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Abstract 

We extend the results of Gul’ko and Sokolov proving that a filter F on w, regarded as a subspace 
of the Cantor set 2”, is a hereditary Baire space if and only if F is a nomneager (i.e., second 
category) P-filter. We also prove related results on hereditary Baire spaces of continuous functions 
C,(X). 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

All spaces are completely regular. 

Given a filter F on an infinite countable set T, we regard F as a subspace of the 

topological copy 2T of the Cantor set. We consider only free filters on T, i.e., filters 

containing all cofinite subsets of T. By NF we denote the space T U {cm}, where 

03 $! T, equipped with the following topology: All points of T are isolated and the 

family {A U {co}: A E F} is a neighborhood base at co. 

A filter F is a P-filter if for every sequence (Un) of sets from F there exists an A E F 

which is almost contained in every U,,, i.e., A \ U, is finite. P-ultrafilters are also called 

P-points. 

Recall that a space X is a Baire space if the Baire Category Theorem holds for X, 

i.e., every sequence (Un) of dense open subsets of X has a dense intersection in X. 

If every closed subset of X is a Baire space then we call X a hereditary Baire space. 

A well-known result of Hurewicz (see 16, p. 971) says that for a separable metrizable 
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X this property is equivalent to the fact that X does not contain a closed copy of the 

rationals Q. 

For a space X, C,(X) denotes the space of all continuous real valued functions on 

X with the pointwise convergence topology. 

The space c is a subspace of JR” consisting of all eventually zero sequences. For the 

notions from infinite-dimensional topology that we are using, we refer the reader to [ 111. 

Gul’ko and Sokolov proved in [5] the following theorem: 

Theorem 1.1 (Gul’ko, Sokolov). Let F be an ultraJilter on w. The following are equiv- 

alent: 

(i) F is a P-point, 

(ii) C,(NF) does not contain a closed copy of the rationals Q (equivalently Cp(N~) 

is a hereditary Baire space), 

(iii) Cp(Np) does not contain a closed copy of the space o. 

In this note we generalize this result: 

Theorem 1.2. Let F be a jilter on w. The following are equivalent: 

(i) F is a nonmeager P-jilter: 

(ii) F is a hereditary Baire space, 

(iii) C,(NF) is a hereditary Baire space, 

(iv) C&(NF) does not contain a closed copy of the space uw (a copy of a). 

The proof of the result of Gul’ko and Sokolov uses topological games, in particular, 

Debs’ characterization of hereditary Baire spaces in terms of games [3]. Our proof is 

based on a more direct approach. Let us also note that after this paper has been completed 

Michaiewski [9] and Sokolov showed that characterizations of P-points in terms of games 

given in [5] can also be extended for the case of nonmeager P-filters. 

It is well known (see [lo]) that the continuum hypothesis implies the existence of 

P-points and in some models of set theory P-points do not exist. But the following 

question seems to be open (see [l, p. 2301): 

Question 1.3. Can the existence of nonmeager P-filters on w be proved in ZFC? 

We prove Theorem I.2 in Section 2. The last section contains some additional results 

concerning hereditary Baire function spaces C,(X). 

2. Proof of Theorem 1.2 

The following lemma is a modification of Lemma 2.1 from [8]. 

Lemma 2.1. Let F be a jilter on w which is not a P-jilter: Then F contains a closed 

copy of the rationals Q and C,(N F ) contains a closed copy of 8’ (hence also a closed 

COPY of o). 
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Proof. Since F is not a P-filter we can find a partition of w into disjoint infinite subsets 

Akr k E w, with the following properties: 

(a) (Vi E w) [& = l__& Al, E Fl, 
(b) (VA E F) (3 E w) [A \ U, is infinite]. 

The condition (b) is obviously equivalent to 

(b’) (VA E F)(3k E LJ) [A n AI; is infinite]. 

To simplify the notation we may assume that F is a filter on w x w and Ak = {(k, n): n E 

w}. Let Q be the family of all sets A E F satisfying the following conditions: 

(i) (Vk.n,i E w) [((k,n) E A and i < n) + ((k-i) E A)], 

(ii) (Vk,rs:i E ti) [((k,n) E A and k < i) + ((i, n) E A)]. 

The set Q is a closed subset of F. Conditions (i), (ii) and (b’) imply that every A E Q 

contains some T/i. From this and (i) it follows that Q is countable. One can easily verify 

that Q is dense-in-itself. Therefore Q is a topological copy of the rationals, closed in F. 

