(x, x) = 0}, then, for each α ∈ A, Jα is quasi-pseudometric. Examples of J -families such that the
maps Jα , α ∈ A, are not quasi-pseudometrics are given in Section 6.

(c) The family D is a J -family on X .



K. Włodarczyk, R. Plebaniak / J. Math. Anal. Appl. 387 (2012) 533–541 535
Definition 2.2. Let X be a uniform space and let the family J = { Jα : X2 → [0,∞), α ∈ A} be a J -family on X . We say
that:

(i) T : X → X is a J -contraction of Leader type on X (in short, J -contraction on X) if
(C1) ∀x,y∈X∀α∈A∀ε>0∃η>0∃r∈N∀s,l∈N{ Jα(T [s](x), T [l](y)) < ε + η ⇒ Jα(T [s+r](x), T [l+r](y)) < ε}.

(ii) T : X → X is a weak J -contraction of Leader type on X (in short, weak J -contraction on X ) if
(C2) ∃x∈X∀α∈A∀ε>0∃η>0∃r∈N∀s,l∈N{ Jα(T [s](x), T [l](x)) < ε + η ⇒ Jα(T [s+r](x), T [l+r](x)) < ε}.

Definition 2.3. Let X be a uniform space and let J = { Jα : X2 → [0,∞), α ∈ A} be a J -family on X . We say that
T : X → X is J -admissible if for each u0 ∈ X satisfying ∀α∈A{limn→∞ supm>n Jα(un, um) = 0} there exists w ∈ X such that
∀α∈A{limm→∞ Jα(um, w) = 0}.

Remark 2.2. Let X be a Hausdorff uniform space and let T : X → X . If X is sequentially complete, then T is D-admissible.

Definition 2.4. Let X be a uniform space and let T : X → X . We say that T is closed on X , if whenever (xm: m ∈ N) is a
sequence in X converging to x ∈ X and (ym: m ∈ N) is a sequence converging to y ∈ X such that ym = T (xm) for all m ∈ N,
then y = T (x).

Basing on ideas from [25,26,32–34] we will present an affirmative answer to Question 1.1. More precisely, we will prove
the following three stronger than [1–19], [23, Theorem 4] and [24] results.

Theorem 2.1. Let X be a Hausdorff uniform space and let J = { Jα : X2 → [0,∞), α ∈ A} be the J -family on X. Let a map T : X → X
be J -admissible and let it satisfy one of the following conditions:

(D1) ∀w0,w∈X {{limm→∞ wm = w} ⇒ {T is continuous at w}};
(D2) T is closed on X.

The following hold:

(a) If T is a J -contraction on X, then: (i) T has a unique fixed point in X, say w; (ii) for each w0 ∈ X, the sequence (wm: m ∈ {0}∪N)

converges to w; and (iii) ∀α∈A{ Jα(w, w) = 0}.
(b) If T is a weak J -contraction on X, then: (i) there exist w0, w ∈ X such that the sequence (wm: m ∈ {0} ∪ N) converges to w;

and (ii) w ∈ Fix(T ).

Theorem 2.2. Let X be a Hausdorff uniform space and let J = { Jα : X2 → [0,∞), α ∈ A} be the J -family on X. Let a map T : X → X
satisfy one of the conditions (D1) or (D2) and, in addition, the condition

(D3) ∃w0,w∈X∀α∈A{limm→∞ Jα(wm, w) = 0}.

If T is a J -contraction on X, then: (i) there exist w0, w ∈ X such that the sequence (wm: m ∈ {0} ∪ N) converges to w;
(ii) Fix(T ) = {w}; and (iii) ∀α∈A{ Jα(w, w) = 0}.

Theorem 2.3. Let X be a Hausdorff sequentially complete uniform space and let the family J = { Jα : X2 → [0,∞), α ∈ A} be a
J -family on X. Let T : X → X satisfy one of the conditions (D1) or (D2). The following hold:

(a) If T is a J -contraction on X, then: (i) T has a unique fixed point in X, say w; (ii) for each w0 ∈ X, the sequence (wm: m ∈ {0}∪N)

converges to w; and (iii) ∀α∈A{ Jα(w, w) = 0}.
(b) If T is a weak J -contraction on X, then: (i) there exist w0, w ∈ X such that the sequence (wm: m ∈ {0} ∪ N) converges to w;

and (ii) w ∈ Fix(T ).

