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Abstract Triangular Intuitionistic Fuzzy Numbers (TIFNs) express more abundant and flexible informa-
tion than Triangular Fuzzy Numbers (TFNs). Themain purpose of this paper is to propose a DynamicMulti-
Attribute DecisionMaking (DMADM)model on the basis of TIFNs, to solve the DMADMproblem, where all
the decision information takes the form of TIFNs. A newdistancemeasure between two TIFNs is developed
to aid in determining attribute weights, using the entropymethod. An aggregation operator, the weighted
arithmetic averaging operator on TIFNs (TIFN-WAA), is presented to aggregate the decision information
with TIFNs. Finally, the effectiveness and applicability of the proposed DMADMmodel, as well as analysis
of comparison with another model, are illustrated with an investment example.
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1. Introduction

Multiple-Attribute Decision Making (MADM) methods have
been extensively applied to various areas, such as society,
management science, economics, military research and public
administration [1–5]. However, most MADM methods focus
on decision making problems at the same period, such as
those proposed by Ye [6] who developed a MADM model with
interval-valued, intuitionistic, fuzzy numbers, and Jaskowski
et al. [7] who presented an extended fuzzy AHP model for
group decision making, at the same period. Greco et al. [8,9]
and Blaszczynski et al. [10] extended the rough set theory into a
multi-attribute decision making method, and Hu et al. [11] also
extended a rough set MADM model to solve a multi-attribute
decision making problem at the same period.
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Inmany decision areas, such asmulti-period investment and
personnel dynamic examination, the decision information is
usually collected at different periods. Thus, it is necessary to
develop some dynamic decision making models to deal with
these multi-period and multi-attribute decision making prob-
lems (also known as Dynamic Multi-Attribute, Decision Mak-
ing (DMADM) problems [12]). Recently, research on DMADM
problems has received some attention [12–15]. Xu [12] devel-
oped amulti-period andmulti-attribute decisionmakingmodel
based on a simple additiveweightingmethod. Lin et al. [13] pro-
posed a dynamicmulti-attribute decisionmakingmodel, where
the attribute values are firstly aggregated into an overall evalu-
ation value at each period, then all evaluation values are aggre-
gated into an overall score of all alternatives. Xu and Yager [14]
investigated a dynamic multi-attribute decision making prob-
lemwhere the decision information takes the form of the inter-
val uncertain information. Wei [15] developed two aggregation
operators to solve a dynamic multi-attribute decision making
problem where the decision information also takes the form of
the interval uncertain information. All existing research focuses
on DMADMproblemswhere the decision information takes the
form of a real number or interval uncertain information. Nev-
ertheless, in many practical cases, the available decision infor-
mation is usually difficult to judge precisely; instead, they can
be easily characterized by some fuzzy linguistic terms, such as
‘‘good’’, ‘‘poor’’ and so on. In addition, triangular intuitionis-
tic fuzzy numbers in the Intuitionistic Fuzzy sets (IFs) can not
only deal with vagueness information, but also express more
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abundant and flexible information than triangular fuzzy num-
bers [16,17]. Therefore, the main purpose of this paper is to
propose a Dynamic Multi-Attribute DecisionMaking (DMADM)
model on the basis of TIFNs to solve DMADM problems where
the decision information takes the formof TIFNs. In addition, for
the purpose of dealing with decision information with TIFNs,
this paper also extends the entropy method to calculate at-
tribute weights in the DMADMmodel.

2. Preliminaries

Some basic definitions of Intuitionistic Fuzzy Sets (IFSs) and
Triangular Intuitionistic Fuzzy Numbers (TIFNs) are reviewed.

Definition 1. An intuitionistic fuzzy set, A, in the universe of
discourse X is defined with the form [18]:

A = {⟨x, µA(x), νA(x)⟩|x ∈ X},

where µA : X → [0, 1], νA : X → [0, 1], and with the
condition:

0 ≤ µA(x) + νA(x) ≤ 1, ∀x ∈ X .

The numbers µA(x) and νA(x) denote membership and non-
membership degrees of x, with respect to A, respectively. In
addition, we call:

πA(x) = 1 − µA(x) − νA(x),

the degree of hesitancy of x, with respect to A [19]. Especially, if
πA(x) = 0, µA(x) = 1, νA(x) = 0, for all x ∈ X , then the IFSs A
is reduced to a fuzzy set.

Definition 2. A triangular intuitionistic fuzzy number α̃ =

⟨(a, b, c); µα̃, να̃⟩ is a special intuitionistic fuzzy set on a
real number set R, whose membership function and non-
membership function are defined as follows [18]:

µα̃(x) =


(x − a)µα̃/(b − a) if a ≤ x < b,
µα̃ if x = b,
(c − x)µα̃/(c − b) if b < x ≤ c,
0 Otherwise,

(1)

and:

να̃(x) =


[b − x + να̃(x − a)]/(b − a) if a ≥ x < b,
να̃ if x = b,
[x − b + να̃(c − x)]/(c − b) if b < x ≤ c,
1 Otherwise.

