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Summary

Topographic projection of afferent terminals into 2Dmaps in
the CNS is a general strategy used by the nervous system

to encode the locations of sensory stimuli. In vertebrates,
it is known that although guidance cues are critical for estab-

lishing a coarse topographic map, neural activity directs
fine-scale topography between adjacent afferent terminals

[1–4]. However, the molecular mechanism underlying activ-
ity-dependent regulation of fine-scale topography is poorly

understood. Molecular analysis of the spatial relationship
between adjacent afferent terminals requires reliable locali-

zation of the presynaptic terminals of single neurons as
well as genetic manipulations with single-cell resolution

in vivo. Although both requirements can potentially be met
in Drosophila melanogaster [5, 6], no activity-dependent

topographic system has been identified in flies [7]. Here we
report a topographic system that is shaped by neuronal ac-

tivity in Drosophila. With this system, we found that topo-
graphic separation of the presynaptic terminals of adjacent

nociceptive neurons requires different levels of Trim9, an

evolutionarily conserved signaling molecule [8–11]. Neural
activity regulates Trim9 protein levels to direct fine-scale

topography of sensory afferents. This study offers both a
novel mechanism by which neural activity directs fine-scale

topography of axon terminals and a new system to study this
process at single-neuron resolution.

Results and Discussion

The Presynaptic Terminals of the Three Nociceptive
Neurons in Each Larval Hemisegment Are Arranged

in Dorsal-to-Ventral Topography
We exploited the nociceptive neurons in Drosophila larva,
termed the class IV dendritic arborization (C4 da) neurons
[12, 13], as a potential system for molecular and genetic anal-
ysis of fine-scale topography because each C4 da neuron can
be unambiguously identified. The dendrites of these neurons
form an array of detectors for noxious stimuli on the larval
*Correspondence: bingye@umich.edu
body wall and respond to noxious heat, harsh mechanical
poke, and intense short-wavelength light [14–17]. In each
hemisegment of a larva, the dendrites of three C4 da neurons
cover the body wall in a complete but nonoverlapping fashion
[12] (Figure 1A and Figure S1A available online) as a result
of homotypic repulsion among dendrites [18]. Although this
dendritic array conceivably allows the nociceptive circuit
to spatially resolve noxious stimuli, it was unknown whether
afferent terminals of C4 da neurons are topographically
arranged in the CNS.
We examined the spatial relationship among the presynaptic

terminals of the three C4 da neurons in each hemisegment. In
the Drosophila ventral nerve cord (VNC), synaptic connections
reside in the neuropil, which is roughly at the center of the VNC
[19] (Figure S1B). The neuropil in each hemisegment is divided
into areas that are responsible for different sensorymodalities,
with the C4 da terminals residing in the most ventral and
medial part of the neuropil [20]. The axon terminals of C4 da
neurons collectively form a ladder-like structure along the
anterior-posterior axis (Figure S1C) [21, 22]. The presynaptic
terminals of the three C4 da neurons in a hemisegment, the
dorsal neuron ddaC (D), middle neuron v’ada (M), and ventral
neuron vdaB (V), are confined in a compact, synapses-
enriched neuropil (Figures S1C and S1D) [11] termed ‘‘C4 da
neuropil,’’ with a dorsal-ventral distance of only 4.45 6
0.85 mm (n = 33) (Figure S1B). Upon entering the VNC, the
D axon was immediately separated from the M and V axons
by projecting dorsally (Figure S1B) and then entered the
C4 da neuropil through the dorsal boundary.
To determine the relative locations of presynaptic terminals

of the adjacent C4 da neurons in such a small space, we de-
signed a multicolor clonal labeling technique, termed Potts’
assay, based on the genetic mosaic approach FLP-out [23]
(Figure 1B). By controlling the expression level and timing of
the flippase through heat shock, the flippase recognition
target (FRT) sites in each FLP-out cassette can recombine
in random cells, leading to the expression of a fluorescent
protein. The FLP-out cassettes are driven by the upstream
activation sequence (UAS)-promoter. Consequently, by using
a C4 da-specific GAL4 driver, ppk-GAL4 [18], we were able
to restrict the randomly labeled cells to only C4 da neurons.
We integrated two different FLP-out cassettes for tdTomato
and GFP, receptively. Thus, FRT/Flippase-based random
recombination leads to a stochastic expression of tdTomato
and GFP in C4 da neurons, allowing sparse labeling of random
C4 da neurons with green, red, or yellow fluorescence. Using
this technique, we found that, consistent with the dendritic
field coverage, the presynaptic terminals of the D, M and V
neurons were located in the dorsal, middle and ventral portion
of the C4 da neuropil, respectively (Figures 1C and S1E).
The Potts’ assay does not allow loss-of-function analysis

