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Abstract

The discrete non-Abelian symmetryA4, valid at some high-energy scale, naturally leads to three degenerate neutrino masses,
without spoiling the hierarchy of charged-lepton masses. Realistic neutrino mixing angles (one of which is necessarily maximal
and the other large) are then automatically induced radiatively, and the correct mass splittings may be obtained in the context
of softly broken supersymmetry. The quark mixing matrix is also calculable in a similar way. The mixing parameterUe3
is predicted to be imaginary, leading to maximal CP violation in neutrino oscillations. Neutrinoless double beta decay and
τ → µγ should be in the experimentally accessible range.
 2002 Elsevier Science B.V.

It has often be said that the mixing pattern of neutrinos, which involves large angles, as evidenced by the
atmospheric [1] and solar [2] neutrino data, is unexpected and difficult to understand, given that the quark charged-
current mixing matrixVCKM involves only small angles. However, as shown below, both can be explained in a
simple and unified way as small radiative corrections of a fixed pattern, valid at some high-energy scale as the
result of an underlying symmetry, which we identify here asA4, the non-Abelian discrete symmetry group of
the tetrahedron [3]. We show that at the high scale, neutrino masses are degenerate andVCKM is the identity
matrix. We then calculate the radiative corrections down at the electroweak scale in the framework of softly broken
supersymmetry [4,5] and obtain realistic versions ofMν andVCKM. The reason that neutrino mixing involves
large angles is a simple consequence of degenerate perturbation theory, where a small off-diagonal term induces
maximal mixing between two states of equal energy, whereas in the quark sector with hierarchical masses, the
same small off-diagonal element induces only a small mixing.

Our starting point is the model of Ref. [3], but with the following two important improvements. (I) Instead of
breakingA4 spontaneously at the electroweak scale, it is now broken at a very high scale. (II) Supersymmetry
is added with explicit soft breaking terms which also breakA4. The resulting theory at the electroweak scale is
a specific version of the MSSM (Minimal Supersymmetric Standard Model), where the scalar lepton and quark
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sectors are correlated withMν andVCKM. In this way we also provide a theoretical framework for realizing the
neutrino unification idea suggested in the first paper of Ref. [4], but with different specific predictions.

The non-Abelian discrete finite groupA4 consists of 12 elements and has 4 irreducible representations. Three
are one-dimensional, 1, 1′, 1′′, and one is three-dimensional, 3, with the decomposition

(1)3× 3= 1+ 1′ + 1′′ + 3+ 3.

The usual quark, lepton, and Higgs superfields transform underA4 as follows:

(2)Q̂i = (ûi, d̂i), L̂i = (ν̂i , êi )∼ 3, φ̂1,2 ∼ 1,

(3)ûc1, d̂
c
1, ê

c
1 ∼ 1, ûc2, d̂

c
2, ê

c
2 ∼ 1′, ûc3, d̂

c
3, ê

c
3 ∼ 1′′.

We then add the following heavy quark, lepton, and Higgs superfields:

(4)Ûi, Û
c
i , D̂i , D̂

c
i , Êi, Ê

c
i , N̂

c
i , χ̂i ∼ 3,

which are allSU(2) singlets. The superpotential of this model is then given by

Ŵ =MUÛiÛ
c
i + fuQ̂iÛ

c
i φ̂2 + huijkÛi û

c
j χ̂k +MDD̂iD̂

c
i + fdQ̂iD̂

c
i φ̂1 + hdijkD̂i d̂

c
j χ̂k +MEÊiÊ

c
i

(5)+ feL̂i Ê
c
i φ̂1 + heijkÊi ê

c
j χ̂k + 1

2
MNN̂

c
i N̂

c
i + fNL̂iN̂

c
i φ̂2 +µφ̂1φ̂2 + 1

2
Mχχ̂iχ̂i + hχ χ̂1χ̂2χ̂3,

where we have adopted the usual assignment ofR parity to distinguish between the Higgs superfields, i.e.,φ̂1,2
andχ̂i , from the quark and lepton superfields. We have also forbidden the termsχ̂iN̂

c
j N̂

c
k , etc. by assigning

(6)χ̂i ∼ ω, ûci , d̂
c
i , ê

c
i ∼ ω2,

and all others∼ 1 under a separate discrete symmetryZ3 (with ω3 = 1 and 1+ ω + ω2 = 0). However,Z3 is
allowed to be broken explicitly but only softly, which is uniquely accomplished in the above byMχ �= 0.

