
JOURNAL OF FUNCTIONAL ANALYSIS 66, 105-122 (1986) 

On Operators Preserving Commutativity 

Department of Mathematics, E. K. University qf Ljub[jana, 
Jadranska 19. 61000 Ljubljana, Yugoslavia 

Communicated by C. Foia.r 

Received April 22, 1985; revised October 5, 1985 

Let L(X) be the algebra of all bounded operators on a non-trivial complex 
Banach space X and F: L(X) + L(X) a bijective linear operator such that F and 
F-’ both send commuting pairs of operators into commuting pairs. Then, either 
F(A)=aUAW’+p(A)I, or F(A)=uUA’W’+p(A) I, where p is a linear 
functional on L(X), U is a bounded linear bijective operator between the 
appropriate two spaces, cr is a complex constant, and A’ is the adjoint of A. The 
form of an operator F for which F and F-’ both send projections of rank one into 
projections of rank one is also determined. I(” 1986 Academic Press. Inc 

1. INTRODUCTION 

In this paper we study linear operators F: L(X) + L(X), where X is a 
non-trivial complex Banach space and L(X) is the algebra of all bounded 
linear operators on X. We do not assume in general that F is bounded. 
What we assume is that F preserves some properties of bounded operators. 
We show that it must then be of a very special form. 

We shall say that F preserves commutativity in both directions if for any 
two A, B E L(X) the operators F(A ) and F(B) commute if and only if A and 
t? do. The main result of this paper is theorem 1.1. The dual of X will be 
denoted by A” and the adjoint of A E L(X) by A’ throughout. 

THEOREM 1.1. If the dimension of X is greater than 2 and 
F: L(X) + L(X) is bijective linear andpreserves commutativity in both direc- 
tions, then there is a linear functional p on L(X), a non-zero complex number 
CJ and either 

(a) a bounded bijective linear V: X * X such that 

F(A)=aVAV-‘+p(A)z 

for every A E L(X); or 
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(b) a bounded bijective linear U: X’ -+ X such that 

F(A)=oUA’V’+p(A)Z 

for every A E L(X). In this case, X is reflexive. 

Note that we do not assume continuity of the operator F, and as a con- 
sequence we get a functional p which need not be continuous either. 
However, U and U- ’ must be bounded and F can get some discontinuity 
only through the functional p. Besides, note that we did not assume either 
multiplicativity, antimultiplicativity or any other property of this kind on 
F. Nevertheless, we get as a result that our F differs from an algebraic 
homomorphism or an algebraic antihomomorphism in a multiplicative 
constant and an additive operator of rank at most 1. The reason for this 
seems to be in the fact that preserving commutativity implies preserving 
commutants which are algebras. This fact will be used essentially in the 
proof. The commutant of a set Y c L(X) which is by definition the set of 
all operators from L(X) commuting with every operator from Y will be 
denoted by Y’- throughout. Finally, note that the converse of the theorem 
is almost trivial. 

PROPOSITION 1.2. Let p be a linear functional on L(X), let o be a non- 
zero constant with p(Z) + u # 0, let either 

(a) U: X -+ X be a bijective bounded linear operator and define F(A) = 
aUAU-’ + p(A) Z; or 

(b) X be reflexive, U: X’ -+ X be a bijective bounded linear operator 
and define F(A) = aUA’U-’ + p(A) I. 

Then, R L(X) -+ L(X) is linear bijective and preserves commutativity in both 
directions. 

ProojI (a) From F(A) = 0 we get p(A)(a + p(Z)) = 0 which forces A = 0. 
For any B E L(X) set 

D”B,J-P(U-‘BU) Z 

a+P(l) > 

to get F(A) = B. The proof of (b) goes similarly. 
The proof of the theorem will be given in Section 4, while in Section 3 

some auxiliary results will be presented. It seems that the first result in the 
direction of our theorem was given by Watkins [9] for X of finite dimen- 
sion greater than 3; in the same paper a counterexample was constructed in 
2 dimensions. The case of dimension 3 was settled almost simultaneously 
by Pierce and Watkins [7] and by Beasley [ 11. Extensions of these results 
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to the case of symmetric matrices were given by Chan and Lim [3] and by 
Radjavi [S]. 

It seems that the first attack on the infinite dimensional case was made 
by Choi, Jafarian, and Radjavi in their nice paper [43, where X is assumed 
a Hilbert space and F an adjoint-preserving bijective linear operator on 
L(X) which also preserves commutativity; the results obtained under these 
assumptions are analogous to ours. Also, some ideas used in the proof of 
our theorem are similar to those presented in [4]. However, note that in a 
Hilbert space a bounded operator can be represented as a matrix which 
makes the proof and even the formulation of this result closer to the finite 
dimensional case. In this paper we give the result in a general Banach 
space, where the transpose of a matrix is formally replaced by the adjoint 
operator. We have to make greater use of the commutativity relations to 
obtain this result. We also need a stronger assumption on F: it must 
preserve commutativity in both directions. 