3. Proof of Theorem 2.1

For each w0, v0 ∈ X , α ∈ A and k ∈ N, we define

δJ ;α,k
(

w0, v0) = inf
{
�J ;α,k

(
w0, v0,n

)
: n ∈ N

}
, (3.1)

γJ ;α,k
(

w0, v0) = inf
{
ΓJ ;α,k

(
w0, v0,n

)
: n ∈ N

}
, (3.2)

�J ;α,k
(

w0, v0,n
) = max

{
Jα

(
ws, vl): n � s, l � n + k

}
, n ∈ N, (3.3)

ΓJ ;α,k
(

w0, v0,n
) = max

{
Jα

(
vs, wl): n � s, l � n + k

}
, n ∈ N. (3.4)
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Proof of Theorem 2.1(a). Assume that the condition (C1) holds. The proof will be broken into nine steps.
Step 1. The following property holds

∀w0,v0∈X∀α∈A∀ε>0∃η>0
{∃r1∈N∀s,l∈N

{
Jα

(
ws, vl) < ε + η ⇒ Jα

(
ws+r1 , vl+r1

)
< ε

}
∧∃r2∈N∀s,l∈N

{
Jα

(
vs, wl) < ε + η ⇒ Jα

(
vs+r2 , wl+r2

)
< ε

}}
. (3.5)

Indeed, let w0, v0 ∈ X be arbitrary and fixed. If we define the sequences (wm: m ∈ {0} ∪ N) and (vm: m ∈ {0} ∪ N) (remem-
ber that wm = T [m](w0) and vm = T [m](v0), m ∈ {0}∪N) and assume that α ∈ A and ε > 0 are arbitrary and fixed, then, us-
ing (C1) for x = w0 and y = v0, we obtain ∃η1>0∃r1∈N∀s,l∈N{ Jα(ws, vl) < ε + η1 ⇒ Jα(ws+r1 , vl+r1 ) < ε} and, using (C1) for
x = v0 and y = w0, we obtain ∃η2>0∃r2∈N∀s,l∈N{ Jα(vs, wl) < ε+η2 ⇒ Jα(vs+r2 , wl+r2 ) < ε}. Hence, putting η = min{η1, η2},
we have ∃r1∈N∀s,l∈N{ Jα(ws, vl) < ε +η ⇒ Jα(ws+r1 , vl+r1 ) < ε} and ∃r2∈N∀s,l∈N{ Jα(vs, wl) < ε +η ⇒ Jα(vs+r2 , wl+r2 ) < ε}.
This gives (3.5).

Step 2. We show that

∀w0,v0∈X∀α∈A∀k∈N

{
δJ ;α,k

(
w0, v0) = 0

}
(3.6)

and

∀w0,v0∈X∀α∈A∀k∈N

{
γJ ;α,k

(
w0, v0) = 0

}
. (3.7)

Indeed, suppose that (3.6) does not hold; that is,

∃u0,z0∈X∃α0∈A∃k0∈N∃ε0>0
{
δJ ;α0,k0

(
u0, z0) = ε0

}
. (3.8)

With this choice of u0, z0,α0 and ε0 we can use (3.5) and then there exist η0 > 0 and r0 ∈ N, such that

∀s,l∈N

{
Jα0

(
us, zl) < ε0 + η0 ⇒ Jα0

(
us+r0 , zl+r0

)
< ε0

}
. (3.9)

Additionally, (3.8) and (3.1) imply that there exists n0 ∈ N such that �J ;α0,k0 (u0, z0,n0) < ε0 + η0 which, by (3.3), gives
∀n0�s,l�n0+k0 { Jα0(us, zl) < ε0 + η0}. Consequently, by (3.9), we get ∀n0�s,l�n0+k0 { Jα0(us+r0 , zl+r0 ) < ε0} which we can write
as ∀n0+r0�s,l�n0+r0+k0 { Jα0(us, zl) < ε0}. This, by (3.3), gives that �J ;α0,k0(u0, z0,n0 + r0) < ε0. However, hence and from
(3.8) and (3.1) it follows that ε0 = δJ ;α0,k0(u0, z0) = inf{�J ;α0,k0(u0, z0,n): n ∈ N} � �J ;α0,k0 (u0, z0,n0 + r0) < ε0 which is
impossible. Therefore, (3.6) holds. Now, suppose that (3.7) does not hold, i.e.