The scalar potential involvingχi is given by

(7)V = |Mχχ1 + hχχ2χ3|2 + |Mχχ2 + hχχ3χ1|2 + |Mχχ3 + hχχ1χ2|2,
which has the supersymmetric solution(V = 0)

(8)〈χ1〉 = 〈χ2〉 = 〈χ3〉 = u= −Mχ/hχ ,

so that the breaking ofA4 at the high scaleMχ does not break the supersymmetry. (Note that Eq. (8) is only
possible becauseA4 allows the invariant symmetric product of 3× 3 × 3, a highly nontrivial property not shared
for example by the triplet representation of either SO(3) or SU(3).)

Consider now the 6× 6 Dirac mass matrix linking(ei,Ei) to (ecj ,E
c
j ).

(9)MeE =



0 0 0 fev1 0 0
0 0 0 0 fev1 0
0 0 0 0 0 fev1
he1u he2u he3u ME 0 0

he1u he2ωu he3ω
2u 0 ME 0

he1u he2ω
2u he3ωu 0 0 ME


,

wherev1 = 〈φ0
1〉, and Eq. (17) of the first paper of Ref. [3] has been used, with similar forms for the quark mass

matrices. The reduced 3× 3 Dirac mass matrix for the charged leptons is then

(10)Me =UL

(
he1

′ 0 0
0 he2

′ 0
0 0 he3

′

) √
3fev1u

ME

,
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wherehei
′ = hei [1+ (hei u)

2/M2
E]−1/2 and

(11)UL = 1√
3

(1 1 1
1 ω ω2

1 ω2 ω

)
.

This shows that charged-lepton masses are allowed to be all different, despite the imposition of theA4 symmetry,
because there exist three inequivalent one-dimensional representations. The corresponding Yukawa couplings are
not constrained by theA4 symmetry to be of the same order of magnitude, in the same way they are not constrained
by the standard-model gauge symmetry. (Note that the permutation symmetry groupsS3 andS4 have only two
inequivalent one-dimensional representations andS3 has no three-dimensional representation [6].) Clearly, theup
and down quark mass matrices are obtained in the same way, with the important conclusion that the charged-
current mixing matrixVCKM is automatically equal to the identity matrix, because both are diagonalized byUL.
Corrections toVCKM = 1 may then be ascribed to the structure of the soft supersymmetry breaking sector [5,7].

In the neutrino sector, the 6× 6 Majorana mass matrix spanning(νe, νµ, ντ ,Nc
1,N

c
2,N

c
3) is given by

(12)MνN =
(

0 ULfNv2

UT
LfNv2 MN

)
,

wherev2 = 〈φ0
2〉. Hence the 3× 3 seesaw mass matrix for(νe, νµ, ντ ) becomes

(13)Mν = f 2
Nv

2
2

MN

UT
LUL = f 2

Nv
2
2

MN

(1 0 0
0 0 1
0 1 0

)
.

This shows that neutrino masses are degenerate at this stage.
Consider now the above as coming from an effective dimension-five operator [8]

(14)
f 2
N

MN
λij νiνjφ

0
2φ

0
2,

whereλee = λµτ = λτµ = 1 and all otherλ’s are zero, which is valid at some high scale. As we come down to
the electroweak scale, Eq. (14) is corrected [9] by the wavefunction renormalizations ofνe , νµ, andντ , as well
as the corresponding vertex renormalizations. Even if only the standard model is considered, this will lift the
degeneracy of Eq. (13) because of the different charged-lepton masses. The resulting pattern, i.e.,λee = 1+ 2m2

eε,
λµτ = λτµ = 1 + (m2

µ + m2
τ )ε, whereε ∼ 1/(16π2v2) ln(MN/MZ), is however not suitable for explaining the

present data on neutrino oscillations. On the other hand, other radiative corrections exist in the context of softly
broken supersymmetry with a general slepton mass matrix [4]. Given the structure ofλij at the high scale, its form
at the low scale is necessarily fixed to first order as

(15)λij =
( 1+ 2δee δeµ + δeτ δeµ + δeτ
δeµ + δeτ 2δµτ 1+ δµµ + δττ
δeµ + δeτ 1+ δµµ + δττ 2δµτ