In Section 2 we give a result (Theorem 2.1) which is probably of some 
independent interest. But, a side result of this section (Proposition 2.6) will 
be needed in the proof of the main theorem. What we shall actually show 
in Section 2 is that every operator F: t(X) --+ L(X) which is continuous in 
the weak operator topology, linear bijective, and preserves the property of 
being a projection of rank 1 in both directions, is either of the form U,4U ’ 
or of the form UA’U -I, where U is a bijective bounded linear operator 
acting between the appropriate Banach spaces. It seems that the study of 
operators preserving the rank or some other characteristics of matrices was 
started in the papers [S and 61. A rather fresh reference [2] could help an 
interested reader fo find some further references on the problem. It seems 
that the problems of this kind are still almost untouched in infinite dimen- 
sions. 

Throughout the paper, we will denote for any x E X and f~ X’ by x of’ 
the bounded linear operator on X defined by (x @ f) y = f(y) x for y E X. 
Note that every operator of rank 1 can be written in this form. The 
operator x @f is a projection if and only if f(x) = 1. Note that (x of)’ = 
f@ (.Xx), where % is the natural embedding of X into X”. Recall also that 
every operator of finite rank is a linear combination of operators of rank 1. 

2. OPERATORS PRESERVING PROJECTIONS OF RANK 1 

We shall say that an operator F: L(X) -+ L(X) preserves projections of 
rank 1 in both directions, if for every A E L(X) the operator F(A) is a pro- 
jection of rank 1 if and only if A is a projection of rank 1. 

THEOREM 2.1. Let I? L(X) + L(X) be linear, bijective, and continuous in 
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the weak operator topology. Besides, let F preserve projections of rank 1 in 
both directions. Then either 

(a) there is a bounded bijective linear operator V: X + X such that 
F(A) = UAU-‘; or 

(b) there is a bounded bijective linear operator U: X’ +X such that 
F(A) = UA’U- I. In this case the space X must be reflexive. 

The proof of Theorem 2.1 will be given through a series of lemmas. 
Throughout this section we shall suppose that all the assumptions of the 
theorem, except for the continuity of F in the weak operator topology, are 
in effect. 

LEMMA 2.2. If for some linearly independent vectors x, y E X and a non- 
zero functional f E x’ it holds that f(x) = f( y) = 1, then there are u, v E X, 
~I,$EX’ with cp(u)=Ic/(v)=l, cp(v)t,k(u)=l, F(x@f)=u@cp, and 
F( y Q f) = v @ J/, such that either 

(a) the vectors u and v are linearly independent and $ = $(u) cp; or 

(b) the functionals q, $ are linearly independent and v = cp(u) u. 

Proof Sincef(x)=f(y)=l, theoperators P=x@fand Q=y@fare 
projections of rank 1. Hence, by the assumption on F both F(P) and F(Q) 
are projections of rank 1, thus F(P) = u@ 40, F(Q) = v@ $ for some 
U, v E X, cp, $ E X’ such that q(u) = +(v) = 1. From the definition of P and 
Q we get for any 1 that 1P + (1 - A) Q is also a projection of rank 1. Hence 
IF(P) + (1 - A) F(Q) = @F(P) + (1 - ,I) F(Q))2 which gives F(P) F(Q) + 
F(Q) F(P) = F(P) + F( Q) and from this it follows that 

~o(cp-rp(v)~)+~Q(~-~(u)cp)=o. (1) 

Suppose u and v are linearly independent, then (1) gives cp = q(v) #, t~3 = 
$(u) q, and since cp and 1+5 are non-trivial, we also get p(v) q(u) = 1 and (a) 
holds. In the case cp and $ are linearly independent, we can rewrite (1) in 
the form 

which implies u = $(u) ZI, u = q(u) U. But, u and u are non-trivial, hence 
q(v) $(u) = 1 and (b) holds. It remains to consider the case when neither 
(a) nor (b) are true. Then both pairs u, v and cp, $ are linearly dependent 
which forces F(P) and F(Q) to be linearly dependent, contrary to the fact 
that P and Q are linearly independent and that F is injective. 

LEMMA 2.3. If for a non-zero vector x E X and some linearly independent 
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functionals f, gE X’ it holds that f(x) =g(x) = 1, then there are u, v E X, 
~I,$EX’ with q(u)=$(o)=l, q(v) $(u)=l, F(x@f)=u@q, and 
F(x Q g) = u Q I/J, such that either 

(a) the vectors u and v are linearly independent and J/ =$(u) cp; or 

(b) the functionals cp, I+!I are linearly independent and v = q(u) u. 

Proof. Define P = x $3 f and Q = x Q g to reach the same situation as in 
the proof of the Lemma 2.2. Naturally, this must yield the same conclusion. 