∃u0,z0∈X∃α0∈A∃k0∈N∃ε0>0
{
γJ ;α0,k0

(
u0, z0) = ε0

}
. (3.10)

Of course, for this u0, z0,α0 and ε0, by (3.5), there exist η0 > 0 and r0 ∈ N, such that

∀s,l∈N

{
Jα0

(
zs, ul) < ε0 + η0 ⇒ Jα0

(
zs+r0 , ul+r0

)
< ε0

}
. (3.11)

In addition, by (3.10) and (3.2), there exists n0 ∈ N such that ΓJ ;α0,k0 (u0, z0,n0) < ε0 + η0. Hence, using (3.4), we con-
clude that ∀n0�s,l�n0+k0 { Jα0(zs, ul) < ε0 + η0} and this, using (3.11), gives that ∀n0�s,l�n0+k0 { Jα0 (zs+r0 , ul+r0 ) < ε0}, i.e.
that ∀n0+r0�s,l�n0+r0+k0 { Jα0(zs, ul) < ε0}. This means, by (3.4), that ΓJ ;α0,k0(u0, z0,n0 + r0) < ε0. Consequently, ε0 =
γJ ;α0,k0(u0, z0) = inf{ΓJ ;α0,k0 (u0, z0,n): n ∈ N} � ΓJ ;α0,k0(u0, z0,n0 + r0) < ε0 which is impossible. Thus (3.7) holds.

Step 3. Let w0, v0 ∈ X , α ∈ A and ε > 0 be arbitrary and fixed and let η > 0 and r1, r2 ∈ N satisfy (3.5). Denote
r = max{r1, r2}. We show that if there exists n0 ∈ N such that

max
{
�J ;α,r

(
w0, v0,n0

)
,ΓJ ;α,r

(
w0, v0,n0

)}
< min{ε,η/2}, (3.12)

then

∀s,l�n0

{
Jα

(
ws, vl) < 3ε

}
. (3.13)

Let n0 satisfy (3.12) and let us write �i = �J ;α,ri (w0, v0,n0) and Γ i = ΓJ ;α,ri (w0, v0,n0), i = 1,2. Then, by (3.3), (3.4) and
definition of r, we obtain that max{�J ;α,r1 (w0, v0,n0),�J ;α,r2(w0, v0,n0)} � �J ;α,r(w0, v0,n0) and max{ΓJ ;α,r1(w0,

v0,n0),ΓJ ;α,r2(w0, v0,n0)} � ΓJ ;α,r(w0, v0,n0) and, taking this into account, we see that (3.12) implies

max
{
�1,�2,Γ 1,Γ 2} < min{ε,η/2}. (3.14)

To establish

∀l�n0

{
Jα

(
wn0+r1 , vl) < ε

}
(3.15)

it suffices to show that
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L = ∅ (3.16)

where L = {l ∈ N: l � n0 ∧ Jα(wn0+r1 , vl) � ε}. Suppose that

L �= ∅ (3.17)

and let l0 = min L; of course l0 � n0. It is clear then that (3.17) implies

∀n0�l<l0

{
Jα

(
wn0+r1 , vl) < ε

}
. (3.18)

Now, we see that l0 > n0 + r1. Otherwise, l0 � n0 + r1 and, by virtue of (3.3) and (3.14), we get Jα(wn0+r1 , vl0 ) �
max{ Jα(wi, v j): n0 � i, j � n0 + r1} = �J ;α,r1 (w0, v0,n0) < min{ε,η/2} � ε, which, by the definitions of l0 and L, is im-
possible. Hence it follows that n0 < l0 − r1 < l0 and, consequently, using (3.18), we conclude that

Jα
(

wn0+r1 , vl0−r1
)
< ε. (3.19)

Next, using (J 1), (3.3), (3.4), (3.19) and (3.14), we get Jα(wn0 , vl0−r1 ) � Jα(wn0 , vn0 ) + Jα(vn0 , wn0+r1 ) + Jα(wn0+r1 ,

vl0−r1 ) < �J ;α,r1(w0, v0,n0) + ΓJ ;α,r1(w0, v0,n0) + ε < η/2 + η/2 + ε = ε + η. Hence, since, by assumption, r1 satis-
fies (3.5), we get Jα(wn0+r1 , vl0 ) < ε, which, by definitions of l0 and L, is impossible. Consequently, (3.16) holds which
implies (3.15).

