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Abstract We previously showed that the zinc finger-containing
transcription factor Krüppel-like factor 5 (KLF5) is important in
mediating transformation by oncogenic H-Ras through induction
of cyclin D1 expression and acceleration of the G1/S transition of
the cell cycle. Here we present evidence of a role for KLF5 in
accelerating mitotic entry in H-Ras-transformed NIH3T3 fibro-
blasts. When compared with non-transformed parental NIH3T3
cells, H-Ras-transformed fibroblasts exhibit an increase in mito-
tic index, levels of cyclin B1 and Cdc2, and cyclin B1/Cdc2
kinase activity. Inhibition of KLF5 expression in H-Ras-trans-
formed cells with KLF5-specific small interfering RNA (siRNA)
results in a decrease in each of the aforementioned parameters,
with a concomitant reduction in the transforming potential of
the cells. Conversely, over-expression of KLF5 in NIH3T3 cells
leads to an increase in the promoter activity of the genes encod-
ing cyclin B1 and Cdc2. These results indicate that KLF5
accelerates mitotic entry in H-Ras-transformed cells by trans-
criptionally activating cyclin B1 and Cdc2, which leads to an
increase in cyclin B1/Cdc2 kinase activity. Extending our previ-
ous observation that KLF5 activates cyclin D1 transcription to
promote G1/S transition, our current results further support a
crucial function for KLF5 in mediating cellular transformation
caused by oncogenic H-Ras.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Krüppel-like factors (KLFs) are Sp1-like transcription fac-

tors that bear significant homology to the Drosophila melano-

gaster segmentation gene, Krüppel [1–5]. Proteins of this

family contain a DNA binding domain consisting of C2H2 zinc
Abbreviations: DMEM, Dulbecco�s modified Eagle�s medium; FACS,
fluorescence-activated cell sorting; FBS, fetal bovine serum; KLF5,
Krüppel-like factor 5; MAPK, mitogen-activated protein kinase;
MPM2, mitotic phosphoepitope marker 2; PBS, phosphate-buffered
saline; PI, propidium iodide; siRNA, small interfering RNA
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fingers and exhibit important regulatory functions [2–5]. Two

related, yet functionally contrasting, members of the KLF

family, KLF4 and KLF5, are differentially expressed in the

intestinal epithelium [3,6]. While KLF4 is predominantly ex-

pressed in the post-mitotic, terminally differentiated epithelial

cells of the intestinal villi [7,8], KLF5 is mostly expressed in

the undifferentiated, proliferating cells of the crypt compart-

ment [9]. Studies support a role for KLF4 in functioning as

a tumor suppressor of the intestinal epithelial cells [10,11]. In

contrast, KLF5 has been shown to accelerate cell proliferation

in both cultured fibroblasts and intestinal epithelial cells

[12–14].

Ras proteins are a family of small GTPases often found to

be constitutively activated in tumors. For example, activating

K-Ras mutations are found in approximately 90% of pancre-

atic and 50% of colon carcinomas [15,16]. Oncogenic Ras iso-

forms cause the constitutive activation of a signaling cascade

involving several proteins including Raf and the mitogen-

activated protein kinase (MAPK) [17–19]. Expression of these

Ras isoforms can lead to a transformed phenotype in various

cell lines, including fibroblasts [12,20] and epithelial cells [21].

Previous experiments demonstrate that constitutive activation

of the Ras pathway accelerates the G1/S transition of cell cycle

through induction of cyclin D1 expression [13,22,23]. Conse-

quently, oncogenic Ras-mediated transformation leads to ser-

um- and anchorage-independent growth and increased

metastatic potential [12,24,25]. A recent study reveals that

oncogenic Ras also accelerates the G2/M progression of the

cell cycle by increasing the level of cyclin B1 protein [26]. Of

note is the G2/M progression is rigorously controlled by the

activity of the cyclin B1/Cdc2 kinase complex [27,28].

We recently showed that the level of KLF5 is increased in

NIH3T3 fibroblasts transformed by oncogenic H-Ras [13].

