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1. Introduction

In [4,6,5], Diaconis and Fulman investigate a remarkable family of matrices P (i, j) introduced by
Holte [11] in his analysis of the process of “carries” in the addition of random integers in base b. It
should be noted that these matrices occur in other contexts, for example in the study of sections of
generating functions and of the Veronese embedding [2].

The aim of this note is to show that the results of [6] can be derived in a simple and natural way
within the formalism of noncommutative symmetric functions [10].

This is possible thanks to the following equivalent characterization of the “amazing matrix” P
(Theorem 2.1 of [4]):
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The number of descents in successive b-shuffles of n cards form a Markov chain on {0,1, . . . ,n−1}
with transition matrix P (i, j).

Such random processes involving descents of permutations can usually be interpreted in the de-
scent algebra of the symmetric group. Here, it is only the number of descents which is involved, so
that one can in fact compute in the Eulerian subalgebra.

We assume that the reader is familiar with the notations of [10].

2. The Eulerian algebra

This is a commutative subalgebra of dimension n of the group algebra of the symmetric group Sn ,
and in fact of its descent algebra Σn . It was apparently first introduced in [1] under the name algebra
of permutors.1 It is spanned by the Eulerian idempotents, or, as well, by the sums of permutations
having the same number of descents.

It is easier to work with all symmetric groups at the same time, with the help of generating
functions. Recall that the algebra of noncommutative symmetric functions Sym is endowed with an
internal product ∗, for which each homogeneous component Symn is anti-isomorphic to Σn [10,
Section 5.1].

Recall also the following definitions from [10]. We denote by σt or σt(A) the generating series of
the complete symmetric functions2 Sn ([10, Section 3.1] and [12, Section 4]):

σt(A) =
∑
n�0

tn Sn(A). (1)

The Eulerian idempotents E[k]
n are the homogenous components of degree n in the series E[k] defined

by

σt(A)x =
∑
k�0

xk E[k](A) (2)

(see [10, Section 5.3]). We have

E[k]
n ∗ E[l]

n = δkl E
[k]
n , and

n∑
k=1

E[k]
n = Sn, (3)

so that the E[k]
n span a commutative n-dimensional ∗-subalgebra of Symn , denoted by En and called

the Eulerian subalgebra.
The noncommutative Eulerian polynomials are defined by [10, Section 5.4]

An(t) =
n∑

k=1

tk
( ∑

|I|=n
�(I)=k

R I

)
=

n∑
k=1

A(n,k)tk, (4)

where R I is the ribbon basis [10, Section 3.2] The following facts can be found (up to a few mis-
prints3) in [10]. The generating series of the An(t) is

1 A self-contained and elementary presentation of the main results of [1] can be found in [10].
2 In the commutative case, these are denoted by hn in Macdonald’s book [14]. The letter S is used to remind of symmetric

powers of a vector space. Indeed, bases of symmetric powers can be labeled by nondecreasing words. Similarly, the noncom-
mutative elementary symmetric functions (sum of decreasing words) are denoted by Λn and are interpreted as exterior powers.

3 Eqs. (93) and (97) of [10] should be read as (12) and (13) of the present paper.
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A(t) :=
∑
n�0

An(t) = (1 − t)(1 − tσ1−t)
−1, (5)

where σ1−t = ∑
(1 − t)n Sn .

Let A∗
n(t) = (1 − t)−n An(t). Then,

A∗(t) :=
∑
n�0

A∗
n(t) =

∑
I

(
t

1 − t

)�(I)

S I . (6)

This last formula can also be written in the form

A∗(t) =
∑
k�0

(
t

1 − t

)k

(S1 + S2 + S3 + · · ·)k (7)

or

1

1 − tσ1(A)
=

∑
n�0

An(t)

(1 − t)n+1
. (8)

Let S[k] = σ1(A)k be the coefficient of tk in this series. In degree n,

S[k]
n =

∑
I�n, �(I)�k

(
k

�(I)

)
S I =

n∑
i=1

ki E[i]
n . (9)

This is another basis of En . Expanding the factors (1 − t)−(n+1) in the right-hand side of (8) by the
binomial theorem, and taking the coefficient of tk in the term of weight n in both sides, we get

S[k]
n =

k∑
i=0

(
n + i

i

)
A(n,k − i). (10)

Conversely,

An(t)

(1 − t)n+1
=

∑
k�0

tk S[k]
n , (11)

so that

A(n, p) =
p∑

i=0

(−1)i
(

n + 1

i

)
S[p−i]

n . (12)

The expansion of the E[k]
n on the basis A(n, i), which is a noncommutative analog of Worpitzky’s

identity (see [9] or [13]) is

n∑
xk E[k]

n =
n∑(

x + n − i

n

)
A(n, i). (13)
k=1 i=1



J.-C. Novelli, J.-Y. Thibon / Advances in Applied Mathematics 48 (2012) 528–534 531
Indeed, when x is a positive integer N ,

n∑
k=1

Nk E[k]
n = Sn(N A) =

∑
I�n

F I (N)R I (A) (14)

where F I are the fundamental quasi-symmetric functions, and for a composition I = (i1, . . . , ir) of n,

F I (N) =
(

N + n − r

n

)
. (15)

3. The b-shuffle process

For a positive integer b, the b-shuffle permutations in Sn are the inverses of the permutations
with at most b − 1 descents. Thus, the b-shuffle operator can be identified with S[b]

n (i.e., with
∗-multiplication by S[b]

n ). It belongs to the Eulerian algebra, so that it preserves it, and it makes sense
to compute its matrix in the basis A(n,k). Note that since En is commutative, it does not matter
whether we multiply on the right or on the left.