We can show in a similar way that

∀s�n0

{
Jα

(
ws, vn0+r2

)
< ε

}
. (3.20)

In fact, suppose that

S �= ∅ (3.21)

where S = {s ∈ N: s � n0 ∧ Jα(ws, vn0+r2 ) � ε} and let s0 = min S; of course s0 � n0. Then, by (3.21),

∀n0�s<s0

{
Jα

(
ws, vn0+r2

)
< ε

}
. (3.22)

We see that s0 > n0 + r2. Indeed, if s0 � n0 + r2, then, since s0 � n0, we see that Jα(ws0 , vn0+r2 ) � max{ Jα(ws, vl): n0 �
s, l � n0 + r2} = �J ;α,r2 (w0, v0,n0) < min{ε,η/2} � ε which, by (3.21) and definition of s0, is impossible. Therefore, n0 <

s0 − r2 < s0, and, by (3.22),

Jα
(

ws0−r2 , vn0+r2
)
< ε. (3.23)

Consequently, using (J 1), (3.23), (3.4), (3.3) and (3.14), we have Jα(ws0−r2 , vn0 ) � Jα(ws0−r2 , vn0+r2 )+ Jα(vn0+r2 , wn0+r2 )+
Jα(wn0+r2 , vn0 ) < ε + ΓJ ;α,r2 (w0, v0,n0) + �J ;α,r2 (w0, v0,n0) < ε + η/2 + η/2 = ε + η. Hence, using (3.5) we get
Jα(ws0 , vn0+r2 ) < ε. This, by the definitions of s0 and S , is impossible. Consequently, S = ∅ which gives (3.20).

Let now s, l � n0 be arbitrary and fixed. Then, by (J 1), (3.20), (3.15), (3.3) and (3.12), we obtain Jα(ws, vl) �
Jα(ws, vn0+r2 )+ Jα(vn0+r2 , wn0+r1 )+ Jα(wn0+r1 , vl) < ε+max{ Jα(vs, wl): n0 � s, l � n0 +r}+ε = 2ε+ΓJ ;α,r(w0, v0,n0) <

3ε. Therefore, (3.13) holds.
Step 4. We show that

∀w0∈X∀α∈A∀ε>0∃n0∈N∀s,l�n0

{
Jα

(
ws, wl) < ε/2

}
. (3.24)

Indeed, let w0 ∈ X be arbitrary and fixed and let (vm: m ∈ {0}∪N) be a sequence defined by formulae vm = wm , m ∈ {0}∪N.
We see that for sequences (wm: m ∈ {0} ∪ N) and (vm: m ∈ {0} ∪ N) the property (3.5) holds, i.e.

∀α∈A∀ε>0∃η>0,r∈N∀s,l∈N

{
Jα

(
ws, wl) < ε + η ⇒ Jα

(
ws+r, wl+r) < ε

}
(3.25)

and, by (3.3) and (3.4), we have

∀α∈A∀k,n∈N

{
�J ;α,k

(
w0, w0,n

) = ΓJ ;α,k
(

w0, w0,n
)}

. (3.26)

Moreover, by Step 2, (3.1), (3.2) and (3.26), we have

∀α∈A∀k∈N

{
δJ ;α,k

(
w0, w0) = γJ ;α,k

(
w0, w0) = 0

}
. (3.27)

Let now w0 ∈ X , α0 ∈ A and ε0 > 0 be arbitrary and fixed. By (3.25) there exist η0 > 0 and r0 ∈ N such that
∀s,l∈N{ Jα0(ws, wl) < ε0 + η0 ⇒ Jα(ws+r0 , wl+r0 ) < ε0} and, in particular, (3.27) implies

δJ ;α0,r0

(
w0, w0) = γJ ;α0,r0

(
w0, w0) = 0}. (3.28)

By (3.28), using (3.26), (3.1) and (3.2), there exists n0 ∈ N, such that
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�J ;α0,r0

(
w0, w0,n0

) = ΓJ ;α0,r0

(
w0, w0,n0

)
< min{ε0/6, η0/2}. (3.29)

From (3.29), using Step 3, we get ∀s,l�n0 { Jα0(ws, wl) < ε0/2}. This proved that (3.24) holds.
Step 5. We show that

∀w0∈X∀α∈A
{

lim
n→∞ sup

m>n
Jα

(
wn, wm) = 0

}
. (3.30)

Indeed, (3.24) implies, in particular, that ∀w0∈X∀α∈A∀ε>0∃n0∈N∀m>n�n0 { Jα(wn, wm) < ε/2}. This implies ∀w0∈X∀α∈A∀ε>0
∃n0∈N∀n�n0 {supm>n Jα(wn, wm) � ε/2 < ε}. Therefore, (3.30) holds.