(2)

The values µα̃ and να̃ represent the maximummembership de-
gree and the minimum non-membership degree, respectively.

Definition 3. Let α̃1 = ⟨(a1, b1, c1); µα̃1 , να̃1⟩ and α̃2 = ⟨(a2,
b2, c2); µα̃2 , να̃2⟩ be two triangular intuitionistic fuzzy numbers
and λ is a real number. Some arithmetical operations are
defined as follows [20]:

α̃1 ⊕ α̃2 =


(a1 + a2, b1 + b2, c1 + c2);
µα̃1 + µα̃2 − µα̃1µα̃2 , να̃1να̃2


, (3)

λα̃1

=


⟨(λa1, λb1, λc1); 1 − (1 − µα̃1)

λ, (να̃2)
λ
⟩ if λ ≥ 0

⟨(λc1, λb1, λa1); 1 − (1 − µα̃1)
λ, (να̃2)

λ
⟩ if λ < 0.

(4)

Definition 4. Let α̃i = (ai, bi, ci) (i = 1, . . . , n) be a set of
triangular fuzzy numbers, and w = (w1, w2, . . . , wn)

T be the
weight vector of α̃i (i = 1, . . . , n), then we call:
TFN-WAAw(α̃1, α̃2, . . . , α̃n) =

n−
i=1

wiα̃i,

=


n−

i=1

wiai,
n−

i=1

wibi,
n−

i=1

wici


, (5)

the weighted averaging operator on TFNs (TFN-WAA).

Definition 5. Let α̃i = ⟨(ai, bi, ci); µα̃i , να̃i⟩ be a set of triangu-
lar intuitionistic fuzzy number and w = (w1, w2, . . . , wn)

T be
the weight vector of α̃i(i = 1, . . . , n), then we call:

TFN-WAAw(α̃1, α̃2, . . . , α̃n)

=


n−

j=1

wjaj,
n−

j=1

wjbj,
n−

j=1

wjcj


;

1 −

n∏
j=1

(1 − µε̃j)
wj ,

n∏
j=1

(νε̃j)
wj


, (6)

the weighted arithmetic averaging operator on TIFNs (TIFN-
WAA).

3. Weight measures using entropy method

Weight measures have a direct relationship with the
distance measure between two fuzzy numbers [21]. In order
to especially deal with decision information with triangular
intuitionistic fuzzy numbers, this paper proposes a new
distance measure.

Definition 6. Let Ã = ⟨ã; µÃ, νÃ⟩ and B̃ = ⟨b̃; µB̃, νB̃⟩ be two
arbitrary triangular intuitionistic fuzzy numbers where ã and b̃
are two triangular fuzzy numbers with λ-cut representations,
ãλ = [aL(λ), aR(λ)] and b̃λ = [bL(λ), bR(λ)]. The distance be-
tween Ã and B̃ is defined as follows:

d(Ã, B̃) =

∫ 1

0


aL(λ) − bL(λ)

2
+ (aR(λ) − bR(λ))2


dλ

+


1
2
((µÃ − µB̃)

2 + (νÃ − νB̃)
2 + (µÃ + νÃ − µB̃ − νB̃)

2).

(7)

An MADM decision making problem usually includes a set of
m possible alternatives Ai (i = 1, 2, . . . ,m), which is based
on a set of n evaluation attributes Cj (j = 1, 2, . . . , n). The fi-
nal normalized decision matrix is expressed as D̃ = [r̃ij] where
r̃ij = ⟨(aij, bij, cij); µij, νij⟩ is the normalized rating value of the
alternative Ai with respect to the attribute Cj.

TIFNs can enable decision makers to assess the alternatives
in different dimensions. For example, a triangular intuitionistic
fuzzy number r̃ij = ⟨G; 0.7, 0.2⟩ = ⟨(0.65, 0.8, 0.95); 0.7, 0.2⟩
can be interpreted as ‘‘the expert can not only use the linguistic
variable (‘‘Good’’) to rate the ith alternative, with respect to the
jth attribute, but can also provide the confidence level of 0.7 at
which the expert believes the ith alternative belongs to ‘‘Good’’,
as well as the non-confidence level of 0.2, at which the expert
does not believe the ith alternative belongs to ‘‘Good’’.