LEMMA 2.4. For euery f. E X’ there exists either 

(a) a bijective linear operator U: X -+ X and a functional ‘p,, E x’ such 
that for every x E X, 

mQfo)=(Ux)Qcp”; 

or 

(b) a bijective linear operator V: X -+ X’ and a vector 1.4~ E X such that 
.for every x E X, 

Proof: Fix any x0 E X with fO(xO) = 1 and write F(x, Of,,) = u,, @ (pO, 
then &u,) = 1. Now, choose a vector x E X, linearly independent of x0 and 
such that so(x) = 1. Then, use Lemma 2.2 for x0, x, andf. In the first place, 
assume that the case (a) of that lemma holds. Then, we can take 
F(x 0 fO) = v 0 cpO, where u and u,, are linearly independent and cpO(v) = 1. 
If an additional vector y E X can be found which does not depend linearly 
on either of the vectors x0 or x, then we can use Lemma 2.2 for .x0, y and 
fb. If the case (b) occurred this time, we would get F( y 0 fO) = u,@ q, cp 
being linearly independent of cpO which whould lead to a contradiction with 
Lemma 2.2 used for x, y, and fO. Thus, the case (a) of the Lemma 2.2 holds. 
We have proved in this way that for every x E X with &(x) = 1 there is a 
unique u E X with q,,(u) = 1 and F(x@fO) = u @ cpO. For every x E X of this 
kind define Ux=v. For XE Xwithf,(x)#Oput Ux=f,(x) U(f,(x))’ x) to 
get F(x@ fO) = ( Ux)@cpO again. Finally, if fO(x) = 0, define Ux = 
U(x+~,)-Ux,togetF(xOf,)=(Ux)~~~foreveryx~X.Itistheneasy 
to see that U is linear and injective. To complete the proof of case (a) of 
this lemma we only need to verify surjectivity of the operator U. If the 
image of U has dimension 1, then there is nothing to prove. If the rank of 
U is greater than 1, choose any two linearly independent vectors y, and yz 
in the image of U. If there is a vector y E X which is not in the image of U, 
apply Lemma 2.2 to the vectors y,, y, ‘pO and to the vectors yz, y, cpO 
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respectively, using the operator F-’ instead of F in both cases, to reach a 
contradiction. 

Let us now return to the point of this proof when Lemma 2.2 was used 
for the first time. If the case (b) of that lemma occurred at that point, we 
could use similar arguments as above to get the case (b) of this lemma. 

LEMMA 2.5. Let a functional f0 E X’ be given. Then there exists either 

(a) a bijective, linear operator U: X -+ X and for every x E X with 
fO(x) = 1 a bijective, linear operator V: X’ + x’ such that for every f E x’ it 
holds that (Vf)(Ux)=f(x) and F(x@f)=(Ux)Q(Vf); or 

(b) a bijective, linear operator V: X-+x’ and for every x E X with 
fO(x) = 1 a bijective, linear operator U: X’ -+ X such that for every f E X’ it 
holds that (Vx)(Uf)=f(x) andF(x@f)=(Uf)@(Vx). 

ProoJ In the first place assume that for the functional f0 E X’ we are in 
the case (a) of Lemma 2.4. Fix a vector x0 E X with fO(xO) = 1, choose any 
further f E x’ with f(xO) = 1, linearly independent of f0 (note that if this is 
not possible, there is nothing to prove) and apply Lemma 2.3 to the vectors 
x0, fO, andf: We shall see that the case (b) of that lemma must hold. Sup- 
pose, on the contrary, that (a) holds. Then, F(x,@ fO) = Ux,@qq,, 
F(x,Of)=aOcp,, and the vectors u and UxO are linearly independent. 
But, for any XE X such that x and x0 are linearly independent we have 
F(x @ fO) = (Ux) @ qpo. Since x0 0 f and x @ f0 are linearly independent 
operators, so must be u @ q0 and Ux 0 cpO, hence u and Ux are linearly 
independent. Applying Lemma 2.2 to the vectors U, Ux, ‘p,, with operator 
F-’ instead of F we get that either x and x,, are linearly dependent or f and 
f0 are which is in contradiction with the above assumptions. Therefore, we 
must be in the case (b) of Lemma 2.3 and so F(x, @ f) = (Ux,) 0 cp for a 
functional cp E X’. Define Vf = q for f E .Y’ with f(xo) = 1. Choose now 
SEX’ such that f(xO)#O and define Vf=f(x,) V(f(x,)-‘f). Then we 
have 

F(x, of) = Ux, @ vf (2) 

for every f E X’ with f(xO) # 0. For f~ X’ with f(xO) = 0 define Vf= 
V(f + fO) - VfO to get that (2) holds for every f E x’. We can then use 
similar arguments as in the proof of Lemma 2.4 to see that the operator V 
is linear and bijective. Moreover, we get ( Vf )( Ux,) = f(x,), first for every 
f 6 X’ with f(x,,) = 1, then for f E x’ with f(xO) # 0 and finally for every 
fEX’. 

In the second place assume that for the functional foEX’ we are in the 
case (b) of Lemma 2.4. Choose x0 E X and then f E x’ such that f(x,,) = 
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fob) = 1 and L h are linearly independent (if possible). Using similar 
arguments as above, we can see that the case (a) of Lemma 2.3, applied to 
x0, fO, and ft must hold. Define Uf = u and extend this operator U by 
linearity to the whole space X’ to get a bijective, linear operator U from X 
to X for which F(x,@f) = (Vf)@ (Vx,) holds for every f~ X’ and 
moreover, ( Vx,)( Us) = f(xO). 

PROPOSITION 2.6. There exists either 

(a) a bijective, bounded, linear operator U: X -+ X such that 

F(A) = UAW’ 

for every A E L(X) of finite rank; or 

(b) a bijective, bounded, linear operator U: X’ + X such that 

F(A) = UA’U-’ 

for every A E L(X) of finite rank. In this case the space X must be reflexive. 