Step 6. For each w0 ∈ X , there exists a point w ∈ X such that limm→∞ wm = w and w ∈ Fix(T ). Indeed, let w0 ∈ X be
arbitrary and fixed. Since T is J -admissible, (3.30) implies that there exists w ∈ X such that

∀α∈A
{

lim
m→∞ Jα

(
wm, w

) = 0
}
. (3.31)

From properties (3.30) and (3.31), defining xm = wm and ym = w for m ∈ N, we conclude that for sequences (xm: m ∈ N)

and (ym: m ∈ N) in X the conditions (2.1) and (2.2) hold. Consequently, by (J 2), we get (2.3) which implies
∀α∈A{limm→∞ dα(wm, w) = limm→∞ dα(xm, ym) = 0}, i.e. the limit limm→∞ wm = w holds.

If (D1) holds, then we have that T is a continuous map at w and, consequently, w = limm→∞ wm+1 = limm→∞ T (wm) =
T (limm→∞ wm) = T (w). If (D2) holds, then, since limm→∞ wm = w and wm+1 = T (wm) for all m ∈ N, we get w ∈ Fix(T ).

Step 7. For w ∈ X satisfying w ∈ Fix(T ), the following holds ∀α∈A{ Jα(w, w) = 0}. Indeed, if we assume that there exists
α0 ∈ A such that Jα0 (w, w) > 0, i.e. ε0 = Jα0(w, w) > 0, then, by (C1), there exist η0 > 0 and r0 ∈ N, such that

∀s,l∈N

{{
Jα0

(
T [s](w), T [l](w)

)
< ε0 + η0

} ⇒ {
Jα0

(
T [s+r0](w), T [l+r0](w)

)
< ε0

}}
. (3.32)

However, for each s, l ∈ N, we have Jα0(T [s](w), T [l](w)) = Jα0(w, w) = ε0 < ε0 + η0. Thus, using (3.32), we obtain that
0 < ε0 = Jα0(w, w) = Jα0(T [s+r0](w), T [l+r0](w)) < ε0, which is impossible.

Step 8. The map T has a unique fixed point in X . Otherwise u, v ∈ Fix(T ) and u �= v for some u, v ∈ X . Then, by Re-
mark 2.1(a), there exists α0 ∈ A such that Jα0(u, v) > 0 or Jα0(v, u) > 0. Suppose Jα0(u, v) > 0. Then, for ε0 = Jα0 (u, v) > 0,
by (C1), there exist η0 > 0 and r0 ∈ N, such that

∀s,l∈N

{{
Jα0

(
T [s](u), T [l](v)

)
< ε0 + η0

} ⇒ {
Jα0

(
T [s+r0](u), T [l+r0](v)

)
< ε0

}}
. (3.33)

However, for each s, l ∈ N, we have Jα0(T [s](u), T [l](v)) = Jα0(u, v) = ε0 < ε0 + η0 and thus, by (3.33), we get 0 <

ε0 = Jα0 (u, v) = Jα0 (T [s+r0](u), T [l+r0](v)) < ε0, which is impossible. We obtain a similar conclusion in the case when
Jα0(v, u) > 0. Therefore, Fix(T ) = {w} for some w ∈ X .

Step 9. The assertions (i)–(iii) hold. Indeed, this is a consequence of Steps 6–8.

Proof of Theorem 2.1(b). Assume that the condition (C2) holds. Denoting (wm: m ∈ {0} ∪ N), where w0 = x ∈ X and x
is such as in condition (C2), and, by using a similar argumentation as in the proof of Theorem 2.1(a) for this sequence
(wm: m ∈ {0} ∪ N), we have that there exists a point w ∈ X such that limm→∞ wm = w and w ∈ Fix(T ). �
4. Proof of Theorem 2.2

Assume that the condition (C1) holds. Let w0, w ∈ X and let the sequence (wm: m ∈ {0} ∪ N) be such as in (D3), i.e.