This increase is the result of H-Ras-induced activation of

MAPK and subsequent induction of the gene encoding early

growth response 1 (Egr1), which transcriptionally activates

KLF5 [13]. Activated KLF5 then leads to the transcriptional

induction of the gene encoding cyclin D1 [13]. Importantly,

inhibition of KLF5 expression is accompanied by a reduction

in the transforming potential of the cells, including a reduced

capacity for anchorage-independent growth [13]. Here we

present evidence for an equally important role of KLF5 in

accelerating mitotic entry of H-Ras-transformed NIH3T3

fibroblasts through activation of the cyclin B1/Cdc2 kinase

complex.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. KLF5 increases mitotic activity in oncogenic H-Ras-trans-
formed NIH3T3 cells. (A) NIH3T3 cells, untransfected Ras7 cells, and
Ras 7 cells transfected with non-specific (NS) control siRNA or KLF5-
specific siRNA from day 1 to day 3 were stained with the Hoechst
33258 dye to label those cells in mitosis. The mitotic index is the percent
of cells in mitosis among a total of 500 cells counted. N = 4; **P < 0.01
by two-tailed Student�s t test. (B) Cells were immuno-stained with a
phospho-histone H3 antibody to label mitotic cells. Hoechst dye was
used to stain nuclei. Mitotic index is represented as percent of phospho-
histone H3-positive cells among a total of 1000 cells counted. N = 3;
*P < 0.05; **P < 0.01 by two-tailed Student�s t test.
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2. Materials and methods

2.1. Cell lines and reagents
Culture media and fetal bovine serum (FBS) were purchased from

Mediatech, Inc. (Herndon, VA). The expression construct containing
the oncogenic H-Ras was generously provided by Dr. Raul Urrutia
[29]. The monoclonal antibody against Cdc2 and Actin were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA) and EMD Biosci-
ences (San Diego, CA), respectively. A polyclonal antibody against cy-
clin B1 was acquired from Rockland Immunochemicals (Gilbertsville,
PA). Antibodies against phospho-histone H1 and histone H1 were ob-
tained from EMD Biosciences (San Diego, CA) and Upstate USA
(Charlottesville, VA), respectively. The mouse monoclonal antibody
directed against phospho-Ser/Thr-Pro MPM2 (mitotic phosphoepitope
marker-2) was purchased from Upstate USA. FITC-conjugated anti-
mouse IgG (Fc-specific) secondary antibodies were purchased from
Sigma (St. Louis, MO). The antibody against phosphorylated histone
H3 (Serine-10) was purchased as part of Mitotic Index Hitkit from Cel-
lomics, Inc (Pittsburgh, PA). The �287 cyclin B1 promoter luciferase
reporter was generously provided by Dr. Karen Katula [30,31]. The
luciferase construct with Cdc2 promoter was generously provided by
Dr. Christopher Glass [32].

2.2. Cell lines
NIH3T3 mouse fibroblasts were maintained in Dulbecco�s modified

Eagle�s medium (DMEM) supplemented with 10% FBS and 1% peni-
cillin–streptomycin at 37 �C in a 5% CO2 atmosphere. Stable clones of
NIH3T3 transformed by oncogenic H-Ras were selected from foci
formed in soft agar as described previously [12]. A representative
clone, called Ras7, was used in the previous and current studies [13].

2.3. Cell cycle analysis
Fractions of cells at different phases of the cell cycle were analyzed as

previously described [33]. In brief, cells were collected and resuspended
in 70% ethanol overnight at �20 �C. Before analysis, cells were pelleted
again and incubated with a phospho-Ser/Thr-Pro MPM2 monoclonal
antibody diluted in Dulbecco�s phosphate-buffered saline for 1 h and
then with a FITC-conjugated anti-mouse secondary antibody for
30 min. Cells were then resuspended in a propidium iodide (PI) solu-
tion consisting of 50 lg/ml PI, 50 lg/ml RNase A, 0.1% Triton X-
100 and 0.1 mM EDTA for 15 min. Cells were then sorted using a
FACSCalibur flow cytometer (BD Biosciences, San Jose, CA).

2.4. Cdc2 activity assays
Cdc2 kinase activity was measured as previously described [31]. Cells

were lysed using a cell lysis buffer purchased from Cell Signaling Tech.
(Beverly, MA) supplemented with a protease inhibitor cocktail pur-
chased from Roche (Indianapolis, IN). The cell extracts were then
immunoprecipitated using a Cdc2 monoclonal antibody and protein
G-conjugated sepharose beads (Sigma, St. Louis, MO). The pellets
were then washed thrice with lysis buffer and then incubated for
30 min at 37 �C with 20 mM HEPES, pH 7.9, 5 mM MgCl2, 1 lg his-
tone H1 (Roche), 1 mM EDTA and 100 lM ATP in a total volume of
20 ll. The samples were then examined by Western blotting using anti-
bodies against phospho-histone H1 and histone H1.

