

Topology and its Applications 89 (1998) 241-247

P-filters and hereditary Baire function spaces

Witold Marciszewski^{a,b,1}

^a Vrije Universiteit, Faculty of Mathematics and Computer Science, Amsterdam, The Netherlands ^b University of Warsaw, Institute of Mathematics, Banacha 2, 02–097 Warszawa, Poland

Received 21 March 1997; received in revised form 5 June 1997

Abstract

We extend the results of Gul'ko and Sokolov proving that a filter F on ω , regarded as a subspace of the Cantor set 2^{ω} , is a hereditary Baire space if and only if F is a nonmeager (i.e., second category) P-filter. We also prove related results on hereditary Baire spaces of continuous functions $C_p(X)$. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: P-filter; Nonmeager filter; Hereditary Baire space; Function space; $C_p(X)$

AMS classification: 54C35; 54E52; 04A20

1. Introduction

All spaces are completely regular.

Given a filter F on an infinite countable set T, we regard F as a subspace of the topological copy 2^T of the Cantor set. We consider only free filters on T, i.e., filters containing all cofinite subsets of T. By N_F we denote the space $T \cup \{\infty\}$, where $\infty \notin T$, equipped with the following topology: All points of T are isolated and the family $\{A \cup \{\infty\}: A \in F\}$ is a neighborhood base at ∞ .

A filter F is a P-filter if for every sequence (U_n) of sets from F there exists an $A \in F$ which is almost contained in every U_n , i.e., $A \setminus U_n$ is finite. P-ultrafilters are also called P-points.

Recall that a space X is a Baire space if the Baire Category Theorem holds for X, i.e., every sequence (U_n) of dense open subsets of X has a dense intersection in X. If every closed subset of X is a Baire space then we call X a hereditary Baire space. A well-known result of Hurewicz (see [6, p. 97]) says that for a separable metrizable

¹ E-mail: wmarcisz@mimuw.edu.pl.

X this property is equivalent to the fact that X does not contain a closed copy of the rationals \mathbb{Q} .

For a space X, $C_p(X)$ denotes the space of all continuous real valued functions on X with the pointwise convergence topology.

The space σ is a subspace of \mathbb{R}^{ω} consisting of all eventually zero sequences. For the notions from infinite-dimensional topology that we are using, we refer the reader to [11].

Gul'ko and Sokolov proved in [5] the following theorem:

Theorem 1.1 (Gul'ko, Sokolov). Let F be an ultrafilter on ω . The following are equivalent:

- (i) F is a P-point,
- (ii) $C_p(N_F)$ does not contain a closed copy of the rationals \mathbb{Q} (equivalently $C_p(N_F)$ is a hereditary Baire space),
- (iii) $C_p(N_F)$ does not contain a closed copy of the space σ .

In this note we generalize this result:

Theorem 1.2. Let F be a filter on ω . The following are equivalent:

- (i) F is a nonmeager P-filter,
- (ii) F is a hereditary Baire space,
- (iii) $C_p(N_F)$ is a hereditary Baire space,
- (iv) $C_p(N_F)$ does not contain a closed copy of the space σ^{ω} (a copy of σ).

The proof of the result of Gul'ko and Sokolov uses topological games, in particular, Debs' characterization of hereditary Baire spaces in terms of games [3]. Our proof is based on a more direct approach. Let us also note that after this paper has been completed Michalewski [9] and Sokolov showed that characterizations of P-points in terms of games given in [5] can also be extended for the case of nonmeager P-filters.

It is well known (see [10]) that the continuum hypothesis implies the existence of P-points and in some models of set theory P-points do not exist. But the following question seems to be open (see [1, p. 230]):

Question 1.3. Can the existence of nonmeager P-filters on ω be proved in ZFC?

We prove Theorem 1.2 in Section 2. The last section contains some additional results concerning hereditary Baire function spaces $C_p(X)$.

2. Proof of Theorem 1.2

The following lemma is a modification of Lemma 2.1 from [8].

Lemma 2.1. Let F be a filter on ω which is not a P-filter. Then F contains a closed copy of the rationals \mathbb{Q} and $C_p(N_F)$ contains a closed copy of σ^{ω} (hence also a closed copy of σ).