∀α∈A
{

lim
m→∞ Jα

(
wm, w

) = 0
}
. (4.1)

By similar considerations as in the proof of Theorem 2.1(a), we obtain that this sequence (wm: m ∈ {0} ∪ N) satisfies

∀α∈A
{

lim
n→∞ sup

m>n
Jα

(
wn, wm) = 0

}
. (4.2)

Now, defining xm = wm and ym = w for m ∈ N, we conclude, by (4.1) and (4.2), that for sequences (xm: m ∈ N)

and (ym: m ∈ N) in X the conditions (2.1) and (2.2) hold. Consequently, by (J 2), we get (2.3) which implies
∀α∈A{limm→∞ dα(wm, w) = limm→∞ dα(xm, ym) = 0}, i.e. the limit limm→∞ wm = w holds. If (D1) holds, then we have
that T is a continuous map at w and, consequently, w = limm→∞ wm+1 = limm→∞ T (wm) = T (limm→∞ wm) = T (w). If
(D2) holds, then, since limm→∞ wm = w and wm+1 = T (wm) for all m ∈ N, we get w ∈ Fix(T ). Finally, using similar argu-
mentations as in Steps 7 and 8 of the proof of Theorem 2.1(a), we conclude that Fix(T ) = {w} and ∀α∈A{ Jα(w, w) = 0}. �
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5. Proof of Theorem 2.3

Proof of Theorem 2.3(a). Assume that condition (C1) holds and let w0 ∈ X be arbitrary and fixed. By similar considerations
as in the proof of Theorem 2.1(a), we obtain that the sequence (wm: m ∈ {0} ∪ N) satisfies

∀α∈A
{

lim
n→∞ sup

m>n
Jα

(
wn, wm) = 0

}
. (5.1)

The proof will be broken into three steps.
Step 1. For each w0 ∈ X , the sequence (wm: m ∈ {0} ∪ N) satisfies

∀w0∈X∀α∈A∀ε>0∃n0∈N∀s,l∈N,s>l>n0

{
dα

(
ws, wl) < ε

}
. (5.2)

Indeed, let w0 ∈ X be arbitrary and fixed. By (5.1), ∀α∈A∀ε>0∃n1=n1(α,ε)∈N∀n>n1 {sup{ Jα(wn, wm): m > n} < ε} and, in
particular,

∀α∈A∀ε>0∃n1=n1(α,ε)∈N∀n>n1∀q∈N

{
Jα

(
wn, wq+n) < ε

}
. (5.3)

Let i0, j0 ∈ N, i0 > j0, be arbitrary and fixed. If we define

xm = wi0+m and ym = w j0+m for m ∈ N, (5.4)

then (5.3) gives

∀α∈A
{

lim
m→∞ Jα

(
wm, xm

) = lim
m→∞ Jα

(
wm, ym

) = 0
}
. (5.5)

Therefore, by (5.1), (5.5) and (J 2),

∀α∈A
{

lim
m→∞dα

(
wm, xm

) = lim
m→∞dα

(
wm, ym

) = 0
}
. (5.6)

From (5.4) and (5.6) we then claim that

∀α∈A∀ε>0∃n2=n2(α,ε)∈N∀m>n2

{
dα

(
wm, wi0+m)

< ε/2
}

(5.7)

and

∀α∈A∀ε>0∃n3=n3(α,ε)∈N∀m>n3

{
dα

(
wm, w j0+m)

< ε/2
}
. (5.8)

Let now α0 ∈ A and ε0 > 0 be arbitrary and fixed, let n0 = max{n2(α0, ε0), n3(α0, ε0)} + 1 and let s, l ∈ N be arbitrary and
fixed such that s > l > n0. Then s = i0 + n0 and l = j0 + n0 for some i0, j0 ∈ N such that i0 > j0 and, using (5.7) and (5.8),
we get dα0(ws, wl) = dα0(wi0+n0 , w j0+n0 ) � dα0 (wn0 , wi0+n0 ) + dα0 (wn0 , w j0+n0 ) < ε0/2 + ε0/2 = ε0. Hence, we conclude
that ∀α∈A∀ε>0∃n0=n0(α,ε)∈N∀s,l∈N,s>l>n0 {dα(ws, wl) < ε}. The proof of (5.2) is complete.

Step 2. For each w0 ∈ X , there exists a unique w ∈ X such that limm→∞ wm = w and w ∈ Fix(T ). Indeed, let w0 ∈ X be
arbitrary and fixed. Since X is a Hausdorff and sequentially complete space and, by Step 1, the sequence (wm: m ∈ {0} ∪ N)

is a Cauchy sequence on X , thus there exists a unique w ∈ X such that limm→∞ wm = w . If (D1) holds, then we have that T
is a continuous map at w and, consequently, w = limm→∞ wm+1 = limm→∞ T (wm) = T (limm→∞ wm) = T (w). If (D2) holds,
then, since limm→∞ wm = w and wm+1 = T (wm) for all m ∈ N, we get w ∈ Fix(T ).