)
,

where we have assumed all parameters to be real as a first approximation. (The above matrix is obtained by
multiplying that of Eq. (13) on the left and on the right by all possibleνi → νj transitions.) Let us rewrite the
above withδ0 ≡ δµµ + δττ − 2δµτ , δ ≡ 2δµτ , δ′ ≡ δee − δµµ/2− δττ /2− δµτ , andδ′′ ≡ δeµ + δeτ . Then

(16)λij =
(1+ δ0 + 2δ+ 2δ′ δ′′ δ′′

δ′′ δ 1+ δ0 + δ

δ′′ 1+ δ0 + δ δ

)
,

and theexacteigenvectors and eigenvalues are easily obtained:

(17)

(
ν1
ν2
ν3

)
=
 cosθ sinθ/

√
2 sinθ/

√
2

−sinθ cosθ/
√

2 cosθ/
√

2

0 −1/
√

2 1/
√

2

( νeνµ
ντ

)
,
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(18)λ1 = 1+ δ0 + 2δ+ δ′ −
√
δ′2 + 2δ′′2,

(19)λ2 = 1+ δ0 + 2δ+ δ′ +
√
δ′2 + 2δ′′2,

(20)λ3 = −1− δ0.

Note the remarkable fact that Eq. (17) is valid whatever valuesδ0, δ, δ′, andδ′′ may take. Withδ′′2/δ′2 of order
unity, this is also a very satisfactory description of present neutrino-oscillation data, i.e., sin2 2θatm= 1, and

(21)tan2 θsol = δ′′2

δ′′2 + δ′2 − δ′
√
δ′2 + 2δ′′2

= 0.44,

if δ′ < 0 and|δ′′/δ′| = 1.7. Note that forδ′′ = δ′ Eq. (16) reproduces that proposed in the second paper of Ref. [3].
Whereas the latter was simply an ansatz, the form of Eq. (16) here is anecessaryconsequence of our assumption
that radiative corrections are responsible for the splitting of the neutrino mass degeneracy enforced by the discrete
A4 symmetry. Assuming thatδ′, δ′′ � δ, we now have

(22)+m2
31 �+m2

32 � 4δm2
0, +m2

12 � 4
√
δ′2 + 2δ′′2m2

0,

wherem0 is the common mass of all 3 neutrinos.
Note thatUe3 = 0 in Eq. (17), which would imply the absence ofCP violation in neutrino oscillations. However,

if we do not assumeλij to be real, then it has one complex phase which cannot be rotated away. Without loss of
generality, we now rewrite Eq. (16) as

(23)λij =
(1+ 2δ+ 2δ′ δ′′ δ′′∗

δ′′ δ 1+ δ

δ′′∗ 1+ δ δ

)
,

where we have redefined 1+ δ0 as 1, andδ, δ′ are real. Although this mass matrix cannot be diagonalized exactly,
if we assume thatδ′, Reδ′′ and(Im δ′′)2/δ are all much smaller thanδ in magnitude, then Eqs. (17) to (22) are
again valid (but only approximately) with the following changes:

(24)Ue3 = i Im δ′′√
2δ

, δ′ → δ′ + (Im δ′′)2

2δ
, δ′′ → Reδ′′.

Note the important result thatUe3 is imaginary. ThusCP violation ispredictedto bemaximalin this model for
neutrino oscillations. Using Eq. (22), we also have the relationship

(25)

[
+m2

12

+m2
32

]2

�
[
δ′

δ
+ |Ue3|2

]2

+ 2

[
Reδ′′

δ

]2

.

Note that|Ue3| is naturally of the order|+m2
12/+m

2
32|1/2 � 0.14. This result depends only on the form of Eq. (23),

which is itself derived in the most general way.
It remains to be shown in the rest of this Letter that realistic values ofδ, δ′, andδ′′ are possible from the soft

breaking of supersymmetry, without running into conflict with present limits on neutrinoless double beta (ββ0ν)
decay and lepton flavor violating processes such asτ →µγ .

Let us calculateδ in the context of supersymmetry. We show in Figs. 1 and 2 the wavefunction and vertex
corrections respectively due tõµL–τ̃L mixing. Let the two scalar mass eigenstates have massesm̃1,2 and their
mixing angle beθ . For illustration, let us take the approximation thatm̃2

1 � µ2 � M2
1,2 = m̃2

2, whereµ is
the superpotential higgsino mixing term, whileM1,2 denote the soft supersymmetry breaking gaugino mass
parameters. We then obtain

(26)δ � sinθ cosθ

16π2

[(
3g2

2 − g2
1

)
ln
m̃2

1

µ2
− 1

4

(
3g2

2 + g2
1

)(
ln
m̃2

1

m̃2
2

− 1

2

)]
.
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Fig. 1. Wavefunction contribution toδ in supersymmetry.