Proof. Suppose that for a functional fO E X’ we are in the case (a) of 
Lemma 2.5 and choose linearly independent vectors x1, x2 E X with 
fO(xl)=fO(x,)= 1. Let V,, I/,: X’-+X’ be such that for every VEX’ we 
have 

Since the operator U is injective, the vectors Ux, and Uxz are linearly 
independent, therefore the functionals V,f and V2f are linearly dependent 
by Lemma 2.2. Fix a non-zerofE X’ to get V2f= ;1 VJ’for a non-zero com- 
plex number A. Similarly, for a complex number a, different from zero and 
from one, we get F((ax,+(l-cc)x,)@f)= U(ax,+(l-or) x,)0 VJ 
which implies V,f= p V,f for a non-zero complex number I*. Thence, 

which yields A = p = 1 and V3 = V, = V, . Thus, the operator Y in case (a) 
of Lemma 2.5 does not depend on the choice of x E X for which JO(x) = 1. 
We can now use the linearity of operator F to obtain the equality 
F(xOf) = Ux@ Vf valid for every x E X and for every f~ X’. From 
Lemma 2.5 we know that (Vf)( Ux) = f( x ) f or all x E X, f~ X’, which shows 
that V is the adjoint of U-l. This forces I/ to be bounded which implies 
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that U-’ and finally U is bounded. Besides, for all x, y E X and f E X’ we 
have 

F(xQf)Y=(UxQ v-)Y= W(V)(Y)) 

= Uxf(U-‘y)= U(xQf) u-‘y 

which proves (a) for every A of rank 1. The general case now follows by the 
linearity of F. 

Suppose now that for a functional fO EX’ we are in the case (b) of 
Lemma 2.5 and choose linearly independent vectors x1, x2 EX such that 
fO(x,) =fO(x2) = 1. Take the operators U1, U,: X’ --t X such that for every 
VEX’ we have 

F(x, Qf) = (u,f) 0 ( vx, 1, 

F(x, of) = (U2f) 8 (vx2). 

Using arguments as above we see that U, = U2 = U does not depend on the 
choice of x E X. Therefore, for all x E X, f E X’ we have F(x @ f) = (Uf) @ 
(Vx) and, moreover, V(x)( Uf) =f(x). Let x be the natural embedding of 
X into X”. Then, v’ is defined at least on the image of % and coincides 
there with U-IX-‘. Thus, U-’ is closed and therefore bounded. Besides, 
the operator (U-l)‘: X” --) X’ is bounded and so is V= (U-l)’ Z. But, the 
operators V and (U-l)’ and therefore also x are bijections which implies 
the reflexivity of X. In this way we get for every x, y E X and f~ X’ 

F(xOf)y=((Uf)O(Vx))y=(Uf)((Vx)(~)) 

= (Uf )(W-‘y)(x)) = U(f Ox) u-‘Y 

= U(x@f)’ u-‘y 

which proves (b) for every A of rank 1. The general case then follows by 
linearity. 

Proof of the Theorem 2.1. Suppose that F satisfies the above 
assumptions and is also continuous in the weak operator topology. Note 
that operators of finite rank are a dense subset of L(X) in the weak 
operator topology to get the theorem as an immediate consequence of the 
Proposition 2.6. 

3. SOME AUXILIARY RESULTS 

In this section we give some results needed in Section 4. The most impor- 
tant among them is Proposition 3.3 which represents the first step in the 



OPERATORS PRESERVING COMMUTATIVITY 113 

proof of the main theorem 1.1. We start with a result which is probably 
well known, but we give here a proof for completeness. 

LEMMA 3.1. The second commutant of an operator with more than one 
point in its spectrum has dimension 2 if and only if the operator is of the form 
w.P + PI, where P is a non-trivial projection and ~1, /J are complex numbers 
with a # 0. 

Proof. Let P be a projection with image Y and kernel Z. Then 
A E (P}” if and only if A leaves the subspaces Y and Z invariant. It follows 
that every operator A E {P> * -C (P}” must be of the form A = aP + fir for 
some complex numbers a, fi. On the other hand, suppose that for an 
operator A E L(X), {A >” “has dimension 2. Since A is not a scalar multiple 
of the identity operator, A and I form a basis of the second cornmutant of 
A. This implies that (A - /?)2 = a(A - fl) for some complex numbers a, /I If 
a =O, A has only one point in the spectrum, contrary to the assumption. 
Therefore, a # 0, P = (A - /?)/a is a non-trivial projection and A = aP + PI. 

The next somewhat technical result will be needed in the proof of the 
Proposition 3.3. 

LEMMA 3.2. Let P # Q be two non-trivial, commuting projections. 

(a) Either P or I - P is of rank 1 and either Q or I - Q is of rank 1 if 
and only if the subspace 

V= {PI”+ {Q}- 

of L(X) has codimension 2 in L(X). 

(b) If P and Q are of rank 1, then there are nilpotents U and V of 
rank 1 with P = UV, Q = VU such that L(X) is a direct sum of % and the 
linear span of the operators U and V. 