of genes in single neurons, which is required for studying
the molecular mechanism of fine-scale topography. We thus
used the mosaic analysis with a repressible cell marker
(MARCM) [24], in conjunction with ppk-GAL4, to locate the
synaptic terminals of single C4 da neurons in the C4 da
neuropil (Figure 1D). We integrated a transgene that expresses
the red fluorescent protein tdTomato, directly driven by the
C4 da-specific ppk promoter (ppk-tdTomato) [18], into the
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Figure 1. The Presynaptic Terminals of the Three

Nociceptive Neurons in Each Larval Hemiseg-

ment Are Arranged in Dorsal-to-Ventral Topog-

raphy

(A) Cartoons showing the tile-like array of the

dendritic territories of the three C4 da neurons

in the body wall of each hemisegment. Top:

side view. Bottom: drawing of a fillet preparation

made by opening up the larva along the dorsal

midline. The dendritic territories of the dorsal

(D) neuron ddaC, middle (M) neuron v’ada, and

ventral (V) neuron vdaB are represented as blue,

purple, and green tiles, respectively.

(B) Schematic representation of the transgenes

for multicolor labeling of single C4 da neurons

by the Potts’ assay. The asterisks indicate stop

codons. Random recombination between the

two FRT sites in each cassette, induced by heat

shock, leads to stochastic expression of tdTo-

mato and GFP in C4 da neurons. If the recombi-

nation occurs in the tdTomato-containing

cassette only, the neuron expresses only tdTo-

mato (red). The same is true for the GFP cassette.

If both cassettes undergo recombination, the

neuron appears as yellow. The neurons that do

not express either tdTomato or GFP express

CD2, which can be labeled by immunostaining

with antibodies conjugated with another fluoro-

phore (shown in blue in C).

(C) Presynaptic arbors of pairs of C4 da neurons

labeled by the Potts’ assay. The dendritic terri-

tory of each clone is schematically represented

in the cartoons of larva. The presynaptic termi-

nals of the D, M, and V C4 da neurons in each

hemisegment are arranged in dorsal-to-ventral

topography, which is visible in the side view,

but not the top view. The V neurons usually proj-

ect a commissural branch (yellow triangles) that

extends dorsally after passing theC4 da neuropil.

Scale bar, 10 mm for top view and 2 mm for side

view. Grayscale images with the green and red

channels separated are shown in Figure S1E.

(D) Locations of single C4 da terminals (green) along the dorsal-ventral axis, as visualized by the MARCM technique incorporated with the ppk-

tdTomato as the reference for the C4 da neuropil (magenta). Scale bar, 10 mm for top view and 2 mm for side view.

(E) Statistical analysis of the C4 da topography. Each dot represents the TI of a C4 da MARCM clone. The error bars indicate mean 6 SEM.

(F) A cartoon showing the organization of D, M, and V axon terminals in the VNC. The axons of the three C4 da neurons in each hemisegment project to

the VNC in one nerve. On entering the VNC, the axon of the dorsal neuron (blue) immediately separates from those of the middle (magenta) and ventral

(green) neurons. It enters the C4 da neuropil through the dorsal boundary and terminates in the dorsal portion of the C4 da neuropil. In contrast, the middle

and ventral axonal terminals are topographically indistinguishable until they reach the C4 da neuropil.