242

Proof. Since F is not a P-filter we can find a partition of ω into disjoint infinite subsets A_k , $k \in \omega$, with the following properties:

(a) $(\forall i \in \omega) [U_i = \bigcup_{k \ge i} A_k \in F],$

(b) $(\forall A \in F)(\exists i \in \omega) [A \setminus U_i \text{ is infinite}].$

The condition (b) is obviously equivalent to

(b') $(\forall A \in F)(\exists k \in \omega) [A \cap A_k \text{ is infinite}].$

To simplify the notation we may assume that F is a filter on $\omega \times \omega$ and $A_k = \{(k, n): n \in \omega\}$. Let Q be the family of all sets $A \in F$ satisfying the following conditions:

(i) $(\forall k, n, i \in \omega)$ $[((k, n) \in A \text{ and } i \leq n) \Rightarrow ((k, i) \in A)],$

(ii) $(\forall k, n, i \in \omega) [((k, n) \in A \text{ and } k \leq i) \Rightarrow ((i, n) \in A)].$

The set Q is a closed subset of F. Conditions (i), (ii) and (b') imply that every $A \in Q$ contains some U_i . From this and (i) it follows that Q is countable. One can easily verify that Q is dense-in-itself. Therefore Q is a topological copy of the rationals, closed in F.

By Lemma 2.1 from [8], $C_p(N_F)$ contains a closed nonempty subset R which is an absolute retract and a Z_{σ} -space. From [2, Lemma 4.1] it follows that the product $(C_p(N_F))^{\omega}$ can be embedded as a closed subset of $C_p(N_F)$. Therefore $C_p(N_F)$ contains a closed copy of R^{ω} . Lemma 5.3 from [15] shows that R^{ω} contains a closed copy of σ^{ω} . \Box

Lemma 2.2. Let F be a P-filter on ω . If F contains a closed copy Q of the rationals, then F is meager.

Proof. Enumerate the subspace $Q \subseteq F$ as $\{A_n: n \in \omega\}$. Since F is a P-filter we can find $A \in F$ which is almost contained in every A_n . This means that, for every $n \in \omega$, the set $B_n = A \setminus A_n$ is finite. Let $P = \{B_n: n \in \omega\}$ considered as a subspace of the Cantor set 2^A . We will show that the space P is dense-in-itself.

Suppose that for some $n_0 \in \omega$, the point B_{n_0} is isolated in P. Then there is a finite subset S of A such that $\{B_k \in P: B_k \cap S = B_{n_0} \cap S\} = \{B_{n_0}\}$. Let $C = (A_{n_0} \cap A) \in F$. The set $U = \{A_k: A_k \cap S = A_{n_0} \cap S\}$ is a nonempty clopen subset of Q, therefore it is also a copy of the rationals \mathbb{Q} closed in F. One can easily verify that for every $A_k \in U$ we have $C \subseteq A_k$. Hence every set X in the closure W of U in 2^{ω} contains C. It follows that $W \subseteq F$. Obviously, W being a closed dense-in-itself subset of 2^{ω} is uncountable. Therefore we have $W \setminus U \neq \emptyset$ which contradicts the fact that U is closed in F.

The fact that P is dense-in-itself and consists of finite sets implies the following property (\star) of P:

For every $B \in P$ there is a sequence (B_k) , $B_k \in P$ such that

- (a) $(\forall k) [B \subseteq B_k],$
- (b) $(\forall k) [B_k \setminus B \neq \emptyset],$
- (c) $(\forall k, l, k \neq l) [(B_k \setminus B) \cap (B_l \setminus B) = \emptyset].$

To obtain such (B_k) it is enough to choose an appropriate subsequence from any sequence in $P \setminus \{B\}$ converging to B.

Let ω^n denote the set of all sequences of nonnegative integers of length n. For $s = (i_0, i_1, \ldots, i_{n-1}) \in \omega^n$, $k \leq n$ and $j \in \omega$, we denote the restriction $(i_0, i_1, \ldots, i_{k-1}) \in \omega^n$

 ω^k by s|k, and s^j is the sequence $(i_0, i_1, \ldots, i_{n-1}, j) \in \omega^{n+1}$. Let $\omega^{<\omega} = \bigcup \{\omega^n : n \in \omega\}$ and let $\{s_n : n \in \omega\}$ be an enumeration of $\omega^{<\omega}$ with the following property: If s_m is a restriction of s_n then $m \leq n$. Using the property (\star) of P one can inductively construct a family of nonempty finite subsets C_s of A, indexed by $s \in \omega^{<\omega}$, and satisfying the following conditions (for the inductive construction one should use the above enumeration of $\omega^{<\omega}$):

(1)
$$(\forall s, t \in \omega^{<\omega}, s \neq t) [C_s \cap C_t = \emptyset],$$

(2) $(\forall n)(\forall s \in \omega^n) [D_s = \bigcup \{C_{s|k}: k \leq n\} \in P].$
Fix $x \in \omega^{\omega}$. Let
 $D_x = \bigcup \{D_{x|n}: n \in \omega\} = \bigcup \{C_{x|n}: n \in \omega\}.$