Proof. Define F, G: L(X) -+ L(X) by F(A)= PA(Z-P)+(I- P) AP 
and G(A)= QA(Z-Q)+ (Z-Q) AQ. Note that F and G are commuting 
projections on L(X) and that the kernel of F equals {P}“, while the kernel 
of G equals {Q} which yields that % equals the kernel of FG. Assume that 
w has codimension 2; then the image of FG has dimension 2. Define 

R, = PQ, R, = P(I- Q), R, = (I- P) Q, R, = (I- P)(Z- Q) 

to get four disjoint projections on X with sum I. A straightforward com- 
putation gives that A belongs to the image of FG if and only if 

A=R,AR,+R,AR,+R3AR,+R,AR, 
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We shall see that at least one of the four projections R, , RZ, R,, and R4 is 
zero. Suppose on the contrary that all of them are non-zero and choose 
non-trivial vectors xi from the image of Ri and non-trivial functionals fi 
from the image of R: for i= 1,2,3,4. The operators Ai = xi@fsei, defined 
for i= 1,2,3,4 are then linearly independent members of the image of FG, 
contradicting the fact that its dimension is 2. With no loss of generality we 
suppose that R, = PQ = 0. Now, assume that P has rank greater than 1 
and choose linearly independent vectors x1, x2 from the image of P and xg 
from the image of Q. Next, choose linearly independent functionals f,, f2 
from the image of P’ and f3 from the image of Q’. Define the operators 

to get four linearly independent operators from the image of FG. Thence 
the rank of P is 1 and similarly the rank of Q is 1. 

On the other hand, suppose that P = x @ f and Q = y 0 g are projections 
of rank 1. Since they commute, we have necessarily PQ = QP = 0. Set U = 
x@g, Y= y@f: For every A EL(X) write 

B=PAP+(Z-P)A(I-P), 

and 

C=(Z-P-Q)AP+PA(Z-P-Q), 

D=PAQ+QAP=f(Ay) U+g(Ax) V, 

to get A=B+C+D, where BE {P]” and CE {Q)“. We have thus seen 
that L(X) is the sum of $9 and the linear span of U and V. To see that this 
sum is direct, take any BE {P]” and CE {Q>” such that B+ C= crU+ /?V 
for some complex numbers ~1, /I. Then 

crU=P(crU+/lV)Q=PBQ+PCQ=O 

and similarly /IV = Q(aU + p V) P = 0 and the lemma follows. 
We shall suppose from now on that the dimension of X is greater than 2. 

PROPOSITION 3.3. If F: L(X) + L(X) is bijective, linear, and preserves 
commutativity in both directions, then for every two disjoint projections P 
and Q of rank 1 there are disjoint projections R and S of rank 1 and complex 
numbers a., 6, CT with a # 0 such that 

F(P) = oR + crl and F(Q)=aS+M 

Proof The proof will be given in a few steps. In the beginning write the 
two projections in the form P = x Of; Q = y @g, where x, y E X and 
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f,gEXI are such thatf(x)=g(y)= 1 andf(y)=g(x)=O. Next, define U= 
x@g, V=y@f, A=F(P), B=F(U), C=F(V), and D=F(Q). Note that 
the second cornmutant of the set (P, Q, U, V} is the algebra spanned by 
P, Q, U, V, and I. Since F preserves commutativity in both directions, the 
second cornmutant d of the set {A, B, C, D} is spanned by A, B, C, D, and 
I. Since F is injective, these five operators are linearly independent and 
form a basis of d. By Lemma 3.1 the second cornmutants of A and of D 
respectively have dimension 2. Similarly the second cornmutants of B and 
of C respectively have dimension 3. Choose now any points ~1, p, y, and 6 
respectively from the spectra of operators A, B, C, and D. 

STEP I. A - c1 and D - 6 cannot both be nilpotent. 

Proof. Through the proof of this step we shall assume with no loss of 
generality that all of the numbers c(, fl, y, 6 are equal to zero. Assume to the 
contrary of Step I that A2 = D2 = 0. Then G = A + D is a sum of two com- 
muting nilpotents which implies that G is nilpotent. Since P + Q is in the 
center of the algebra {P, Q, U, V}” “, the operator G is in the center of .01. 
But, this center has dimension 2 which implies G2 = 0. Since the com- 
mutant of U in the algebra {P, Q, U, VI- - is spanned by Z, P + Q, and U, 
the cornmutant of B in d must be spanned by Z, G, and B. From this we 
get B2 = cpB + $G + vl, for some complex numbers cp, $, v. If v # 0, the 
operator $G + VZ is invertible and so is B(B - cp) contrary to the 
assumption that 0 is in the spectrum of B. Therefore v = 0 and Bz = 
cpB+$G. Define H=BA+AB-cpA to get AH=ABA=HA and BH= 
BAB = HB. This implies that H = PG + vl. But HG = 0 and therefore v = 0, 
which gives also HD = 0. Thus ABD = 0 and similarly, after interchanging 
B and C we get also ACD = 0. Now, take any WE L(X) to get, by 
Lemma 3.2, 

F(W)= Y+Z+zB+wC, 

where Y commutes with A, 2 commutes with D, and z, w are complex 
numbers. Then 

AF(W)D=YAD+ADZ+zABD+oACD=O. 