Vector Mj, as shown in Eq. (8), can be used to express
deviations of the rating values, with respect to their average
rating values:

Mj = ⌊d(r̃1j, r̃j), . . . , d(r̃ij, r̃j), . . . , d(r̃mj, r̃j)⌋, (8)
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where d(r̃ij, r̃j) is the distance between two TIFNs defined in
Definition 6, and the average rating value r̃j = ⟨(αj, βj, ηj); µjνj⟩

can be obtained as follows:
r̃j = ⟨(αj, βj, ηj); µjνj⟩

=


1
m


⊗ (r̃1j ⊕ · · · ⊕ r̃ij ⊕ · · · ⊕ r̃mj) (j = 1, 2, . . . , n),

(9)
where:

αj =


1
m

 m−
i=1

aij


, βj =


1
m

 m−
i=1

bij


,

ηj =


1
m

 m−
i=1

cij


,

µj = 1 −

m∏
i=1

(1 − µij)
1/m, νj =

m∏
i=1

(νij)
1/m.

The normalized vector for vectorMj is calculated as follows:

M ′

j = [ρi] =

 d(r̃ij, r̃j)
max

i
d(r̃ij, r̃j)

 , i = 1, 2, . . . ,m. (10)

The entropy measure with the jth attribute, Cj can be described
as follows:

ej = −
1

ln(m)

m−
i=1

 ρi
m∑
i=1

ρi

ln

 ρi
m∑
i=1

ρi


 . (11)

Then the entropy weight of the jth attribute can be obtained as
follows:

wj =
1 − ej

n −

n∑
k=1

ek
(j = 1, 2, . . . , n). (12)

4. Dynamic multi-attribute decision making model

A dynamic, multi-attribute decision making problem can
be described as follows: the most desirable alternative needed
to be found from a set of m feasible alternatives, Ai (i =

1, 2, . . . ,m), evaluated, with respect to a set of n attributes,
Cj (j = 1, 2, . . . , n), by a group of p decision makers for the
periods, k. Let wj(tk) represents the attribute weight of the jth
attribute, Cj, at the kth period. And letλ(tk) be the periodweight
of the kth period. The average decision matrix at different
periods can be denoted as follows:

D̃(tk) = {x̃ij(tk)}

=

A1
A2
...
Am


C1(tk) C2(tk) · · · Cn(tk)
x̃11(tk) x̃12(tk) · · · x̃1n(tk)
x̃21(tk) x̃22(tk) · · · x̃2n(tk)

...
...

...
...

x̃m1(tk) x̃m2(tk) · · · x̃mn(tk)

 , (13)

where x̃ij(tk) indicates the average rating values of the ith
alternative, Ai, with respect to the jth attribute, Cj(tk), at the kth
period, and x̃ij(tk) = ⟨(aij(tk), bij(tk), cij(tk)); µij(tk), νij(tk)⟩.

4.1. DMADM model with TIFNs

This paper attempts to propose a DMADM model with
TIFNs based on priority attributes. The DMADM model firstly
aggregates the rating values of each alternative, with respect
to each attribute at the kth period, into an overall rating vector
of each alternative, with respect to the kth period, then builds
all overall rating vectors for each period into a new decision
matrix of each alternative, with respect to period. Finally, the
final evaluation value is calculated based on the new decision
matrix (the flowchart is shown in Figure 1).

Based on a priority attribute, the DMADM model can obtain
not only the final evaluation value of each alternative, but also
the middle evaluation value of each alternative at each period.
The middle evaluation value will provide the assistant function
of determining the most desirable alternative. A procedure for
the DMADM model with TIFNs, based on the priority attribute,
is discussed in the following section.

4.2. Procedure for DMADM model based on priority attribute

Step 1: Calculate the average rating values evaluated by p
decision makers for each period, and obtain the
normalized decision matrix at each period.

Let ζ̃ijs(tk) = ⟨(a′

ijs(tk), b
′

ijs(tk), c
′

ijs(tk), µ
′

ijs(tk), ν
′

ijs
(tk))⟩ be the orig of the ith alternative, with respect
to the jth attribute, evaluated by sth decision maker
at the kth period. The average rating value of the ith
alternative, Ai, with respect to the jth attribute, Cj, for
p decision makers can be obtained as follows:

x̃ij(tk) = ⟨(aij(tk), bij(tk), cij(tk)); µij(tk), νij(tk)⟩

=


1
p


⊗


ζ̃ij1(tk) ⊕ ζ̃ij2(tk) ⊕ · · · ⊕ ζ̃ijp(tk)


. (14)

To obtain the normalized decision matrix Ñ(tk) =

{r̃ij(tk)}m×n, one can employ the following normalized
transformation:

r̃ij(tk) =


aij(tk)
c+

j
,
bij(tk)
c+

j
,
cij(tk)
c+

j


;

µij(tk), νij(tk)


, j ∈ ΩB,

r̃ij(tk) =


c−

j

cij(tk)
,

c−

j

bij(tk)
,

c−

j

aij(tk)
,


;

µij(tk), νij(tk)


, j ∈ ΩC , (15)

where c+

j = maxi

cij(tk)


, c−

j = mini

aij(tk)


, and ΩB,

ΩC are the benefit and cost attribute sets, respectively.
Step 2: Calculate the attribute weights at each period as

wj(tk) (j = 1, 2, . . . , n) based on the normalized de-
cision matrices, using the entropy method with TIFNs.