By Lemma 2.1 from [8], CP(N~) contains a closed nonempty subset R which is 

an absolute retract and a Z,-space. From [2, Lemma 4.11 it follows that the product 

(C, ( NF))~ can be embedded as a closed subset of C, ( NF). Therefore Cr,( NF) contains 

a closed copy of RW. Lemma 5.3 from [15] shows that R” contains a closed copy 

of &. 0 

Lemma 2.2. Let F be a P-jilter on w. If F contains a closed copy Q of the rationals, 

then F is meager: 

Proof. Enumerate the subspace Q C F as {A,: n E w}. Since F is a P-filter we can 

find A E F which is almost contained in every A,. This means that, for every n E w, 

the set B, = A \ A, is finite. Let P = {B,: n E w} considered as a subspace of the 

Cantor set 2A. We will show that the space P is dense-in-itself. 

Suppose that for some no E w, the point B,, is isolated in P. Then there is a finite 

subset S of A such that {Bk E P: &fCT’ = B,,nS} = {B,,,}. Let C = (A,,,nA) E F. 

ThesetU={AI;: A,nS=A,,rlS}’ 1s a nonempty clopen subset of Q, therefore it is 

also a copy of the rationals Q closed in F. One can easily verify that for every Ak E U 

we have C C Ak. Hence every set X in the closure W of U in 2w contains C. It follows 

that W C F. Obviously, W being a closed dense-in-itself subset of 2” is uncountable. 

Therefore we have W \ U # 0 which contradicts the fact that U is closed in F. 

The fact that P is dense-in-itself and consists of finite sets implies the following 

property (*) of P: 

For every B E P there is a sequence (Bk), Bk E P such that 

(a) (Vk) [B C_ Kkl, 

(b) (tJk) [Bk \ B # 01, 

(c) (Vk, 2. k # 1) [(Bk \ B) n (6 \ B) = 01. 
To obtain such (Bk) it is enough to choose an appropriate subsequence from any 

sequence in P \ {B} converging to B. 

Let wn denote the set of all sequences of nonnegative integers of length n. For s = 

(iO>i,,... ~ in,_ ,) E wn, k < n and j E w, we denote the restriction (io,it, . . ,ik_,) E 
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wlc by sllc, and s-j is the sequence (ia, ii,. . , &_l,j) E ~3~‘. Let wcw = U{w”: n E 

w} and let {s,: n E ti} be an enumeration of wcw with the following property: If sm is 

a restriction of s.~ then m < n. Using the property (*) of P one can inductively construct 

a family of nonempty finite subsets C, of A, indexed by s E wcw, and satisfying the 

following conditions (for the inductive construction one should use the above enumeration 

of w<W): 

(1) (Vs,t E w-, s # t) [Cs n Ct = 01, 
(2) (Vn)(Vs E wn) [Da = U{Cslk: k < n} E P]. 

Fix x E ww. Let 

D, = U{D,,& n E w} = U{C.& 72 E w}. 

For every n E w we take k(n) E w such that Bkcn) = D,ln. Let E be an accumulation 

point of the sequence (Akcn)) in 2w. Since A+)nA = A\D+ we have EnA = A\D,. 

The set D, is infinite, therefore A cannot be almost contained in E, so E $ Q. Since Q 

is closed in F we have that E # F. Hence the set A\D, C E also does not belong to F. 

This means that, for every X E F, there is n E w such that X n C,l, # 0. It follows 

that, for every X E F, there exists s E wcw such that X n C,, # 0 for every n E w. 

Otherwise, we could easily construct by induction 5 E ww contradicting the previous 

statement. Therefore F is a subspace of 

H= U {XCw: XnC,-,#(Dforevet-ynEw}. 

SEW<W 

One can easily check that, for a fixed s E w<“’ the set {X g w: XnC,-., # 0 for every 

n E w} is closed and nowhere dense in 2w. Hence H and F are meager. 0 

If (Fn) is a sequence of filters on w then we can consider the product nnEw F, as a 

filter on w x w. To do this, we identify 

(A,) E n F, with U{& x {n}: n E w} C w x w. 
nEw 

We need the following standard fact (cf. [ 1, p. 2281): 

Lemma 2.3. Let (F,) be a sequence of P-jilters on w. Then nnEw F, is a P-jilter on 

w x w. 

Proof. Let (A”) be a sequence of elements of nnEw F,. For k E w, let A” = (A;), 

where Ai E F,. Fix n E w and choose A, E F, which is almost contained in A;, for 

every Ic. Put B, = A, n r){Ak: k < n} E F,. One can easily verify that B = (B,) is 

almost contained in every A”. 0 

Corollary 2.4. Let (F,) be a sequence of nonmeager P-jilters on w. Then nnEw F, is 

a hereditary Baire space. 