Recall now that F is surjective and that A, D are not scalar multiples of 
identity. Hence, we can choose WE L(X) such that F( W) = z @ h, where 
z E X is an arbitrary vector which does not belong to the kernel of A and 
h E x’ is an arbitrary functional which does not belong to the kernel of D’. 
With this choice we get AF( W) D # 0, contrary to the above results which 
completes the proof of this step. 

STEP II. A - CI and D - 6 are scalar multiples of some projections. 
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Proof: To simplify the notations assume again that ~1, /l, y, 6 are all 
zero. In the first place assume AZ = 0, then we must have D* = qD + +Z for 
some complex numbers cp, $. Since 0 is in the spectrum of D, $ = 0. A short 
computation gives G2(G - VP)’ = 0. Since G is in the center of d which is of 
dimension 2 we must have either G2 =0 or G(G- 40) = 0. The first 
possibility leads directly to D2 = 0, the second gives 0 = (A + D) 
(A + D - 40) D = cpAD which again forces D2 = 0. Similarly, the supposition 
D2 = 0 yields A2 = 0. In this way we obtain by Step I that both A2 and D2 
are non-zero. Consequently, A and D are scalar multiples of non-trivial 
projections. 

Proceed now with the proof of the proposition. Let p and Q be non-zero 
complex numbers such that R = (A - a)/p and S= (D -S)/g are projec- 
tions, then A=pR+crI and D= oS+61. Apply now one direction of 
Lemma 3.2 to projections P and Q and the other one to projections R and 
S to get that either R or I- R and either S or I- S are of rank 1. We shall 
assume with no loss of generality that R and S are of rank 1 and therefore 
necessarily RS= SR = 0. It remains to show tha p = 0. But, the second 
commutant of P + Q has dimension 2 and so has the second commutant of 
the operator A+ D =pR+aS+ (CI+ 6) I. Since this operator has more 
than one point in its spectrum, it must be a linear combination of a non- 
trivial projection and the identity operator by Lemma 3.1. And for that 
reason p = B. 

COROLLARY 3.4. Under the assumptions of Proposition 3.3., there is a 
constant IS E @, a # 0, such that for every projection R of rank 1 there is a 
projection T of rank 1 and a constant c( E C such that 

F(R) = aT+ al. 

The corollary will follow immediately from the proposition, after proving 
a simple lemma which will also be needed in the sequel. 

LEMMA 3.5. Let P and R be any projections of rank 1. Then there are 
nilpotents U and V of rank 1 such that P = UV, further Q = VU is a projec- 
tion of rank 1 disjoint with P, and R is a linear combination of P, Q, U, 
and V. 

Proof: Write P=x@f and R=zOh, where x, zEX andJ hEX’ are 
non-zero and f(x) = h(z) = 1. What we want to find are y E X and g E X’ 
with g(y) = 1, g(x) = f(y) = 0 and such that h is a linear combination of 
f, g and that z is a linear combination of x, y. Then, we shall put U = x 0 g, 
V= y@f, and Q = y@g to get the desired operators. If the pairs x, z and 

f, h are both linearly dependent, then choose any y E X with f(y) = 0 and 
any g E x’ with g(x) = 0, g(y) = 1, to solve the problem. If the functionals 
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g, h are linearly dependent and the vectors x, z are not, then choose any 
g 6X’ with g(x) = 0, g(x) = 1, and set y = z -f(z) x to meet our 
requirements. Similarly, in the case when the vectors x, z are linearly 
dependent and the functionals f, h are not, take arbitrary y E X with 
f(y) = 0, h(y) = 1 and set g = h-h(x) f to get what is needed. Finally, 
assume that both pairs x, z and .f, h are linearly independent and put y = 
z -j”(z) x # 0. Assume, for the moment that h(y) = 0. Since the intersection 
of the kernel of h with the subspace spanned by x and z has dimension 1, 
we must have h(x) z-x = h(x)(z -f(z) x) which forces h(x) f(z) = 1. The 
functional h - h(x) f has therefore both vectors x and z in its kernel, so it is 
trivial, contradicting the fact that h and f are linearly independent. Con- 
sequently, h(y) # 0 and the functional g = (h - h(x) ,f)/h( y) solves the 
problem. 

Proof of Corollary 3.4. Apply Proposition 3.3 to see that the only thing 
to show is that the constant D does not depend on the choice of the projec- 
tion R. Choose any two projections of rank 1, say P and R and let U, V, 
and Q be as in the Lemma 3.5. Choose any further projection S of rank 1, 
disjoint with both P and Q and note that it is then disjoint also with R. 
NOW, apply the Proposition first to the projections P and S, and then to 
the projections S and R to get the corollary. 