Step 3: Aggregate the normalized decision matrices, Ñ(tk) =

{r̃ij(tk)}m×n, for all periods into a final decision matrix,
R̃ = {ξ̃ik}m×k. Utilizing the TIFN-WAA operator in Defi-
nition 5;

ξ̃ik = TIFN-WAAwj(tk)(r̃i1(tk),

r̃i2(tk), . . . , r̃in(tk))
= w1(tk)r̃i1(tk) ⊕ w2(tk)r̃i2(tk)

⊕ · · · ⊕ wn(tk)r̃in(tk),

to aggregate all normalized decision matrices Ñ(tk) =

{r̃ij(tk)}m×n, into a final decision matrix, R̃ = {ξ̃ik}m×k.
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Figure 1: Flowchart of the DMADMmodel based on priority attribute.
Table 1: Original rating values evaluated by three decision makers at the t1
period.

C1

DM1 DM2 DM3

A1 ⟨G; 0.7, 0.2⟩ ⟨G; 0.8, 0.1⟩ ⟨G; 0.9, 0.1⟩
A2 ⟨VG; 0.8, 0.1⟩ ⟨VG; 0.9, 0.1⟩ ⟨VG; 0.8, 0.2⟩
A3 ⟨G; 0.7, 0.2⟩ ⟨VG; 0.6, 0.4⟩ ⟨G; 0.8, 0.1⟩
A4 ⟨VG; 0.6, 0.3⟩ ⟨VG; 0.7, 0.2⟩ ⟨VG :, 0.6, 0.4⟩
A5 ⟨G; 0.7, 0.2⟩ ⟨VG; 0.7, 0.3⟩ ⟨G; 0.6, 0.3⟩

C2

A1 ⟨G; 0.6, 0.3⟩ ⟨VG; 0.7, 0.2⟩ ⟨G; 0.6, 0.4⟩
A2 ⟨G; 0.5, 0.4⟩ ⟨MG; 0.7, 0.2⟩ ⟨MG; 0.7, 0.2⟩
A3 ⟨VG; 0.8, 0.1⟩ ⟨VG; 0.9, 0.1⟩ ⟨VG; 0.8, 0.2⟩
A4 ⟨G; 0.8, 0.1⟩ ⟨G; 0.7, 0.2⟩ ⟨G; 0.8, 0.1⟩
A5 ⟨G : 0.7, 0.3⟩ ⟨VG; 0.7, 0.2⟩ ⟨G; 0.8, 0.1⟩

C3

A1 ⟨F; 0.8, 0.2⟩ ⟨F; 0.8, 0.1⟩ ⟨F; 0.7, 0.2⟩
A2 ⟨F; 0.7, 0.2⟩ ⟨MP; 0.5, 0.4⟩ ⟨F; 0.8, 0.1⟩
A3 ⟨MP; 0.8, 0.1⟩ ⟨MP; 0.9, 0.1⟩ ⟨MP; 0.8, 0.2⟩
A4 ⟨MP; 0.7, 0.2⟩ ⟨F; 0.6, 0.3⟩ ⟨MP; 0.5, 0.4⟩
A5 ⟨F; 0.6, 0.3⟩ ⟨MG; 0.7, 0.2⟩ ⟨F; 0.8, 0.1⟩

Step 4: Define γ +
= (γ +

1 , . . . , γ +

k , . . . , γ +

K )T and γ −
= (γ −

1 ,

. . . , γ −

k , . . . , γ −

K )T as the triangular intuitionistic fuzzy
positive ideal solution (TIFPIS) and the triangular
intuitionistic fuzzy negative ideal solution (TIFNIS),
respectively. According to the normalized decision
matrix, we know that γ +

k = ⟨(1, 1, 1); 1, 0⟩ are the
largest TIFNs, and γ +

k = ⟨(0, 0, 0); 0, 1⟩ are the small-
est TIFNs. In addition, for convenience of depiction, we
denote the alternative, Ai(i = 1, 2, . . . ,m), by Ai =

(ξ̃i1, ξ̃i2, . . . , ξ̃iK ).
Step 5: Calculate the periodweights in the decisionmatrix, R̃ =

{ξ̃ik}m×k, as λ(tk), using the entropymethodwith TIFNs.
Step 6: Calculate the distance between the alternative and the

TIFPIS (γ +), and the distance between the alternative
and the TIFNIS (γ −) according to the following distance
measure defined in Definition 6:

D(Ai, γ
+) =

K−
k=1


λ(tk)d


ξ̃ik, γ̃

+

k


,

(i = 1, 2, . . . ,m),

D(Ai, γ
−) =

K−
k=1


λ(tk)d


ξ̃ik, γ̃

−

k


,

(i = 1, 2, . . . ,m). (16)
Step 7: Calculate the closeness coefficient, CCi(i = 1, 2, . . . ,

m), of all alternatives and rank all alternatives, Ai(i =

1, 2, . . . ,m), according to the closeness coefficient:

CCi =
D(Ai, γ

−)

D(Ai, γ +) + D(Ai, γ −)
, (i = 1, 2, . . . ,m).

(17)
Table 2: Original rating values evaluated by three decision makers at the t2
period.

C1

DM1 DM2 DM3

A1 ⟨G; 0.8, 0.1⟩ ⟨G; 0.9, 0.1⟩ ⟨G; 0.8, 0.2⟩
A2 ⟨VG; 0.8, 0.1⟩ ⟨VG; 0.7, 0.2⟩ ⟨VG; 0.9, 0.1⟩
A3 ⟨G; 0.9, 0.1⟩ ⟨VG; 0.5, 0.4⟩ ⟨G; 0.8, 0.1⟩
A4 ⟨G; 0.8, 0.2⟩ ⟨G; 0.7, 0.2⟩ ⟨VG; 0.5, 0.4⟩
A5 ⟨VG; 0.8, 0.2⟩ ⟨VG; 0.8, 0.1⟩ ⟨VG; 0.7, 0.2⟩

C2

A1 ⟨VG; 0.8, 0.1⟩ ⟨G; 0.5, 0.4⟩ ⟨VG; 0.6, 0.3⟩
A2 ⟨G; 0.7, 0.2⟩ ⟨G; 0.8, 0.1⟩ ⟨VG; 0.5, 0.4⟩
A3 ⟨G; 0.9, 0.1⟩ ⟨G; 0.8, 0.2⟩ ⟨G; 0.7, 0.2⟩
A4 ⟨G; 0.6, 0.3⟩ ⟨MG; 0.5, 0.3⟩ ⟨G; 0.7, 0.2⟩
A5 ⟨VG; 0.8, 0.1⟩ ⟨VG; 0.8, 0.2⟩ ⟨G; 0.5, 0.4⟩

C3

A1 ⟨F; 0.8, 0.1⟩ ⟨MP; 0.5, 0.4⟩ ⟨F; 0.7, 0.2⟩
A2 ⟨MP; 0.8, 0.2⟩ ⟨F; 0.5, 0.2⟩ ⟨MP; 0.9, 0.1⟩
A3 ⟨MP; 0.8, 0.2⟩ ⟨F; 0.5, 0.4⟩ ⟨MP; 0.7, 0.2⟩
A4 ⟨F; 0.9, 0.1⟩ ⟨F; 0.8, 0.1⟩ ⟨F; 0.8, 0.2⟩
A5 ⟨MG; 0.7, 0.2⟩ ⟨F; 0.8, 0.1⟩ ⟨MG; 0.7, 0.2⟩

5. Illustrative example

One example [14] is provided to demonstrate the effective-
ness and applicability of the DMADMmodel based on a priority
attribute. An investment companywants to invest an amount of
money. There are five possible companies, Ai(i = 1, 2, . . . , 5),
in which to invest the money: (1) A1 is a car company; (2) A2
is a food company; (3) A3 is a computer company; (4) A4 is an
arms company; and (5) A5 is a TV company. A group of decision
makers is formedwith three decisionmakers, DMs(s = 1, 2, 3).
Each possible companywill be evaluated across three attributes
with regard to: (1) economic benefit (C1); (2) social benefit (C2);
and (3) environmental pollution (C3), where C1 and C2 are ben-
efit attributes and C3 is a cost attribute. The rating values of five
possible companies, with respect to three attributes, are repre-
sented by TIFNs, and the three decision makers construct the
original rating values at three periods, as listed in Tables 1–3.

5.1. Ranking alternatives using the DMADM model with TIFNs

The calculationprocedure for theDMADMmodelwith TIFNs,
based on a priority attribute, is described step by step, as below:

Step 1: Calculate the average rating values evaluated by three
decision makers, according to Eq. (14), and obtain
the normalized decision matrices using Eq. (15). The
normalized decision matrices, Ñ(tk) = {r̃ij(tk)}5×3 (k =

1, 2, 3) for three periods are shown in Tables 4–6.
Step 2: Calculate the attribute weights at each period. Using

Eq. (12), the attribute weights, wj(tk) (j = 1, 2, 3), for
three periods, are shown in Tables 4–6.
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Table 3: Original rating values evaluated by three decision makers at the t3
period.