Step 3. The following hold: Fix(T ) = {w} and ∀α∈A{ Jα(w, w) = 0}. We obtain this using similar argumentations as in
Sections 7 and 8 of the proof of Theorem 2.1(a).

Proof of Theorem 2.3(b). Assume that the condition (C2) holds. Denoting (wm: m ∈ {0} ∪ N), where w0 = x ∈ X and x is as
in condition (C2), and, by using the similar argumentation as in the proof of Theorem 2.3(a) for this sequence (wm: m ∈
{0} ∪ N), we have that there exists a point w ∈ X such that limm→∞ wm = w and w ∈ Fix(T ). �
6. Examples, comparisons and remarks

In this section we present some examples illustrating the concepts introduced so far. First, we present example of J -
generalized pseudodistances.

Example 6.1. Let X be a metric space with metric d. Let the set E ⊂ X , containing at least two different points, be arbitrary
and fixed and let c > 0 satisfy δ(E) < c where δ(E) = sup{d(x, y): x, y ∈ E}. Let J : X2 → [0,∞) be defined by the formulae:
J (x, y) = d(x, y) if E ∩ {x, y} = {x, y} and J (x, y) = c if E ∩ {x, y} �= {x, y}, x, y ∈ X . The family J = { J } is J -family on X
(see [25, Example 6.1]).
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Now, we present two examples which illustrate Theorem 2.1(b).

Example 6.2. Let X = (0,1) be a metric space with a metric d : X2 → [0,∞), d(x, y) = |x − y|, x, y ∈ X . Let T : X → X be a
map given by formula

T (x) =
⎧⎨
⎩

−(3/8)x + 5/8 if x ∈ (0,1/3],
f (x) if x ∈ (1/3,1/2],
[−x2 + 2x − (3/4)]1/2 + 1/2 if x ∈ (1/2,1),

where f : R → R is of the form f (x) = (3/2)x − 1/4.
We prove that the condition (D1) is satisfied. Indeed, if w0, w ∈ X , then limm→∞ wm = w only when w0 ∈ S =

{sk: f [k](sk) = 1/3, k ∈ {0} ∪ N} ∪ {1/2} and w = 1/2. We see also that T is continuous in w = 1/2.
Note that, for each k ∈ N and x ∈ R, f [k](x) = (3/2)k(x − 1/2) + 1/2. Therefore, f [k](sk) = 1/3 for k ∈ N, implies

limk→∞(1/2 − sk) = limk→∞(2/3)k(1/6) = 0. Hence, ∀k∈{0}∪N}{sk < 1/2}, the sequence (sk: k ∈ {0} ∪ N) is increasing and
limk→∞ sk = 1/2. In particular, s0 = 1/3, s1 = 7/18, s2 = 23/54 and s3 = 73/162.

Now, let E = S and let

J (x, y) =
{

d(x, y) if {x, y} ∩ E = {x, y},
2 if {x, y} ∩ E �= {x, y}. (6.1)

By Example 6.1, J = { J } is a J -family on X .
We observe that T is J -admissible on X . Indeed, let u0 ∈ X be arbitrary and fixed and such that for a sequence (um: m ∈

{0} ∪ N) the following holds

lim
n→∞ sup

m>n
J
(
un, um) = 0. (6.2)

Then, by (6.1) (i.e. since J (x, y) = 2 if {x, y} ∩ E �= {x, y}), we see that (6.2) holds only when u0 ∈ S and, conse-
quently, then limm→∞ um = 1/2 and ∀m∈{0}∪N{um ∈ S}. Hence it follows that, for each u0 ∈ S , limm→∞ J (um,1/2) =
limm→∞ d(um,1/2) = 0. This proved that T is J -admissible.