4. CHARACTERIZATION OF OPERATORS PRESERVING 
COMMUTATIVITY 

Throughout this section it will be assumed that the dimension of the 
space X is greater than 2. Besides, we shall fix a bijective, linear operator 
F: L(X) + L(X) which preserves commutativity in both directions and a 
projection P, = x 0 f, where x E X and ,f~ X’ with f(x) = 1. By 
Proposition 3.3 

F(P,) = 4y 0 g) + PA 

where y E X and g E X’ with g(y) = 1, while p, (T are complex numbers and 
CJ non-zero. For every A E L(X) define 

z-w) = g(W) Y) - dW) (1) 

and 

G(A)=;(F(A)-p(A)I). (2) 
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Note that p is a linear functional (not necessarily bounded) on L(X) and 
that G is an operator on L(X). 

PROPOSITION 4.1. The operator G: L(X) -+ L(X) is linear, bijective, and 
preserves commutativity in both directions. Moreover, 

(a) G(Z) = 4 
(b) G(Po&Po) = G(Pd G(&) G(Pd for all 4 E -WI 
(c) G( Q,,) is a projection of rank 1 for every projection Q,, E L(X) of 

rank 1. 

In the proof of the assertion (c) another auxiliary result will be needed. 
In the following lemma we will assume that P, Q are projections and U, V 
nilpotents, all of rank 1 and such that P= UV, Q = VU. Note that an 
operator A E L(X) is a linear combination of P, Q, U, and V if and only if 
(P+Q) A=A(P+Q)=A. 

LEMMA 4.2. If A is a linear combination of P, Q, U, and V, then its rank 
is not greater than 1 if and only if there exists an operator BE L(X) such that 
B commutes with A and B does not commute with the projection P + Q. 

Proof: Recall the notations of Lemma 3.5. Suppose that A = z @ h for 
some z = CIX + /?y, h = yf + vg. Choose any non-zero w E X from the inter- 
section of the kernels off and g. Define B = w @ @f - ag) to get BA = 0, 
AB = 0, (P + Q) B = 0, but B( P + Q) = B # 0. To get the other direction of 
the lemma, assume that A E L(X) is of rank 2. Since its image is a subspace 
of the image of P + Q and the two subspaces have the same dimension, 
they must be equal and there exists an operator CE L(X) with CA = AC= 
P+ Q. Since A lies in a complex algebra of finite dimension, there is a com- 
plex polynomial p with p(0) = 1 such that for an integer k it holds that 
Akp(A) = 0. Multiply by Ck to get (P + Q) p(A) = 0 and set q(I) = 
(1 - p(l))/1 to obtain 0 = (P+ Q)(Z- Aq(A)). Thence, the operator C in 
CA = AC= P+ Q can be interchanged with q(A). Consequently, if an 
operator BE L(X) commutes with A, then it commutes with q(A) and also 
with P + Q = Aq( A). 

Proof of Proposition 4.1. It is clear that G is linear and that it preserves 
commutativity in both directions. If for an operator AE L(X) we have 
G(A)=O, then F(A)=p(A) I and p(A)= p(A) g(y)-o-f(Ay). Since F 
preserves commutativity in both directions, A = AZ for a complex I and 
therefore elf(y) = 0 which implies A= 0. To see that G is surjective, choose 
any BEL(X) and put A=aF-‘(B)+p(F-‘(B))Z to get G(A)=B. The 
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assertion (a) can be verified directly. Note that for every &E L(X), 
G(f’,) = y@g, and 

G(f’,) GM,) G(P,) = (Y 0 g)fWx) = G(f’wW’o) 

to obtain the assertion (b). To see (c), choose any projection R, E L(X) of 
rank 1. Apply Lemma 3.5 to get nilpotents U0 and V, of rank 1 such that 
P, = U0 V, and Q, = I/, U, is a projection of rank 1, disjoint with P,. 
Besides, R,, is a linear combination of PO, QO, U,, and V,. 

Denote P = G(P,), Q = G(QO), B = G( U,), and C = G( V,) and note that 
by Proposition 3.3, Q-al is a projection of rank 1 disjoint with P, for a 
complex numer CI. Use the assertion (b) of Proposition 4.1 to get 

aP = PQP = G(P,Q,P,) = 0. 

Therefore, P and Q are disjoint projections of rank 1. 
Since Q, + U, is a projection, we get by Corollary 3.4 a complex number 

,I such that Q + B - A = S is a projection of rank 1, say S = z @ h for some 
ZEX, VEX’ with h(z)=l. Denote u=(P+Q)z, c=u-z, r=(P+Q)‘h, 
and s = h - r. Since Q, and U. commute with P, + QO, the projection z @h 
commutes with P + Q, hence u @ h = z 0 r and therefore u 0 s - u @ r = 0. If 
u depends linearly on u, we get u = 0 which forces s = 0. If u # 0, we get 
necessarily u = 0 and r = 0. Thence, either 

(P+Q)S=S(P+Q)=S or (P+Q)S=S(P+Q)=O. 

The second case yields QS = SQ = 0 and Q commutes with B, contrary to 
the fact that Q, does not commute with CT,. Thence, we must have 
(P+ Q)S= S(P+ Q) = S. Let us now use the assertion (b) of 
Proposition 4.1 in the following computation: 

-AP=P(Q+B-A)P=P(Q+B-i)‘P 

=P(Q2+Q(B-1)+(B-i)Q+(B-l,)*)P 

=P(B-lb)2P. 