C1

DM1 DM2 DM3

A1 ⟨VG; 0.8, 0.1⟩ ⟨G; 0.6, 0.3⟩ ⟨VG; 0.8, 0.1⟩
A2 ⟨G; 0.7, 0.2⟩ ⟨VG; 0.5, 0.4⟩ ⟨G; 0.8, 0.2⟩
A3 ⟨VG; 0.9, 0.1⟩ ⟨VG; 0.8, 0.2⟩ ⟨VG; 0.8, 0.1⟩
A4 ⟨VG; 0.8, 0.2⟩ ⟨VG; 0.5, 0.4⟩ ⟨G; 0.8, 0.1⟩
A5 ⟨VG; 0.7, 0.2⟩ ⟨VG; 0.9, 0.1⟩ ⟨VG; 0.8, 0.2⟩

C2

A1 ⟨G; 0.7, 0.1⟩ ⟨VG; 0.5, 0.3⟩ ⟨G; 0.8, 0.1⟩
A2 ⟨VG; 0.8, 0.1⟩ ⟨G; 0.6, 0.3⟩ ⟨VG; 0.8, 0.2⟩
A3 ⟨G; 0.8, 0.2⟩ ⟨G; 0.8, 0.1⟩ ⟨G; 0.7, 0.2⟩
A4 ⟨G; 0.8, 0.1⟩ ⟨G; 0.9, 0.1⟩ ⟨G; 0.8, 0.2⟩
A5 ⟨G; 0.7, 0.2⟩ ⟨VG; 0.8, 0.1⟩ ⟨G; 0.8, 0.1⟩

C3

A1 ⟨MP; 0.7, 0.2⟩ ⟨P; 0.5, 0.4⟩ ⟨MP; 0.7, 0.2⟩
A2 ⟨MP; 0.8, 0.1⟩ ⟨MP; 0.8, 0.1⟩ ⟨MP; 0.8, 0.1⟩
A3 ⟨F; 0.7, 0.2⟩ ⟨MP; 0.5, 0.4⟩ ⟨F; 0.8, 0.2⟩
A4 ⟨MP; 0.5, 0.4⟩ ⟨F; 0.8, 0.1⟩ ⟨F; 0.8, 0.1⟩
A5 ⟨F; 0.8, 0.1⟩ ⟨F; 0.8, 0.1⟩ ⟨F; 0.8, 0.1⟩

Step 3: Utilize the TIFN-WAA operator to aggregate the nor-
malized decision matrices Ñ(tk) = {r̃ij(tk)}5×3 into a
final decision matrix, R̃ = {ξ̃ik}5×3, as shown in Table 7.

Step 4: Define the TIFPIS, γ +, and TIFNIS, γ −, by:

γ +
= (((1, 1, 1); 1, 0), ((1, 1, 1); 1, 0),

((1, 1, 1); 1, 0))T ;
γ −

= (((0, 0, 0); 0, 1), ((0, 0, 0); 0, 1),
((0, 0, 0); 0, 1))T .

Step 5: Calculate the period weights, λ(tk) (k = 1, 2, 3), in the
decision matrix R̃ = {ξ̃ik}5×3, as shown in Table 7.

Step 6: Calculate the distance between the alternative and the
TIFPIS (γ +), and the distance between the alternative
and the TIFNIS (γ −) using Eq. (16), respectively.

Step 7: Using Eq. (17), the closeness coefficient, CCi (i =

1, 2, 3), can be obtained.

The distances, closeness coefficient and ranking order of
five alternatives are tabulated in Table 8. We can see that the
ranking order is ‘‘A3 ≻ A5 ≻ A2 ≻ A1 ≻ A4’’, where ‘‘≻’’
indicates the relation ‘‘preferred to’’.
5.2. Comparison analysis

If we do not consider themembership and non-membership
degrees in TIFNs, i.e. µij = 1 and νij = 0, in the original rating
values, then the rating values with TIFNs in Tables 1–3 will be
reduced to values with TFNs, and the DMADM problem with
TIFNs will also be reduced to the DMADM problem with TFNs.
To verify the effectiveness and applicability of the proposed
DMADM model with TIFNs, we also rank the alternatives
using the DMADM model with TFNs, which is based on the
normalized Euclidean distance and the weighted averaging
operator on TFNs (TFN-WAA) in Definition 4. Table 9 shows the
final ranking results obtained by the two DMADMmodels.