Fig. 2. Vertex contribution toδ in supersymmetry.

Using Eq. (22) and taking+m2
32 = 2.5 × 10−3 eV2 from atmospheric neutrino oscillations, we findδ = 3.9 ×

10−3(0.4 eV/m0)
2. This implies that

(27)ln
m̃2

1

µ2
− 0.3

(
ln
m̃2

1

m̃2
2

− 1

2

)
� 0.535

sinθ cosθ

[
0.4 eV

m0

]2

.

To the extent that this factor cannot be much greater than one, the common massm0 as probed in neutrinoless
double beta decay [10] cannot be much lower than the present upper bound of about 0.4 eV. This is in sharp
contrast to the scenario proposed in the first paper of Ref. [4] whereββ0ν decay is strongly suppressed.

Similarly,δ′′ = δeµ+δτe = δeµ+δ∗eτ is determined bỹeL–µ̃L andẽL–τ̃L mixing. Using the experimental bound
of |Ue3|< 0.16, we find Imδ′′ < 8.8 × 10−4(0.4 eV/m0)

2, and using+m2
12 � 5 × 10−5 eV2 from solar neutrino

oscillations, we find Reδ′′ < 5.5 × 10−5(0.4 eV/m0)
2. These limits may be saturated mainly byẽL–τ̃L mixing,

allowing ẽL–µ̃L mixing to be much more suppressed. In other words, from the data on neutrino oscillations, we
are able to make the direct connection in this model that flavor violation in the charged-lepton sector should be the
greatest in theµ–τ sector and smallest in thee–µ sector.

Using the same approximation which leads to Eq. (26), theτ →µγ amplitude is calculated to be

(28)A= e(3g2
2 + g2

1)

1536π2 (sinθ cosθ)
mτ

m̃2
2

ελqνµ̄σλν(1+ γ5)τ.

The resulting branching fraction is then

(29)B(τ →µγ )= 4.8× 10−6 sin2 θ cos2 θ

[
100 GeV

m̃2

]4

.
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Using the experimental upper limit of 1.1×10−6 on this number, we require thus̃m2> 102 GeV. Constraints from
τ → eγ andµ→ eγ are also similarly satisfied. Details will be given in a forthcoming comprehensive study of
the correlation between the neutrino parameters and the pattern of soft supersymmetry breaking of this model.

Consider now the quark sector. Whereas the neutrino sector has onlyL–L scalar mixings, we now also have
L–R andR–R scalar mixings. In a previous study [5],VCKM = 1 was obtained from proportionalup anddown
quark mass matrices, and it was shown that a realisticVCKM could then be generated withL–R scalar quark
mixings through gluino exchange. HereVCKM = 1 is obtained from ourA4 symmetry for any set of arbitraryup
anddownquark masses, with the obvious implication that the above result also applies. (In the charged-lepton
sector, the effect is smaller (because it comes from bino exchange) and does not significantly change the neutrino
mixing angles except possibly forUe3.) More details will be discussed in the forthcoming comprehensive study.

In conclusion, we have presented a concrete model based on the discrete symmetryA4 where quark and charged-
lepton masses can be all different and yet neutrino masses are degenerate at some high scale whereVCKM = 1 and
the effective neutrino mass matrix in theνe, νµ, ντ basis is of the form

(30)Mν =
(
m0 0 0
0 0 m0
0 m0 0

)
.

The parameterm0 naturally lies in the range where it can be probed in cosmology, neutrinoless double
beta decay and tritium beta decay. Radiative corrections lift the neutrino degeneracy leading automatically to
(A) sin2 2θatm= 1, (B) Ue3 small and imaginary, and (C) large (but not maximal) solar mixing angle. These
corrections can be ascribed to the structure of the soft supersymmetry breaking terms in the scalar sector, which
also break theA4 symmetry explicitly and correlate the neutrino mass matrix with lepton flavor violating processes.
Last but not least, a realistic quark mixing matrixVCKM may be obtained in a totally analogous way.
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