We show that, for each x ∈ S , the condition (C2) is satisfied. Indeed, if x ∈ S is arbitrary and fixed, then denoting
x0 = x we see that the sequence (xm: m ∈ {0} ∪ N) is convergent to w = 1/2; we note that if x = sk for some k ∈ {0} ∪ N,
then we have ∀m�1{xm+k+1 = T [m+k+1](sk) = T [m](T (T [k](sk))) = T [m](T ( f [k](sk))) = T [m](T (1/3)) = T [m](1/2) = 1/2} and if
x = 1/2, then we have ∀m�1{xm = T [m](x) = f [m](x) = 1/2}. Hence it follows that this sequence (xm: m ∈ {0} ∪ N), con-
vergent in X , is a Cauchy sequence, i.e. ∀ε>0∃r∈N∀n,m>r{d(xn, xm) < ε}. Thus, in particular, since (xm: m ∈ {0} ∪ N) ⊂ S , we
have ∀ε>0∃r∈N∀s,l∈N{ J (xs+r, xl+r) = d(xs+r, xl+r) < ε}. This implies that the following is true ∀ε>0∃η>0∃r∈N∀s,l∈N{ J (xs, xl) <

ε + η ⇒ J (xs+r, xl+r) < ε}. This means that T is a weak J -contraction on X .
Therefore, all assumptions of Theorem 2.1(b) are satisfied, Fix(T ) = {w} = {1/2} and ∀w0∈S⊂X {limm→∞ wm = w}.

Example 6.3. Let X = (0,1) be a metric space with a metric d : X2 → [0,∞), d(x, y) = |x − y|, x, y ∈ X . Let T : X → X be a
map given by formula

T (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−x + 3/4 for x ∈ (0,1/4],
(1/2)x + 1/4 for x ∈ (1/4,1/2],
(3/2)x − (1/4) for x ∈ (1/2,2/3],
3/4 for x ∈ (2/3,7/8),

−2x + 2 for x ∈ [7/8,1).

We observe that T is J = {d}-admissible on X . Indeed, if w0 ∈ (0,1/4) ∪ (1/2,1), then limm→∞ wm = w ′ = 3/4 and if
w0 ∈ [1/4,1/2], then limm→∞ wm = w ′′ = 1/2.

Moreover, T is continuous in w ′ and w ′′ . Therefore, the condition (D1) holds.
Next, we observe that the map T is a weak J = {d}-contraction on X . Indeed, if x ∈ X is arbitrary and fixed,

then, denoting w0 = x we have that (wm: m ∈ {0} ∪ N) is convergent to w ′ or w ′′ . Of course, this convergent se-
quence (wm: m ∈ {0} ∪ N) is also a Cauchy sequence, i.e. ∀ε>0∃r∈N∀n,m>r{d(T [n](x), T [m](x)) < ε} which we can write as
∀ε>0∃r∈N∀s,l∈N{d(T [s+r](x), T [l+r](x)) < ε}. Hence ∀ε>0∃η>0∃r∈N∀s,l∈N{d(T [s](x), T [l](x)) < ε +η ⇒ d(T [s+r](x), T [l+r](x)) < ε}.
Therefore, T is a weak J = {d}-contraction on X .

All assumptions of Theorem 2.1(b) are satisfied, Fix(T ) = {w ′, w ′′} and, for each w0 ∈ X , the sequence (wm: m ∈ {0} ∪ N)

converges to w ′ or w ′′ .

Finally, we present an example which illustrates Theorems 2.1(a) and 2.2.
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Example 6.4. Let X = (0,1/3] ∪ S ∪ (1/2,1) be a metric space with a metric d : X2 → [0,∞), d(x, y) = |x − y|, x, y ∈ X ,
where S is defined in Example 6.2 and let

T (x) =
⎧⎨
⎩

−(3/8)x + 5/8 if x ∈ (0,1/3],
f (x) if x ∈ S,

1/2 if x ∈ (1/2,1)

where f : R → R is of the form f (x) = (3/2)x − 1/4. We see that T is J = {d}-admissible, T is J = {d}-contraction on X ,
T satisfies (D1) and (D3), Fix(T ) = {1/2} and ∀w0∈X {limm→∞ d(wm,1/2) = 0}.

Remark 6.1. Returning to Examples 6.2–6.4 we see that:

(a) In Example 6.2, the existence of J = { J } such that J �= {d} and T is J -admissible is essential. Indeed, observe that, for
each w0 ∈ X\S , the sequence (wm: m ∈ {0} ∪ N) is not convergent in X since limm→∞ wm = w = 1 /∈ X . On the other
hand, for each w0 ∈ X\S , this sequence is Cauchy, i.e. limn→∞ supm>n d(wn, wm) = 0. Hence we conclude that T is not
J = {d}-admissible.

(b) In Example 6.3 the map T is a weak J = {d}-contraction on X .
(c) In Examples 6.2–6.4, X is not complete, T does not have a complete graph, assumptions of some of our theorems are

satisfied, but assumptions of [1–19], [23, Theorem 4] and [24] theorems do not hold.
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