Note that by Lemma 4.2 there is an operator Co E L(x) commuting with U. 
which does not commute with P, + Q,. Hence, by the same lemma, B - 2 
is of rank 1. Therefore, (B - n)2 = tl( B - I) for a complex number a. If 
c( # 0, (B- ,I)/cx is a projection of rank 1, contradicting Proposition 3.3, 
applied for the operator G- ’ and the fact that U. = G-‘(B) is a nilpotent. 
In this way we see that (B - 3L)’ = 0 which completes the above com- 
putation 

- AP = P( B - 2)’ P = 0. 
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Thence A = 0 and B is a nilpotent of rank 1. Find some nilpotents U and V 
of rank 1 such that P= UV and Q = VU. Then, B is a linear combination 
of P, Q, U, and V. Since PBP = 0, we have B = aQ + fiU + y V. From B2 = 0 
we get as = ay = by = a2 = 0. Therefore, B = PU + y V, where either p or y is 
zero. Using the same arguments for C= F( VO) instead of B, we get C= 
aU + 6 V, where either a or 6 is zero. Since U,, and V, are linearly indepen- 
dent, so are B and C. Hence, if /? = 0, then 6 = 0, but if /3 # 0, then y = a = 0. 
Note that PO + Q0 + U, + V, is also a projection of rank 1. Then, P + Q + 
B + C- PZ is a projection of rank 1 for a complex number p. Note that 
necessarily p = 0 and after a short computation either /I = 6 = 0 and ay = 1, 
or a = y = 0 and /?S = 1. In the first case we can suppose with no loss of 
generality F(U,) = V and F( V,) = U, while in the second we can take 
F(U,)= U and F(VO)= V. 

Now recall the projection R0 from the beginning of the proof of the 
assertion (c). Note that for some complex numbers a, /I, y, 6, with ay + 
/3S = 1, we can write 

This implies that R = F(R,) is a projection of rank 1 in either of the two 
cases IJ( U,) = V, F( VO) = U or F( U,) = U, F( V,) = V. This completes the 
proof of the proposition. 

THEOREM 4.3. There exists either 

(a) a bijective, bounded, linear operator U: X --) X such that 

G(A) = UAW’ 

for every A E L(X); or 

(b) a bijective, bounded, linear operator U: x’ -+ X such that 

G(A) = UA’U-’ 

for every A E L(X). In this case the space X is reflexive. 

Proof: By the assertion (c) of Proposition 4.1 and by Proposition 2.6, 
either (a) or (b) of Theorem 4.3 holds for every A E B(X) of finite rank. 
Now, let R0 E L(X) be a projection of rank 1. Then, we have 

WWo&) = ‘WM G(A,) W,) (3) 

for every A, E L(X) of finite rank in either of the two cases. We shall prove 
that (3) holds for every operator AOg L(X). Detine P,, Q,, U,, V0 and P, 
Q, U, V as in the proof of Proposition 4.1. Recall that P = G(P,), 
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Q=G(Q,)andeither U=G(U& V=G(V,)or U=G(V,), V=G(UO). Fix 
&EL(X), introduce &=(I-P,-Q,) &(I--PO--Q,) and write B= 
G(B,). By the definition B, commutes with P,,, QO, U,, and I’, and for that 
reason B commutes with P, Q, U, and V. Apply the assertion (b) of 
Proposition 4.1 in the following computations 

UB=BU=BPU=PBPU=O, 

BV= VB= VPB= VPBP=O. 

which forces also PB= 0 and QB= 0. In this way we obtain RBR =0 for 
R = G(R,). Use the fact that A0 - B, is of finite rank and that (3) holds for 
all the operators of finite rank to see 

G(R,) G(A,) G(R,) = RAR= R(A -B) R 

=G(R,(A,-B,) R,)=G(R,A,R,). 

Consequently, (3) is valid for every A,, E L(X) and every projection R. of 
rank 1. 

Suppose that for the operators of finite rank the case (a) of the theorem 
holds and fix any Aoe L(X). Besides, take any z E X and any h E X’ with 
h(z)= 1. Set R,=z@h and use (3) to get 

(UR,W’)h(A,z)= URJ-‘G(A,) URoU-’ 

which implies 

h(A,z)=h(W’G(A,) Uz). (4) 

Note that (4) holds for every h E X’ with h(z) = 1 and so, it holds for every 
h E X’ by linearity. Thus, A,z = U-‘G(A,) Uz is valid for every z E X and 
the case (a) of the theorem is proved. 

Now, assume that the case (b) of the theorem holds for operators of 
finite rank. Then, for every z E X and h E X’ with h(z) = 1, we get from (3) 
after introducing R, = z @ h 

URbU -‘h(A,z)= URbU-‘G(A,) UR&U- ’ 

and therefore 

h(A,z) = h( U’G(A,)’ U’ ‘z). 

Using similar arguments we obtain -4, = U’G(A,)’ U’ - *. Consequently, 
case (b) of the theorem is proved. 

We can now obtain Theorem 1.1 as a simple corollary of Theorem 4.3. 
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Assume F as in Theorem 1.1 and define the functional p by (1) and the 
operator G by (2). Then, 

F(A)=gG(A)+p(A)Z 

and the proof is completed. 
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