As shown in Table 9, it is not very difficult to observe that
the most desirable alternative, A3, presented by the DMADM
model with TFNs, is the same as the result obtained through
the DMADM model with TIFNs, but the ranking order obtained
by the DMADM model with TFNs is somewhat different from
the order presented through the DMADM model with TIFNs.
These results show that the membership and non-membership
degrees in TIFNs play an important role in determining the
ranking order in the DMADM model with TIFNs, and they
also provide more exact and abundant decision information.
Therefore, we can draw a conclusion that the ranking order
obtained by theDMADMmodelwith TIFNs ismore reliable than
the order presented through the DMADMmodel with TFNs.

5.3. Sensitivity analysis

Sensitivity analysis (SA) is the investigation of some
potential changes and errors of rating values and their impact
on the final ranking order [22]. In this paper, some sensitivity
analyses are conducted to investigate the impact of changing
the membership and non-membership degrees in the rating
values on the alternatives’ ranking order. A slight variation in
the original rating values evaluated by decision makers goes as
follows:

x̃ijs(tk) =


(aijs(tk), bijs(tk), cijs(tk));

µijs(tk) + q.h, νijs(tk) − q.h


, (18)

where q = −∆σj/h, . . . ,−1, 0, 1, . . . , ∆σj/h, h is the step
size, and ⌊−∆σj, ∆σj⌋ (j = 1, 2, 3) are the variation intervals
of the membership and non-membership degrees, with respect
to three attributes.
Table 4: Normalized decision matrix, Ñ(t1), at the t1 period.

C1 C2 C3

A1 ⟨(0.65, 0.8, 0.95); 0.8183, 0.126⟩ ⟨(0.7, 0.8667, 0.9667); 0.6366, 0.2884⟩ ⟨(0.3077, 0.4, 0.5714); 0.7711, 0.1587⟩
A2 ⟨(0.8, 1, 1); 0.8413, 0.126⟩ ⟨(0.55, 0.7, 0.85); 0.6443, 0.252⟩ ⟨(0.3333, 0.4444, 0.6667); 0.6893, 0.2⟩
A3 ⟨(0.7, 0.8667, 0.9667); 0.7116, 0.2⟩ ⟨(0.8, 1, 1); 0.8413, 0.126⟩ ⟨(0.4, 0.5714, 1); 0.8413, 0.126⟩
A4 ⟨(0.8, 1, 1); 0.6366, 0.2884⟩ ⟨(0.65, 0.8, 0.95); 0.7711, 0.126⟩ ⟨(0.3636, 0.5, 0.8); 0.6085, 0.2884⟩
A5 ⟨(0.7, 0.8667, 0.9667); 0.6698, 0.2621⟩ ⟨(0.7, 0.8667, 0.9667); 0.7379, 0.1817⟩ ⟨(0.2857, 0.3636, 0.5); 0.7116, 0.1817⟩
w(t1) 0.19698 0.47834 0.32468
Table 5: Normalized decision matrix, Ñ(t2), at the t2 period.

C1 C2 C3

A1 ⟨(0.65, 0.8, 0.95); 0.8413, 0.126⟩ ⟨(0.7627, 0.9492, 1); 0.658, 0.2289⟩ ⟨(0.4167, 0.5556, 0.8333); 0.6893, 0.2⟩
A2 ⟨(0.8, 1, 1); 0.8183, 0.126⟩ ⟨(0.7119, 0.8814, 0.9831); 0.6893, 0.2⟩ ⟨(0.4545, 0.625, 1); 0.7846, 0.1587⟩
A3 ⟨(0.7, 0.8667, 0.9667); 0.7846, 0.1587⟩ ⟨(0.661, 0.8136, 0.9661); 0.8183, 0.1587⟩ ⟨(0.4545, 0.625, 1); 0.6893, 0.252⟩
A4 ⟨(0.7, 0.8667, 0.9667); 0.6893, 0.252⟩ ⟨(0.6102, 0.7627, 0.9153); 0.6085, 0.2621⟩ ⟨(0.3846, 0.5, 0.7143); 0.8413, 0.126⟩
A5 ⟨(0.8, 1, 1); 0.7711, 0.1587⟩ ⟨(0.7627, 0.9492, 1); 0.7286, 0.2⟩ ⟨(0.3333, 0.4167, 0.5556); 0.7379, 0.1587⟩
w(t2) 0.24862 0.47255 0.27883
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Table 6: Normalized decision matrix, Ñ(t3), at the t3 period.