The b-shuffle process is an example of what Stanley has called the QS-distribution [15]. It is the
probability distribution on permutations derived by assigning probability b−1 to the first b positive
integers, see [7] for a simplified exposition.

Summarizing, we want to compute the coefficients Pij(b) defined by

S[b]
n ∗ A(n, j) =

n∑
i=1

Pij(b)A(n, i). (16)

From (9), it is clear that

S[p]
n ∗ S[q]

n = S[pq]
n (17)

so that, using (12), we obtain

S[b]
n ∗ A(n, j) =

j∑
r=0

(−1)r
(

n + 1

r

)
S[b( j−r)]

n

=
j∑

r=0

(−1)r
(

n + 1

r

) b( j−r)∑
k=0

(
n + k

k

)
A
(
n,b( j − r) − k

)
. (18)

The coefficient of A(n, i) in this expression is therefore

Pij(b) =
j∑

r=0

(−1)r
(

n + 1

r

)(
n + b( j − r) − i

n

)
. (19)

These are the coefficients of the amazing matrix (up to a shift of 1 on the indices i, j, and a global
normalization factor bn so as the probabilities sum up to 1).

Since the E[k]
n form a basis of orthogonal idempotents in En , it is reasonable to introduce a scalar

product such that

〈
E[i]

n

∣∣E[ j]
n

〉 = δi j . (20)
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Then, the b-shuffle operator is self-adjoint. Its orthonormal basis of eigenvectors is clearly E[k]
n (with

eigenvalues bk).
In terms of coordinates, since we are working in the non-orthogonal basis A(n, i), its right eigen-

vector of eigenvalue b j is the column vector whose ith component is the coefficient of E[ j]
n on A(n, i),

that is, the coefficient of x j in
(x+n−i

n

)
, thanks to (13). By duality, its left eigenvector associated with

the eigenvalue bi is the row vector whose jth component is

〈
A(n, j)

∣∣E[i]
n

〉 =
j∑

r=0

(−1)r
(

n + 1

r

)
( j − r)i . (21)

Comparing [8, Theorem 4.1], we see that this is precisely the Foulkes character table (up to indexation,
the Frobenius characteristic of χn,k is the commutative image4 of A(n,n − k)).

4. Other examples

4.1. Determinant of the Foulkes character table

This is the determinant of the matrix F

F (i, j) = 〈
A(n, i), E[ j]

n
〉
, i, j = 1, . . . ,n. (22)

Because of the triangularity property

A(n, i) = S[i]
n +

i∑
r=1

(−1)r
(

n + 1

r

)
S[i−r]

n , (23)

we have as well

det F = det G where G(i, j) = 〈
S[i]

n , E[ j]
n

〉 = i j (24)

a Vandermonde determinant which evaluates to n!(n − 1)! · · · 2!1!. This gives a different proof of
[6, (2.9)].

4.2. Descents of br -riffle shuffles

Recall from [7] that FQSym is an algebra based on all permutations and that it has two bases

Gσ =
∑

std(w)=σ

w = Fσ−1 (25)

which are mutually adjoint for its natural scalar product

〈Fσ ,Gτ 〉 = δσ ,τ . (26)

4 These commutative symmetric functions have been studied in [3].
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Under the embedding of Sym into FQSym, the br -shuffle operator is

(
S[b]

n
)∗r = S[br ]

n =
∑

σbr -shuffle

Fσ . (27)

The generating function of br -shuffle by number of descents is therefore its scalar product in FQSym
with the noncommutative Eulerian polynomial

An(t) =
n∑

k=1

tkA(n,k) =
∑

τ∈Sn

td(τ )+1Gτ . (28)

Recall that

An(t) = (1 − t)n+1
n∑

k=1

tk S[k]
n (29)

so that

〈
S[br ]

n , An(t)
〉 = (1 − t)n+1

n∑
k=1

tk〈S[br ]
n , S[k]

n
〉
. (30)

Now, when one factor P of a scalar product 〈P , Q 〉 in FQSym is in Sym, one has 〈P , Q 〉 = 〈p, Q 〉
where p = P is the commutative image of P in QSym, and the bracket is now the duality between
Sym and QSym. Furthermore, when p in Sym, then, the scalar product reduces to 〈p,q〉, where q =
Q is the commutative image of Q in Sym, and the bracket is now the ordinary scalar product of
symmetric functions (see [7]). Thus,

〈
S[br ]

n , S[k]
n

〉 = 〈
hn

(
br X

)
,hn(kX)

〉 = hn
(
brk

) =
(

brk + n − 1

n

)
(31)

(λ-ring notation) and we are done

〈
S[br ]

n , An(t)
〉 = (1 − t)n+1

n∑
k=1

tk
(

brk + n − 1

n

)
. (32)

This statement is equivalent to Theorem 4.1 of [6].
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