Proof. Since F, is nonmeager it is a Baire space. Then nnEW F, is also a Baire space 

(see [12]), so it is of the second category. From Lemma 2.3 it follows that flnEw F, 
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is a P-filter. Lemma 2.2 implies that flnEw F, does not contain a closed copy of the 

rationals, hence it is a hereditary Baire space. 0 

Corollary 2.5. Let F be a jilter on w. lf F is a nonmeager P-jilter, then C,(Np) is a 

hereditary Baire space. 

Proof. This follows easily from the previous corollary and the fact that every closed 

zero-dimensional subspace of C,(N F can be embedded as a closed subset in FW, see ) 

[7, Lemma 4.11. Cl 

Proof of Theorem 1.2. The implication (i) + (ii) follows from Lemma 2.2. Lemma 2.1 

implies (ii) + (i). The implication (i) + (iii) is given by Corollary 2.5. The implication 

(iii) + (iv) is trivial. The remaining implication (iv) + (i) follows from Lemma 2.1 and 

Lemma 5.15 from [4] saying that, for a meager filter F on w the space C,( NF) contains 

a closed copy of 0”‘. 0 

3. Remarks on hereditary Baire spaces C,(X) 

Baire function spaces C,(X) can be characterized in terms of topological properties 

of the space X. Such characterizations were obtain by Pytkeev [13], Tkachuk [14] and 

van Douwen (unpublished). It is natural to ask if there exits a similar characterization 

of hereditary Baire spaces C,(X) (see [5]). Theorem 1.2 and the results of this section 

give only a partial solution of this problem for the case of a countable X. 

Proposition 3.1. If there exist a hereditary Baire space C,(X), for a countable nondis- 

Crete space X, then there exists a nonmeager P-filter on w. 

Proof. Let z be an accumulation point of X. Obviously, the space X is zero-dimensional. 

Therefore we can find a decreasing sequence (Un) of clopen neighborhoods of 2, such 

that n{ lJn: 72 E w} = {z}. We may also assume that U, \ Un+i # 8, for every n E w. 

Pick an x, E U, \ Un+l, for n E w. Let T = { 2,: 72 E w}. Consider the closed 

subspace E of C,(X) consisting of all 0, l-valued functions which are constant on every 

set U, \ Un+l, and which take the value 1 at x. Then E is a hereditary Baire space. The 

space E can be identified with the filter F = {T n f-l (1): f E E}. From Theorem 1.2 

it follows that F is a nonmeager P-filter. 0 

Lemma 3.2. Let (F,) be a sequence of nonmeager P-jilters on w. Then the product 

nnEw C,( NF, ) is a hereditary Baire space. 

Proof. First, recall that for every filter F the space Cp(N~) is homeomorphic with 

the space CF = {f E &(N,v): f(cc) = 0}, see [7, Lemma 2.11. Hence the space 

nnEw (&(NF,) is homeomorphic with the product nnEw cF,. Let F = nnEw F,. By 

Corollary 2.4, F is a hereditary Baire space. Therefore Cp(NF) and cF are also hereditary 

Baire spaces. One can easily verify that CF is homeomorphic with nnEw cF,. 0 
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Let X be a countable space and let x be an accumulation point of X. On Y = X \ {z} 
we can define the following filter F, = {A & Y: 2 is an interior point of A U {x}}. 

Proposition 3.3. Let X be a countable space such that, for every accumulation point 

x E X, thejlter F, is a nonmeager P-jilter: Then the space C,(X) is a hereditary Baire 

space. 

Proof. If X is discrete then Cp(X) = Rx is a completely metrizable space, hence a 
hereditary Baire space. Therefore we can assume that X is not discrete. Let z be an 
accumulation point of X. Consider 2, = {x} x X with the following topology: for 
every y E X, z # y the point (2, y) is isolated in 2, and the neighborhoods of the 
point (x,x) have the form {x} x U, where U is a neighborhood of x in X. One can 
easily verify that 2, is homeomorphic to NF,. Let 2 be a discrete union of Z,, for all 
accumulation points z E X. It is obvious that the map p : 2 -+ X defined by p(x, y) = y, 
for every (z, y) E 2, is quotient. Therefore C,(X) is homeomorphic to the closed subset 
of C,(Z) consisting of functions which are constant on fibers of 4. It remains to observe 
that the space C,(Z) is a hereditary Baire space. This follows easily from Lemma 3.2 
and the fact that C,(Z) is homeomorphic with the product of the spaces Cp(ZZ). 0 

We refer the reader to the paper [8, Section 31 for some other results concerning 

hereditary Baire spaces C, (X). 
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