For every $n \in \omega$ we take $k(n) \in \omega$ such that $B_{k(n)} = D_{x|n}$. Let E be an accumulation point of the sequence $(A_{k(n)})$ in 2^{ω} . Since $A_{k(n)} \cap A = A \setminus D_{x|n}$ we have $E \cap A = A \setminus D_x$. The set D_x is infinite, therefore A cannot be almost contained in E, so $E \notin Q$. Since Qis closed in F we have that $E \notin F$. Hence the set $A \setminus D_x \subseteq E$ also does not belong to F. This means that, for every $X \in F$, there is $n \in \omega$ such that $X \cap C_{x|n} \neq \emptyset$. It follows that, for every $X \in F$, there exists $s \in \omega^{<\omega}$ such that $X \cap C_{s \cap n} \neq \emptyset$ for every $n \in \omega$. Otherwise, we could easily construct by induction $x \in \omega^{\omega}$ contradicting the previous statement. Therefore F is a subspace of

$$H = \bigcup_{s \in \omega^{<\omega}} \{ X \subseteq \omega \colon X \cap C_{s \frown n} \neq \emptyset \text{ for every } n \in \omega \}.$$

One can easily check that, for a fixed $s \in \omega^{<\omega}$ the set $\{X \subseteq \omega : X \cap C_{s \cap n} \neq \emptyset$ for every $n \in \omega\}$ is closed and nowhere dense in 2^{ω} . Hence H and F are meager. \Box

If (F_n) is a sequence of filters on ω then we can consider the product $\prod_{n \in \omega} F_n$ as a filter on $\omega \times \omega$. To do this, we identify

$$(A_n) \in \prod_{n \in \omega} F_n$$
 with $\bigcup \{A_n \times \{n\}: n \in \omega\} \subseteq \omega \times \omega.$

We need the following standard fact (cf. [1, p. 228]):

Lemma 2.3. Let (F_n) be a sequence of *P*-filters on ω . Then $\prod_{n \in \omega} F_n$ is a *P*-filter on $\omega \times \omega$.

Proof. Let (A^k) be a sequence of elements of $\prod_{n \in \omega} F_n$. For $k \in \omega$, let $A^k = (A_n^k)$, where $A_n^k \in F_n$. Fix $n \in \omega$ and choose $A_n \in F_n$ which is almost contained in A_n^k , for every k. Put $B_n = A_n \cap \bigcap \{A_n^k : k \leq n\} \in F_n$. One can easily verify that $B = (B_n)$ is almost contained in every A^k . \Box

Corollary 2.4. Let (F_n) be a sequence of nonmeager *P*-filters on ω . Then $\prod_{n \in \omega} F_n$ is a hereditary Baire space.

Proof. Since F_n is nonmeager it is a Baire space. Then $\prod_{n \in \omega} F_n$ is also a Baire space (see [12]), so it is of the second category. From Lemma 2.3 it follows that $\prod_{n \in \omega} F_n$

is a *P*-filter. Lemma 2.2 implies that $\prod_{n \in \omega} F_n$ does not contain a closed copy of the rationals, hence it is a hereditary Baire space. \Box

Corollary 2.5. Let F be a filter on ω . If F is a nonmeager P-filter, then $C_p(N_F)$ is a hereditary Baire space.

Proof. This follows easily from the previous corollary and the fact that every closed zero-dimensional subspace of $C_p(N_F)$ can be embedded as a closed subset in F^{ω} , see [7, Lemma 4.1]. \Box

Proof of Theorem 1.2. The implication (i) \Rightarrow (ii) follows from Lemma 2.2. Lemma 2.1 implies (ii) \Rightarrow (i). The implication (i) \Rightarrow (iii) is given by Corollary 2.5. The implication (iii) \Rightarrow (iv) is trivial. The remaining implication (iv) \Rightarrow (i) follows from Lemma 2.1 and Lemma 5.15 from [4] saying that, for a meager filter F on ω the space $C_p(N_F)$ contains a closed copy of σ^{ω} . \Box

3. Remarks on hereditary Baire spaces $C_p(X)$

Baire function spaces $C_p(X)$ can be characterized in terms of topological properties of the space X. Such characterizations were obtain by Pytkeev [13], Tkachuk [14] and van Douwen (unpublished). It is natural to ask if there exits a similar characterization of hereditary Baire spaces $C_p(X)$ (see [5]). Theorem 1.2 and the results of this section give only a partial solution of this problem for the case of a countable X.

Proposition 3.1. If there exist a hereditary Baire space $C_p(X)$, for a countable nondiscrete space X, then there exists a nonmeager P-filter on ω .