2.5. siRNA transfection
Cells were transfected with small interfering RNA (siRNA) using a

protocol similar to that described previously [13]. The KLF5-specific
siRNA was designed to target against sequences corresponding to
nucleotides between 875 and 895 of the coding region of mouse
KLF5 (GenBank Accession No. NM_009769). Control siRNA was
also described previously [13]. Cells were cultured in 100-mm culture
dishes until 40% confluent and then transfected with siRNA in Opti-
MEM with reduced serum content (Invitrogen, Carlsbad, CA) using
the Oligofectamine transfection reagent (Invitrogen) for 4 h. The cells
were then provided with DMEM containing 10% FBS and 1% penicil-
lin–streptomycin.

2.6. Measurement of mitotic indices
Mitotic indices were measured using Hoechst 33258 stain and phos-

pho-histone H3 (Ser-10) antibodies. Cells were first fixed in a 3% form-
aldehyde solution in phosphate-buffered saline (PBS) for 15 min. For
Hoechst staining, cells were then incubated at room temperature for
20 min after the addition of cold 100% methanol. After rinsing with
PBS, a Hoechst 33258 solution was added to a final concentration of
0.2 lg/ml and samples were incubated at room temperature for
15 min. Samples are then rinsed again with PBS and nuclei were visu-
alized using an inverted fluorescence microscope (Nikon, Melville,
NY). Mitotic index was scored as the number of mitotic cells (with
condensed nuclei) among a total population of 500 stained cells. For
staining with anti-phospho-histone H3, protocol described in the Mito-
tic Index Hitkit (Cellomics, Pittsburgh, PA) was applied. In brief, cells
were permeabilized using a permeabilization buffer after fixing cells
with 3.7% formaldehyde solution, for 15 min. After rinsing with block-
ing solution, cells were then incubated with the primary antibody fol-
lowed by the staining solution (containing Alexa 488 labeled secondary
antibody and Hoechst dye) for 1 h each. Cells were then washed and
nuclei were visualized using a fluorescent microscope. Mitotic index
was scored as the number of phospho-histone H3-positive cells among
a total population of 1000 cells counted.
3. Results

3.1. H-Ras-transformed NIH3T3 fibroblasts exhibit an increase

in mitotic index, which is decreased by inhibition of KLF5

A clonal derivative of H-Ras-transformed NIH3T3 fibro-

blasts, called Ras7 [13], was transfected with KLF5-specific

or non-specific siRNA and examined daily for mitotic indices

using several independent methods. The non-transformed

parental NIH3T3 cells and untransfected Ras7 cells were used

as controls. Fig. 1 shows that the mitotic index, as measured by

either Hoechst 33258 staining (Fig. 1A) or phospho-histone
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H3 staining (Fig. 1B), was significantly higher in Ras7 cells

when compared with the non-transformed parental NIH3T3

cells on all 3 days of culture. Transfection of Ras7 cells with

KLF5-specific siRNA resulted in a significant reduction in mi-

totic index when compared to untransfected or control siRNA-

transfected Ras7 cells.

To provide an additional means of measuring mitosis, we

immuno-stained cells with a phospho-MPM2 antibody and

sorted cells by FACS following staining with PI [33,34]. As

shown in Fig. 2A, the population of MPM2-positive cells

was significantly greater in Ras7 cells as compared to non-

transformed NIH3T3 cells on days 2 and 3 of culturing. Again,

transfection of Ras7 cells with KLF5-specific siRNA, but not

non-specific siRNA, significantly reduced the proportion of

MPM2-positive cells when compared to untransfected Ras7

cells. A similar finding is observed when the ratios between

cells in the M and G2/M phase of the cell cycle were measured

(Fig. 2B). These results indicate that KLF5 is responsible for

the increase in mitotic index and acceleration in the G2/M tran-

sition of the cell cycle in Ras7 cells.