C1 C2 C3

A1 ⟨(0.75, 0.9333, 0.9833); 0.748, 0.1442⟩ ⟨(0.7119, 0.8814, 0.9831); 0.6893, 0.1442⟩ ⟨(0.3333, 0.5, 1); 0.6443, 0.252⟩
A2 ⟨(0.7, 0.8667, 0.9667); 0.6893, 0.252⟩ ⟨(0.7627, 0.9492, 1); 0.748, 0.1817⟩ ⟨(0.3, 0.4286, 0.75); 0.8, 0.1⟩
A3 ⟨(0.8, 1, 1); 0.8413, 0.126⟩ ⟨(0.661, 0.8136, 0.9661); 0.7711, 0.1587⟩ ⟨(0.25, 0.3333, 0.5); 0.6893, 0.252⟩
A4 ⟨(0.75, 0.9333, 0.9833); 0.7286, 0.2⟩ ⟨(0.661, 0.8136, 0.9661); 0.8413, 0.126⟩ ⟨(0.25, 0.3333, 0.5); 0.7286, 0.1587⟩
A5 ⟨(0.8, 1, 1); 0.8183, 0.1587⟩ ⟨(0.7119, 0.8814, 0.9831); 0.7711, 0.126⟩ ⟨(0.2308, 0.3, 0.4286); 0.8, 0.1⟩
w(t3) 0.3869 0.31983 0.29327
Table 7: Final decision matrix, R̃{ξ̃ik}m×k .

t1 t2 t3

A1 ⟨(0.5628, 0.702, 0.8351); 0.7271, 0.2018⟩ ⟨(0.6382, 0.8023, 0.9411); 0.7249, 0.1901⟩ ⟨(0.6156, 0.7896, 0.9881); 0.7019, 0.1699⟩
A2 ⟨(0.5289, 0.6761, 0.82); 0.7096, 0.2039⟩ ⟨(0.662, 0.8394, 0.992); 0.7545, 0.1672⟩ ⟨(0.6028, 0.7646, 0.9138); 0.7446, 0.1731⟩
A3 ⟨(0.6504, 0.8346, 0.9934); 0.8214, 0.138⟩ ⟨(0.6131, 0.7742, 0.9757); 0.7798, 0.1806⟩ ⟨(0.5943, 0.7449, 0.8425); 0.7827, 0.1662⟩
A4 ⟨(0.5866, 0.742, 0.9111); 0.7015, 0.1941⟩ ⟨(0.5696, 0.7153, 0.872); 0.7126, 0.2116⟩ ⟨(0.5749, 0.7191, 0.8361); 0.7714, 0.1612⟩
A5 ⟨(0.5655, 0.7033, 0.8151); 0.717, 0.1953⟩ ⟨(0.6523, 0.8133, 0.8761); 0.7423, 0.1771⟩ ⟨(0.6049, 0.7568, 0.827); 0.7988, 0.1287⟩
λ(t1) 0.45507 0.28064 0.26429
Table 8: Distances, closeness coefficient and ranking order of five
alternatives.

Alternatives D(Ai, γ
+) D(Ai, γ

−) CCi Rank

A1 1.1526 1.6994 0.59586 4
A2 1.1446 1.7031 0.59805 3
A3 0.93287 1.8046 0.65922 1
A4 1.1918 1.6835 0.58551 5
A5 1.1168 1.7151 0.60563 2

Table 9: Final ranking results obtained by the two DMADMmodels.

The DMADMModel
with TFNs

The DMADMModel with
TIFNs

CCi Ranking CCi Ranking

A1 0.51454 2 0.59586 4
A2 0.50153 3 0.59805 3
A3 0.56709 1 0.65922 1
A4 0.49184 4 0.58551 5
A5 0.49123 5 0.60563 2

As shown in Figures 2–4, the ranking order of all alternatives
will remain constant when the variation values of the member-
ship and non-membership degrees, with respect to the three
attributes, vary in the range from −0.06 to 0.04. But over the
range, the ranking order of the two alternatives A1 and A2 will
change with the membership and non-membership degrees,
with respect to the three attributes. It demonstrates that the
alternatives A1 and A2 are more sensitive to membership and
non-membership degrees than the other three alternatives.

6. Conclusions

In this paper, a DMADMmodel with triangular intuitionistic
fuzzy numbers is presented to deal with vagueness and
uncertain information. Using an aggregation operator (TIFN-
WAA), a procedure for the DMADM model with TIFNs, based
on the priority attribute, is developed to solve the DMADM
problem, where all attribute values are expressed in triangular
intuitionistic fuzzy numbers. In addition, a new distance
measure between two TIFNs is proposed to determine the
entropy weights in the DMADMmodel.

Another DMADMmodelwith TFNs is established to compare
with the DMADM model with TIFNs. The comparison results
Figure 2: Ranking order sensitivity to the membership and non-membership
degrees with respect to the first attribute, C1 .

Figure 3: Ranking order sensitivity to the membership and non-membership
degrees with respect to the second attribute, C2 .

demonstrate that the DMADM model with TIFNs can provide a
more reliable ranking order than the DMADMmodel with TFNs.
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Figure 4: Ranking order sensitivity to the membership and non-membership
degrees with respect to the third attribute, C3 .

Although the example provided here is for selecting a desirable
investment company, the proposed model can be applied to
many different fields.
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