Proof. Let x be an accumulation point of X. Obviously, the space X is zero-dimensional. Therefore we can find a decreasing sequence (U_n) of clopen neighborhoods of x, such that $\bigcap \{U_n: n \in \omega\} = \{x\}$. We may also assume that $U_n \setminus U_{n+1} \neq \emptyset$, for every $n \in \omega$. Pick an $x_n \in U_n \setminus U_{n+1}$, for $n \in \omega$. Let $T = \{x_n: n \in \omega\}$. Consider the closed subspace E of $C_p(X)$ consisting of all 0, 1-valued functions which are constant on every set $U_n \setminus U_{n+1}$, and which take the value 1 at x. Then E is a hereditary Baire space. The space E can be identified with the filter $F = \{T \cap f^{-1}(1): f \in E\}$. From Theorem 1.2 it follows that F is a nonmeager P-filter. \Box

Lemma 3.2. Let (F_n) be a sequence of nonmeager *P*-filters on ω . Then the product $\prod_{n \in \omega} C_p(N_{F_n})$ is a hereditary Baire space.

Proof. First, recall that for every filter F the space $C_p(N_F)$ is homeomorphic with the space $c_F = \{f \in C_p(N_F): f(\infty) = 0\}$, see [7, Lemma 2.1]. Hence the space $\prod_{n \in \omega} C_p(N_{F_n})$ is homeomorphic with the product $\prod_{n \in \omega} c_{F_n}$. Let $F = \prod_{n \in \omega} F_n$. By Corollary 2.4, F is a hereditary Baire space. Therefore $C_p(N_F)$ and c_F are also hereditary Baire spaces. One can easily verify that c_F is homeomorphic with $\prod_{n \in \omega} c_{F_n}$. \Box Let X be a countable space and let x be an accumulation point of X. On $Y = X \setminus \{x\}$ we can define the following filter $F_x = \{A \subseteq Y : x \text{ is an interior point of } A \cup \{x\}\}.$

Proposition 3.3. Let X be a countable space such that, for every accumulation point $x \in X$, the filter F_x is a nonmeager P-filter. Then the space $C_p(X)$ is a hereditary Baire space.

Proof. If X is discrete then $C_p(X) = \mathbb{R}^X$ is a completely metrizable space, hence a hereditary Baire space. Therefore we can assume that X is not discrete. Let x be an accumulation point of X. Consider $Z_x = \{x\} \times X$ with the following topology: for every $y \in X$, $x \neq y$ the point (x, y) is isolated in Z_x and the neighborhoods of the point (x, x) have the form $\{x\} \times U$, where U is a neighborhood of x in X. One can easily verify that Z_x is homeomorphic to N_{F_x} . Let Z be a discrete union of Z_x , for all accumulation points $x \in X$. It is obvious that the map $p: Z \to X$ defined by p(x, y) = y, for every $(x, y) \in Z$, is quotient. Therefore $C_p(X)$ is homeomorphic to the closed subset of $C_p(Z)$ consisting of functions which are constant on fibers of q. It remains to observe that the space $C_p(Z)$ is a hereditary Baire space. This follows easily from Lemma 3.2 and the fact that $C_p(Z)$ is homeomorphic with the product of the spaces $C_p(Z_x)$. \Box

We refer the reader to the paper [8, Section 3] for some other results concerning hereditary Baire spaces $C_p(X)$.

References

- T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line (A.K. Peters Ltd., Wellesley, MA, 1995).
- [2] R. Cauty, T. Dobrowolski and W. Marciszewski, A contribution to the topological classification of the spaces $C_p(X)$, Fund. Math. 142 (1993) 269–301.
- [3] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988) 199-206.
- [4] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, Fund. Math. 148 (1995) 35-62.
- [5] S.P. Gul'ko and G.A. Sokolov, *P*-points in N^* and the spaces of continuous functions, Preprint.
- [6] W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen (A), Fund. Math. 12 (1928) 78–109.
- [7] W. Marciszewski, On analytic and coanalytic function spaces $C_p(X)$, Topology Appl. 50 (1993) 241–248.
- [8] W. Marciszewski and J. van Mill, An example of t_p^* -equivalent spaces which are not t_p -equivalent, Proc. Eighth Prague Topol. Symp. (1996).
- [9] H. Michalewski, Game-theoretic approach to the hereditary Baire property of $C_p(N_F)$, Preprint.
- [10] J. van Mill, An introduction to $\beta \omega$, in: Handbook of Set-Theoretic Topology (North-Holland, 1984) 503–567.
- [11] J. van Mill, Infinite-Dimensional Topology. Prerequisites and Introduction (North-Holland, Amsterdam, 1989).
- [12] J. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1961) 157-166.

- [13] E.G. Pytkeev, The Baire property of spaces of continuous functions, Mat. Zametki 38 (1985) 726–740 (in Russian).
- [14] V.V. Tkachuk, Characterization of Baire property in $C_p(X)$ by the properties of a space X, in: The Mappings and the Extensions of Topological Spaces (Ustinov, 1985) 21–27 (in Russian).
- [15] T. Dobrowolski, W. Marciszewski and J. Mogilski, Topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991) 307–324.