See also Figure S1.
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MARCM system. In this modified MARCM system, the posi-
tion of a C4 da terminal in a C4 da neuropil can be determined
by comparing to the reference ppk-tdTomato (Figure 1D).
Because each presynaptic terminal forms a convoluted 3D
structure inside the C4 da neuropil, it is insufficient to
describe the topography of C4 da terminals with 2D analysis.
We thus designed a 3D image quantification algorithm to
automatically determine the relative position of each presyn-
aptic terminal, quantified as a topographic index (TI), inside
a C4 da neuropil (see details in Experimental Procedures
and Figure S1G). Statistical analysis of TI showed that the
presynaptic terminals of the D, M, and V neurons ended,
respectively, in the dorsal, middle, and ventral portions of
the C4 da neuropil in early third-instar larvae (Figure 1E).
Thus, the presynaptic terminals of the nociceptive C4 da neu-
rons form a continuous topographic arrangement in the VNC
(Figure 1F).

Analysis of the C4 da topography at distinct develop-
mental stages showed that the M and V terminals were
indistinguishable from each other in the first-instar stage but
are significantly separated in the early second-instar stage
(Figure S1F), suggesting that the C4 da topography is estab-
lished gradually during development.

Topographic Separation of Middle and Ventral Terminals
Requires Neuronal Activity in C4 da Neurons

Neural activities, including spontaneous and sensory input-
evoked activities, direct fine-scale topography in vertebrate
sensory systems [1–4, 25]. The retinotopic map in adult flies
has been an important system for molecular analysis of fine-
scale topography [26], but the establishment of fly retinotopic
map is independent of neural activity [7]. We tested whether
the Drosophila nociceptive map is regulated by neural activ-
ities, by inhibiting or activating individual C4 da neurons in
each hemisegment. Expression of the inward rectifier potas-
sium channel Kir2.1 [27, 28] in C4 da neurons robustly inhibited
both spontaneous and light-evoked activity (Figures 2A and
2B), providing us with a tool to inhibit C4 da neurons. The



Figure 2. Topographic Separation of Middle and

Ventral Terminals Requires Neuronal Activity in

C4 da Neurons

(A) Kir2.1 inhibits spontaneous activities of

C4 da neurons. Shown are representative traces

(top) and quantification (bottom) of the sponta-

neous action potentials of wild-type (WT) (n =

23) and Kir2.1-expressing (n = 5) C4 da neurons.

(B) Kir2.1 inhibits light-evoked activities of

C4 da neurons. Shown is the statistical analysis

of firing frequency changes of C4 da neurons

stimulated with 340, 387, 466, 531, and 628 nm

light. The recordings were from M and V neurons

and were combined for statistical analysis.

(C) Inhibiting neural activity in single M neurons

leads to a ventral shift of the M terminals. The

MARCM technique was used to express mCD8::

GFP as the WT control, Kir2.1::GFP, dORKD-

NC, and dORKD-C. dORKD-NC is a noncon-

ducting pore mutant of dORK, which is used as

a negative control for dORKD-C. Left: repre-

sentative images of the dorsal-ventral view of

single C4 da terminals (green) and the C4 da neu-

ropil marked by ppk-tdTomato (magenta). Right:

statistical analysis of topographic index. Scale

bar, 2 mm.

(D) Enhancing neural activity in single V neurons

by thermal activation of dTrpA1 results in a dorsal

shift of the V terminals. Scale bar, 2 mm.

Error bars indicate mean 6 SEM. See also

Figure S2.

Current Biology Vol 24 No 9
1026
ppk promoter is active in as early as the stage 16 embryos
(data not shown). Inhibiting single M neurons with Kir2.1 in
the Potts’ assay, starting at the first-instar stage (by inducing
FLP/FRT-mediated recombination with heat shock), shifted
the presynaptic terminals of M neurons to the ventral portion
of the C4 da neuropil (Figure S2A). In contrast, Kir2.1 expres-
sion in either D or V neurons did not change the topography
of their presynaptic terminals. Results from MARCM experi-
ments quantitatively confirmed the results of Potts’ analysis
(Figure 2C). The topographic separation of M and V terminals,
but not that of D fromM or V, was eliminated by Kir2.1 expres-
sion as a result of a ventral shift of the M terminals (Figure 2C).
In these experiments, Kir2.1 expression was detectable by
immunostaining at the first-instar stage (data not shown). Re-
placing Kir2.1 with a constitutively open mutant of Drosophila
rectifier potassium channel 1 (dORKD-C) [28] had similar ef-
fects (Figure 2C). Conversely, enhancing the neural activity
of single V neurons by thermal activation of dTrpA1 [29]
resulted in a dorsal shift, whereas enhancing activity in M
neurons did not change their topographic location (Figure 2D).
These results suggest that neural activity regulates fine-scale
topography of the M and V terminals. Although starting
Kir2.1 expression in early first- and second-instar larval stages
led to a significant ventral shift of the M terminals, starting
Kir2.1 expression in early third-instar larvae did not change
the topographic locations of the M terminals (Figure S2B).