3.2. H-Ras-mediated transformation of NIH3T3 fibroblasts is

accompanied by an increase in the levels of cyclin B1 and

Cdc2, and cylinB1/Cdc2 kinase activity, all of which are

decreased by inhibition of KLF5

As mitosis is controlled by cyclin B1 and Cdc2 [27,28], we

measured KLF5, cyclin B1 and Cdc2 protein levels in NIH3T3
Fig. 2. KLF5 accelerates G2/M transition of the cell cycle in H-Ras-
transformed NIH3T3 cells. (A) Immuno-staining was performed with
a phospho-Ser/Thr-Pro MPM2 antibody to identify cells in the M
phase of cell cycle. Cells were then stained with PI to measure the
DNA content and subjected to FACS analysis. The percentages of
MPM2-positive cells among all cells analyzed were plotted at different
time points. N = 3; *P < 0.05; **P < 0.01 by two-tailed Student�s t test.
(B) The ratio of M-phase population to G2/M-phase population was
calculated by dividing the number of MPM2-positive cells by those in
the G2/M phase (i.e., cells with a DNA content of 4N). N = 3;
*P < 0.05; **P < 0.01 by two-tailed Student�s t test.
and Ras7 cells, as well as Ras7 cells treated with KLF5-specific

siRNA or control siRNA, by Western blot analysis. As shown

in Fig. 3A, Ras7 cells contained a higher level of KLF5, cyclin

B1 and Cdc2 than NIH3T3 cells (compare lane 2 to lane 1).

Transfection of Ras7 cells with KLF5-specific siRNA resulted

in a reduction in the level of KLF5 and a concomitant reduc-

tion in the levels of cyclin B1 and Cdc2 (Fig. 3A, lane 4). In

contrast, transfection of Ras7 cells with control non-specific

siRNA did not change the levels of any of the three proteins

(Fig. 3A, lane 3). Importantly, Fig. 3B shows that Ras7 cells

contained a higher level of cyclin B1/Cdc2 kinase activity than

NIH3T3 cells (compare lane 2 to lane 1) and that this increase

was reduced in Ras7 cells treated with KLF5-speicfic siRNA

but not control siRNA (compare lane 4 to lane 3). These re-

sults indicate that KLF5 is responsible for the increased cyclin
Fig. 3. Effect of KLF5 inhibition by siRNA on cyclin B1, Cdc2, and
cyclin B1/Cdc2 kinase activity in H-Ras transformed cells. (A) The
levels of KLF5, cyclin B1, and Cdc2, in NIH3T3 cells, untransfected
Ras7 cells, and Ras7 cells transfected with non-specific (NS) control
siRNA or KLF5-specific siRNA, were determined by Western blot
analysis. Actin serves as a loading control. (B) The cyclin B1/Cdc2
kinase activity was measured by immunoprecipitation with a Cdc2
antibody followed by in vitro kinase reaction using histone H1 as a
substrate. P-histone H1 is the phosphorylated product.



Fig. 4. KLF5 increases cyclin B1 and Cdc2 promoter activity.
NIH3T3 cells were co-transfected with a luciferase plasmid containing
cyclin B1 promoter (cyclin B1 promoter-luc) [30] or Cdc2 promoter
(Cdc2 promoter-luc) [32] and either a control vector (pMT3 vector) or
with a KLF5-expression vector (pMT3-KLF5). Luciferase activity was
determined 2 days following transfection and normalized to the
internal control, Renilla luciferase. N = 4; **P < 0.001 when compared
to PMT3 vector-transfected cells using two-tailed Student�s t test.

Oncogenic H-Ras

Transformation

MAPK

Egr-1

KLF5

Cyclin D1 Cyclin B1/Cdc2

Accelerated Cell Cycle

Fig. 5. A model for the role of KLF5 in mediating H-Ras-induced
transformation. The induction of KLF5 by H-Ras is mediated by
MAPK and Egr-1 as previously demonstrated [13]. KLF5 then
activates the transcription of the genes encoding cyclin D1 [13] and
cyclin B1/Cdc2 (this study). The combined effect is an acceleration of
the cell cycle, which eventually results in cellular transformation.
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B1/Cdc2 kinase activity and that such an increase leads to the

observed increase in mitotic activity in Ras7 cells.