Decreasing or increasing neural activity did not affect the
branching or extension of C4 da neurons (Figures S2C–S2E;
data not shown). Moreover, whereas Kir2.1 expression led
to an increase in the volume of both
M and V synaptic terminals, measured
as a ratio of the total number of voxels
in the 3D image of the clone to that
of the neuropil (Figure S2F), it only
affected the topographic locations of the M terminals (Fig-
ure 2C), suggesting that there is no correlation between the
changes in the volume and topographic locations of presyn-
aptic terminals. This notion is confirmed by the observation
that dORKD-C expression, which also preferentially affects
the locations of the M terminals (Figure 2C), did not affect
the volume of either M or V terminals (Figure S2F). Thermal
activation of the neurons with dTrpA1 led to a small but
significant reduction in the volume of presynaptic terminals
(Figure S2G). We also analyzed the dorsal and ventral bound-
aries of each presynaptic terminal. The distance between the
dorsal and ventral boundaries of each presynaptic terminal
changed in a manner that is consistent with the changes
in the volume of the terminals (Figures S2H and S2I). Taken
together, these results demonstrate at single-neuron level
that neural activity does not regulate topographic maps by
simply restraining the size of axonal arbors [30, 31]. It is note-
worthy that the TI is a better measurement of the topography
of a synaptic terminal, compared with the boundary analysis.
If the synaptic terminals are of regular shapes, analyzing the
locations of dorsal and ventral boundaries would provide
additional information regarding the sizes of the terminals.
However, due to the convoluted morphology of the presyn-
aptic terminals, there are often ‘‘holes’’ in the 3D images.
As a result, a change in boundary location does not neces-
sarily reflect a change in voxel density in the 3D space.
Different from the boundary analysis, the TI reflects the voxel
density and is not affected by the shape of the presynaptic
terminal.



Figure 3. dTrim9 Regulates Activity-Dependent

Topography of C4 da Sensory Afferents

(A) dTrim9 regulates topographic projections of

C4 da terminals. Left: representative images of

the dorsal-ventral view of single C4 da terminals

(green) in C4 da neuropils (magenta). Right: sta-

tistical analysis of TI.

(B) Neuronal inhibition requires dTrim9 to alter

the topography of presynaptic terminals. Left:

representative images of the presynaptic termi-

nals of dTrim92/2 M and V neurons that overex-

press Kir2.1. Right: statistical analysis of TI. The

data on Kir2.1 are the same as in Figure 2C;

data onWT and dTrim92/2 are the same as in (A).

Error bars indicate mean 6 SEM. Scale bars,

2 mm. See also Figure S3.
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Drosophila Trim9 Regulates the Topographic Projection of

C4 da Sensory Afferents
To investigate the molecular mechanisms underlying the
topographic projection of C4 da afferents, we tested a num-
ber of genes known to regulate presynaptic arbor develop-
ment and found that the Drosophila ortholog of the tripartite
motif protein Trim9, dTrim9 (also termed anomalies in sen-
sory axon patterning, or Asap) [11], regulates the topographic
projections of C4 da terminals. Trim9 is a member of the
TRIM protein family that shares a RING domain in the N-ter-
minal region followed by two B-boxes and a coiled-coil
domain [32]. In mammals, Trim9 is specifically expressed in
the nervous system [8, 9] and is required for axon branching
in response to DCC signaling [10]. The Caenorhabditis ele-
gans ortholog of dTrim9, MADD-2, regulates axon branching
and has a mild effect on ventral attractive guidance [10].
In Drosophila, the protein levels of dTrim9 regulate the forma-
tion of the contralateral projections in the D and V neurons
but not the M neurons [11]. dTrim9 is expressed at higher
levels in D and V neurons than in the M neuron [11], providing
a molecular basis to differentiate the C4 da neurons in each
hemisegment. We thus tested the possibility that dTrim9
regulates the topographic projections of C4 da neurons.
Consistently, we found 48.8% of dTrim92/2 V neurons lack
the contralateral projections, compared with 2.5% in wild-
type V neurons. Conversely, overexpressing one copy of a
dTrim9 transgene in the M neuron led to 11.8% of these neu-
rons forming contralateral projections, compared with 0% in
wild-type M neurons. Presynaptic terminals of single V neu-
rons homozygous for dTrim9 null mutations shifted dorsally
to the middle portion of the C4 da neuropil, whereas those
of dTrim9 null M neurons remained indistinguishable from
the wild-type M neurons (Figure 3A). The terminals of dTrim9
null D neurons were not affected. We analyzed both neurons
with normal patterns of presynaptic
terminals and those with contralateral
projection defects and found both dis-
played a dorsal shift of the V terminals,
suggesting that the topographic defect
is separable from defects in contra-
lateral projections. Conversely, overex-
pressing dTrim9 led to a ventral shift
of the M terminals (Figure 3A and
S3A). In both dTrim9 loss-of-function
and overexpression neurons, the topo-
graphic separation between the M and
V terminals was abolished (Figure 3A).
These results suggest that dTrim9 regulates the topography
of the M and V terminals.

Neural Activity Regulates Trim9 Levels to Control Fine-

Scale Topography
Because inhibiting neuronal activity resulted in a topographic
defect that was opposite to dTrim9 loss-of-function but similar
to dTrim9 overexpression, we did genetic epistasis tests to
determine whether the topographic effects of neuronal inhi-
bition requires dTrim9 function. Using the MARCM technique,
we overexpressed Kir2.1 in dTrim92/2 C4 da neurons. Presyn-
aptic terminals of dTrim92/2 V neurons with inhibited activity
shifted dorsally to the middle position (Figure 3B), which
phenocopied dTrim92/2 mutant neurons that had normal
activity. Overexpressing dORKD-C in dTrim92/2 C4 da neu-
rons led to similar results (data not shown). Overexpressing
both dTrim9 and dTrpA1 (with thermal activation at 30�C)
led to a ventral shift of the M terminals that is similar to over-
expressing dTrim9 only (Figure S3B). These results suggest
that the topographic defects induced by activity inhibition
require dTrim9. Again, no correlation was observed between
the sizes of presynaptic terminals and their topography (Fig-
ures S3C–S3G).
Because dTrim9 levels determine the locations of the M and

V terminals, we tested the hypothesis that neuronal activity
regulates dTrim9 levels in C4 da neurons. Immunostaining
with an anti-dTrim9 antibody [11] showed that expressing
Kir2.1 or dORKD-C in M neurons led to an increase in dTrim9
levels, eliminating the difference in dTrim9 levels between
the inhibited M neurons and the wild-type V neurons in
the same hemisegment (Figures 4A and 4C). Conversely,
increasing neural activity in single V neurons by thermal acti-
vation of dTrpA1 led to a reduction of dTrim9 levels that
greatly reduced the difference between the M and V neurons



Figure 4. Neural Activity Regulates dTrim9

Protein Levels

(A) dTrim9 protein levels are increased in M neu-

rons inhibited byKir2.1. A Kir2.1::eGFP transgene

was specifically expressed in single M neurons

by the MARCM technique. Kir2.1-expressing M

neurons were identified by GFP fluorescence

(not shown). The V neuron in the same hemi-

segment was identified by the C4 da-specific

marker ppk-tdTomato. Scale bar, 6 mm.

(B) dTrpA1-mediated thermal activation (30�C)
of V neurons leads to reduced dTrim9 levels. A

dTrpA1 transgene specifically was expressed in

single V neurons byMARCM. TheMARCMclones

were identified by GFP expression (not shown).

(C andD) Statistical analysis of the ratio of dTrim9

immunofluorescence intensity between the M

and V neurons in the same hemisegment. (C)

The effects of activity inhibition in M neurons.