3.3. KLF5 activates cyclin B1 and Cdc2 promoter activity

To determine the mechanism by which KLF5 increases cy-

clin B1 and Cdc2, we conducted co-transfection experiments

using a KLF5-expression vector and a luciferase reporter con-

struct containing the cyclin B1 or Cdc2 promoter. Cells co-

transfected with an empty vector served as a control. As seen

in Fig. 4, cells transfected with the KLF5-expression vector

exhibited significantly higher activities from both cyclin B1

and Cdc2 promoters when compared to those transfected with

the empty vector. These results indicate that KLF5 is a tran-

scriptional activator of the cyclin B1 and Cdc2 genes.
4. Discussion

Cellular transformation caused by oncogenic Ras is charac-

terized by increased cell proliferation, loss of contact inhibition

and anchorage-independent cell growth [35,36]. Cell prolifera-

tion is generally associated with accelerated G1/S and G2/M

cell cycle transitions [37]. The response of the G1/S cell cycle

machinery to Ras-induced MAPK stimulation is well estab-

lished, consisting of the upregulation of cyclins D [23,38], E

[39], and A, as well as their corresponding cyclin dependent ki-

nases (Cdks) [40]. There is also evidence that the Ras signaling

cascade can accelerate the G2/M transition [41,42].

Ample evidence indicates that cyclin B1 is an important pro-

tein regulating proliferation. Depletion of cyclin B1 is found to

inhibit proliferation and induce apoptosis in human tumor

cells [43]. Previous studies also demonstrate that cyclin B1 is

crucial for mediating oncogenic H-Ras-induced transforma-

tion [26,41]. The onset of mitosis in the cell is strictly regulated

by several factors, among them cyclin B1 and Cdc2 [27,44].

The results of our study, which demonstrate that H-Ras-trans-
formed fibroblasts exhibit increased cyclin B1/Cdc2 protein

levels and activity, as well as increased mitotic index, are con-

sistent with these previous findings.

We previously reported that transformation by oncogenic

H-Ras results in an increase in the rate of cell proliferation

and the S-phase population of cells [13]. In H-Ras-transformed

cells, KLF5 is up-regulated due to H-Ras-activated MAPK

and the increased KLF5 is responsible for an increase in cyclin

D1 expression at the transcriptional level [13]. This leads to

accelerated proliferation. In the current study, we identified cy-

clin B1 and Cdc2 as two novel targets of KLF5 upon its induc-

tion by H-Ras (Figs. 3A and 4). Consequently, there is an

increase in cyclin B1/Cdc2 kinase activity, which becomes

inhibited upon treatment of H-Ras-transformed cells with

KLF5-specific siRNA (Fig. 3B). Importantly, inhibition of

KLF5 expression in H-Ras-transformed cells results in a reduc-

tion of mitotic index and the M-to-G2/M ratio of cells (Figs. 1

and 2). These results demonstrate that KLF5 serves a crucial

function in mediating the biological activity of H-Ras in accel-

erating the G2/M transition, an event which promotes cellular

transformation. A model describing the signal pathway as elic-

ited by oncogenic H-Ras and mediated by KLF5 is illustrated

in Fig. 5.

KLF5 has previously been shown to exert a pro-proliferative

effect on non-transformed NIH3T3 fibroblasts and intestinal

epithelial cells including IEC-6, IEC-18, and IMCE [12,45].

Stable expression of KLF5 in NIH3T3 cells has also been

shown to result in a transformed phenotype including in-

creased proliferation and anchorage-independent growth [12].

In addition, all-trans retinoic acid (ATRA) inhibits prolifera-

tion of IEC-6 cells by inhibiting KLF5 gene expression [14].

In contrast, over-expression of KLF5 in several human cancer
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cells has been reported to inhibit their growth in vitro [45,46].

Thus, KLF5 may exhibit different functions at different stages

of tumor formation. It is of interest to note that a reason for

KLF5�s pleiotropic effect may be its differential regulation by

the ubiquitin–proteasome pathway in non-transformed and

cancer cells [47]. Nonetheless, the exact mechanism by which

KLF5 affects growth of cancer cells remain to be established.
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mammalian Krüppel-like family of transcription factors. Int. J.
Biochem. Cell Biol. 32, 1103–1121.

[4] Bieker, J.J. (2001) Krüppel-like factors: three fingers in many pies.
J. Biol. Chem. 276, 34355–34358.

[5] Black, A.R., Black, J.D. and Azizkhan-Clifford, J. (2001) Sp1 and
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