(D) The effects of activity enhancement in V neu-

rons. Data presented as mean 6 SEM.

(E) A model that summarizes the findings in this

study. The presynaptic terminals of the M and

V C4 da neurons project to the VNC in a way

that matches the dorsal-to-ventral locations of

dendritic fields on the larval body wall. Neuronal

activity differentially regulate the protein levels

of dTrim9 in the M and V neurons, which in turn

direct the dorsal-to-ventral topography of the

presynaptic terminals.
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(Figures 4B and 4D). Taken together, these results suggest
that dTrim9 levels are regulated by neural activity and direct
the fine-scale topography of the C4 da presynaptic terminals
(Figure 4E).

The assembly of topographic maps in vertebrates is known
to be controlled by genetic programs as well as neural activity
[1]. In this study we demonstrated at the level of single identi-
fied neurons that neuronal activity directs the fine-scale topog-
raphy of the Drosophila somatosensory system. Using this
system, we have identified an intracellular signaling molecule
that mediates the regulation of neural activity in establishing
the topography of adjacent afferent neurons. This study not
only offers a novel model that explains how neural activity di-
rects topographic projections of sensory afferents but also
provides an instrumental system for investigating the interac-
tions between neural activity and genetic programs in neural
circuit assembly.

Experimental Procedures

Potts’ and FLP-Out Assays

For Potts’ assays (named after William Potts, the Detroit police officer who

invented the traffic light), we generated transgenic lines that carry FLP-out

cassettes UAS-FRT-rCD2-stop-FRT-mCD8::GFP and UAS-FRT-rCD2-

stop-FRT-CD4::tdTomato. These transgenes were integrated into flies

together with a Flippase transgene driven by a heat-shock promoter and

the C4 da-specific driver ppk-GAL4. For clonal overexpression of Kir2.1 in

the Potts’ assay, a UAS-FRT-rCD2-stop-FRT-Kir2.1::eGFP FLP-out

cassette was used in place of UAS-FRT-rCD2-stop-FRT-mCD8::GFP.

Eggs were collected, allowed to develop at 25�C for 24 hr to become early

first-instar larvae, and then heat shocked at 37.5�C for 20 min. The larvae

were then allowed to develop for 2 days to become early third-instar larvae

and subsequently dissected for immunostaining. A sample useful for

analyzing topographic mapping contains one GFP-positive and one

tdTomato-positive C4 da neuron in a hemisegment. It is important that no

clone in the adjacent segments is labeled, as these clones extend terminals

into neighboring C4 da neuropils. To obtain successful labeling, we kept the

clone rate low and screened a large number of larvae.
For FLP-out assays, flies carrying either UAS-FRT-rCD2-stop-FRT-

mCD8::GFP (for labeling wild-type neurons) or UAS-FRT-rCD2-stop-FRT-

Kir2.1::eGFP (for labeling neurons that express Kir2.1 to inhibit neuronal

activity) were crossed with flies carrying hs-FLP and ppk-GAL4. Procedures

for inducing single C4 da clones are the same as described above. The FLP-

out assays can be used to analyze topography because the C4 da neuropils

can be labeled by immunostaining the rCD2 in the FLP-out cassette.

For overexpressing dTrim9 at different developmental stages (Fig-

ure S3A), a modified FLP-out technique with an excisable GAL80 [33] was

used to express a UAS-dTrim9 transgene under the control of the ppk

promoter.

MARCM for Analyzing Topographic Mapping

MARCMexperiments were done as previously described [34].We dissected

only size-matched 3-day-old third-instar larvae to ensure consistency of the

developmental stages of the analyzed animals. Three hours after egg laying,

the eggs were heat shocked at 37.5�C for w15–20 min. For using MARCM

to overexpress dTrpA1 in single C4 da neurons, the eggs were kept at

30�C after heat shock and dissected 2.5 days later. The same procedure

was followed for the control experiments.

Immunostaining, Imaging, Image Preprocessing, and Image Analysis

Third-instar larvae were immunostained as described [35], with minor mod-

ifications. The anti-dTrim9 antibodies were preabsorbed with the fillet prep-

aration from dTrim9 null allele asap91 third-instar larvae. All images were

collected as 3D stacks using an SP5 confocal system (Leica Microsystems)

equipped with a 633 oil lens (Plan-Apochromat, numerical aperture [NA] =

1.4, Leica Microsystems). The axial sampling step (z-step) was 0.3 mm.

Images were collected with minimum signal saturation. Three steps were

necessary to preprocess images for analyzing the topographic index, vol-

ume, and boundary location of presynaptic terminals. First, confocal image

stacks were deconvolved with Huygens software (Scientific Volume Imag-

ing). Next, the VNC in each stack was aligned to uniform orientation with

the 3D image analysis software Amira (FEI Visualization Sciences Group).

Third, the 3D image stacks were cropped to contain only the C4 da neuropil

with the single MARCM or FLP-out clones in them. After preprocessing, the

image stack was automatically analyzed by custom-designed software for

topographic index, volume ratio, and boundary location (see below).

To quantify dTrim9 levels in C4 da neurons, we measured the mean fluo-

rescence intensity of dTrim9 immunosignals in the cell bodies with LAS AF



Activity-Dependent Topography in Drosophila
1029
Lite software (Leica Microsystems). Neurolucida software (Visage Imaging)

was used to quantify the length and branch numbers of presynaptic arbors.

Algorithm for Analyzing the Topographic Index and Volume of

Presynaptic Terminals

The neuropil channel for TI and volume ratio calculation was obtained by

combining the raw neuropil signal with the clone channel signal. Because

it was typically dim, the neuropil channel was enhanced by iterative histo-

gram normalization: The maximum-intensity parameter during normaliza-

tion was iteratively adjusted so that the mean foreground intensity was

increased to 80. The extraction of signals of C4 da neuropil and clone was

extracted from background by using robust adaptive threshold selection

(RATS) [36] (http://rsb.info.nih.gov/ij/plugins/rats/index.html).

RATS is a segmentation method for extracting the foreground object out

of a gray level image based on robust and adaptive thresholding. It selects

the thresholds by recursively dividing the image using quadtree structure

and then automatically calculating the thresholds using intensity values as

well as their gradients in the local region. The thresholds for all local regions

are then bilinearly interpolated across the entire image. The advantage of

the RATS approach is its local adaptability, which suits well to microscopic

images with contrast variation among different local regions. RATS was

applied to each slice of the 3D image stack. The minimum region size

(also called leaf size) of the quadrant was set to 5 pixels per side. Figure S1G

exemplifies the flow of image processing using a dorsal neuron with

MARCM analysis. Images with the FLP-out clone were processed in the

same way.

The TI of each clone voxel was calculated by measuring its relative posi-

tion between dorsal and ventral neuropil boundaries: TIi = di/(di + vi), where

di was the distance of the voxel i to the dorsal boundary and vi was its dis-

tance to the ventral boundary. As such, the voxels at the dorsal side of the

neuropil had TIs closer to 0; the voxels at the ventral side of the neuropil had

TIs closer to 1. The overall TI of a clone was the averaged sum calculated by

TI = STIi/n, where n was the total number of clone voxels in the 3D image

stack. Note that an overall TI ˛ (0, 1) can never be 0 or 1. The volume ratio

was the ratio between the volumes of clone and neuropil, with the volume

being measured by the number of foreground voxels in the 3D volume.

The volume of a clone or neuropil was represented by the total number of

voxels in the 3D images of the clone or neuropil. Thus, the result of this

analysis is not affected by the ‘‘holes’’ in the 3D image of a presynaptic

terminal caused by the convoluted morphology of the terminal.

The average dorsal boundary position of each clone was calculated by

taking the mean of the normalized positions of the dorsal-most voxels of

the clone. To obtain the normalized position, we measured the distance

(di) between the dorsal-most voxel of the clone and that of the neuropil at

the same x position, and the distance between the dorsal-most and

ventral-most voxels of the neuropil at that x position (Di). The normalized

boundary position (Bi) at a particular x position is calculated as the ratio

between the two distances: Bi = di/Di. The average boundary position of a

clone was the averaged sum of the Bi for all x positions.

The software for quantifying TI, volume ratio, and boundaries was devel-

oped as an ImageJ (NIH) plugin.

Electrophysiology

Extracellular recording of C4 da neuronal activities was done as described

previously, with minor modifications [16]. In brief, age-synchronized early

third-instar larvae carrying both ppk-GAL4 and UAS-mCD8::GFP trans-

genes were dissected to make fillet preparations in the external saline solu-

tion composed of 120 mM NaCl, 3 mM KCl, 4 mM MgCl2, 1.5 mM CaCl2,

10 mM NaHCO3, 10 mM trehalose, 10 mM glucose, 5 mM N-tris(hydroxy-

methyl)methyl-2-aminoethanesulfonic acid, 10 mM sucrose, and 10 mM

HEPES. The osmolality was 305 mOsm kg21, and the pH was 7.25. After

gentle proteinase (type XXIII, Sigma) digestion of muscles, the GFP-positive

(i.e., C4 da) neurons were identified using a D1 microscope (Carl Zeiss) with

a 403/1.0 NA water-immersion objective lens with the assistance of a Cool-

SNAP K4 charge-coupled device camera (Photometrics). Gentle negative

pressure was delivered to suck the soma into a recording pipette (5 mm

tip opening) containing external saline solution. Extracellular recordings

of action potentials were obtained in voltage-clamp mode at a holding

potential of 0 mV, a 2 kHz low-pass filter, and a sampling frequency of

20 kHz with a 700B amplifier (Molecular Devices). Spontaneous activities

of C4 da neurons were obtained from a 10 min gap-free recording. For allyl

isothiocyanate (AITC) stimulation, AITC was applied to the chamber to a

final concentration 100 mM. For light-evoked responses, a 300W xenon light

source was connected to themicroscope with a liquid light guide to provide
light stimulation through the lens, yielding an evenly illuminated light spot of

600 mm diameter that covered an entire C4 da neuron. Light intensity used

(in mW/mm2) was 2.84 for 340 nm, 14.6 for 387 nm, 103.8 for 466 nm, 57.7

for 531 nm, and 9.3 for 628 nm. The duration (5 s) of light illumination was

controlled by a shutter in the xenon lamp house triggered by Digidata

1440A (Molecular Devices). Band-pass excitation filters (Semrock) were

used to select light wavelength. For each recording trace, average fre-

quency during the 5 s immediately before light exposure was used as con-

trol. Five-second light stimulation was controlled by a TTL-triggered shutter

(Sutter Instruments) in the xenon lamp house.

Statistical Analysis

Pairwise comparisons were performed with t tests between two groups,

and one-way ANOVAs with �Sidák correction were used for comparing

three or more groups (N.S., not significant, p > 0.05; *p < 0.05; **p < 0.01;

***p < 0.001).

Supplemental Information

Supplemental Information includes three figures and can be found with this

article online at http://dx.doi.org/10.1016/j.cub.2014.03.041.
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by the novel Krüppel-like factor Dar1. J. Neurosci. 31, 3309–3319.

35. Ye, B., Petritsch, C., Clark, I.E., Gavis, E.R., Jan, L.Y., and Jan, Y.N.

(2004). Nanos and Pumilio are essential for dendrite morphogenesis

in Drosophila peripheral neurons. Curr. Biol. 14, 314–321.

36. Wilkinson, M.H.F. (1998). Optimizing edge detectors for robust auto-

matic threshold selection: coping with edge curvature and noise.

Graph. Model. Im. Proc. 60, 385–401.


	Trim9 Regulates Activity-Dependent Fine-Scale Topography in Drosophila
	Results and Discussion
	The Presynaptic Terminals of the Three Nociceptive Neurons in Each Larval Hemisegment Are Arranged in Dorsal-to-Ventral Top ...
	Topographic Separation of Middle and Ventral Terminals Requires Neuronal Activity in C4 da Neurons
	Drosophila Trim9 Regulates the Topographic Projection of C4 da Sensory Afferents
	Neural Activity Regulates Trim9 Levels to Control Fine-Scale Topography

	Experimental Procedures
	Potts’ and FLP-Out Assays
	MARCM for Analyzing Topographic Mapping
	Immunostaining, Imaging, Image Preprocessing, and Image Analysis
	Algorithm for Analyzing the Topographic Index and Volume of Presynaptic Terminals
	Electrophysiology
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


