Influence of Al₂O₃ and SiNx passivation layers on LeTID

Friederike Kerstenᵃᵇ,*, Johannes Heitmannᵇ, Jörg W. Müllerᵃ

ᵃHanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen, Germany
ᵇTU Bergakademie Freiberg, Institute of Applied Physics, Leipziger Straße 23, 09599 Freiberg, Germany

Abstract

In this work the carrier lifetime evolution of different passivation layers under illumination and at elevated temperatures are investigated. Multicrystalline silicon lifetime samples were treated by implementing typical industrial processing steps. The degradation was found to depend strongly on surface passivation type, but is independent of the surface doping and oxide charge. The influence of the passivation layer on the silicon bulk lifetime degradation is investigated. After reaching a degradation maximum, the lifetime samples feature a regeneration phase. Capacitance-voltage measurements show that the oxide charge is not influenced by the degradation, but a high decrease in carrier lifetime were measured. Firing experiments show that lifetime samples passivated after firing procedure are not prone to degradation.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer review by the scientific conference committee of SiliconPV 2016 under responsibility of PSE AG.

Keywords: mc-Si; light induced degradation; passivation

1. Introduction

Multicrystalline silicon (mc-Si) solar cells and modules with PERC (Passivated Emitter and Rear Cell) concept can show unexpected strong light induced degradation levels at elevated temperatures. A new light and elevated temperature induced degradation effect (LeTID) has been detected, which cannot be explained by the activation of boron-oxygen (B-O) complexes or the division of iron-boron (FeB) pairs [1-3]. The degradation mechanism called LeTID, can cause a module power degradation level of above 10% [3] and might be a potential obstacle for the industrial realization of the PERC technology. Hanwha Q CELLS has shown that their Q.ANTUM technology is a

* Corresponding author. Tel.: +49 (0) 3494 6699-52134.
E-mail address: f.kersten@q-cells.com
unique technology differentiating from mc-Si PERC and is not effected by LeTID [3]. Currently, there is no physical understanding about the degradation effect and it is still unclear if only the rear side of the solar cell [2] or the Si bulk material [3] is affected. In addition, an interaction of surface passivation layer and bulk material could be the root cause of degradation under LeTID conditions. In this work the impact of different passivation layers and surface doping types are investigated to gain a better understanding of the specific root cause of the degradation effect.

2. LeTID characteristics and observation on lifetime samples

2.1. Experimental

Neighboring LeTID-sensitive block cast boron-doped mc-Si wafers are processed to lifetime samples by implementing typical industrial processing steps (see Fig. 1). After a wet chemical saw damage removal a phosphor diffusion is performed resulting in \(n^+ \)-layers on both wafer surfaces. To analyze the influence of the doping at the wafer surface two process flows were implemented. At one half of the samples the emitter was chemically removed (w/o emitter) and the other half keeps its \(n^+ \)-doping region (w/ emitter). After phosphor glass removal the samples get a symmetrically passivation and receive a final firing step. Three different passivation types, deposited in two different tools, are used. Single layer Al\(_2\)O\(_3\) and Al\(_2\)O\(_3\)/Si\(_x\)N\(_y\) stacks were deposited in tool A only. The two kind of Si\(_x\)N\(_y\) passivated samples were produced in two different deposition tools (tool A & B).

To gain a better understanding of the interaction of passivation layer and bulk material additional lifetime samples were processed. The samples undergo the POCl\(_3\) diffusion, chemical emitter removal, firing step and in this case the passivation layer deposition after firing procedure.

The LeTID treatments are carried out at elevated temperature of 75°C and an excess carrier injection is provided by LED illumination at 300 W m\(^{-2}\). Quasi steady state photo conductance decay (QSSPC) measurements were used to characterize the carrier lifetime \(\tau_{eff} \) during time expired degradation. \(\tau_{eff} \) values are carried out at \(\Delta n = 10^{14} \) cm\(^{-3}\). The long-time degradation behavior of Si\(_x\)N\(_y\)-passivated samples w/ emitter at elevated temperatures are also investigated without excess carrier injection.

To determine the evolution of fixed charge density \(Q_f \) before and after 24 h LeTID capacitance-voltage (\(C-V \)) experiments were carried out using a metal-oxide semiconductor model as described in [4].

In Table 1 all passivation layers and their surface properties are collected. \(\tau_{eff} \) values were measured before \((t = 0 \) h) and after 1000 h of LeTID treatment.

Fig. 1. Process sequence of the investigated lifetime samples. The symbols in the last row are standing for the used symbols in Fig. 3–4.
2.2. Results on lifetime samples

The results of the lifetime measurements in Fig. 2 show that only the samples, which are passivated before firing, degrade severe during the first 24 h LeTID procedure (70 ± 9 μs). Samples with a passivation layer deposited after the firing step are not prone to degradation.

In Fig. 3 the long-time τ_{eff} measurement are plotted for three different surface passivation types (deposition tool A & B) w/o and w/ emitter. Similar degradation rates were determined for all samples with n^+-doped emitter as well as for samples with passivation layers deposited by using deposition tool A (~70 → 7 μs). In comparison to the n^+-doped samples and tool A samples the SiNx-passivated samples deposited in tool B w/o emitter show a slightly higher defect generation. In this sample τ_{eff} degrades from 30 μs up to 2 μs after 1000 h. The degradation of the SiNx sample w/ emitter in darkness is obviously slower but shows also a decrease of $\tau_{\text{eff}} = 34$ μs after 1000 h (τ_{eff} measurement not presented here).

Fig. 4 shows the extended long-time degradation (expansion of Fig. 3) and regeneration behavior of all passivation layers w/o emitter. After reaching a degradation maximum all samples include SiNx feature a regeneration phase. The lowest degradation rate were determined for only Al2O3 passivated samples and no regeneration is visible after 6000 h of LeTID treatment.

Table 1. Passivation layers and their surface properties. τ_{eff} was extracted at $n = 10^{14}$ cm$^{-3}$.

<table>
<thead>
<tr>
<th>Lifetime sample</th>
<th>Symbol</th>
<th>Deposition tool</th>
<th>Emitter</th>
<th>τ_{eff} before LeTID [μs]</th>
<th>τ_{eff} after ~ 1000 h LeTID [μs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al2O3/SiNx w/o emitter</td>
<td>□ & ■</td>
<td>A w/o & w/</td>
<td></td>
<td>76 & 74</td>
<td>5 & 7</td>
</tr>
<tr>
<td>Al2O3</td>
<td>□</td>
<td>A w/o</td>
<td></td>
<td>65</td>
<td>29</td>
</tr>
<tr>
<td>SiNx</td>
<td>◊ & •</td>
<td>A w/o & w/</td>
<td></td>
<td>63 & 72</td>
<td>7 & 7</td>
</tr>
<tr>
<td>SiNx</td>
<td>Δ & ▲</td>
<td>B w/o & w/</td>
<td></td>
<td>30 & 57</td>
<td>2 & 7</td>
</tr>
<tr>
<td>SiNx (dark at 75°C)</td>
<td>▼</td>
<td>B w/</td>
<td></td>
<td>56</td>
<td>34</td>
</tr>
</tbody>
</table>

Fig. 2. τ_{eff} before and after LeTID of passivation layers, which are present or absent during firing.

Fig. 3. Long-time degradation behavior of different passivation layers with and without n^+-doped emitter.
In Fig. 5 the Q_f results of C-V measurement for passivation layers present during firing procedure before and after 24 h LeTID are presented. LeTID sensitive Al$_2$O$_3$/SiN$_x$ stack w/o emitter samples exhibit the same degradation behavior as results shown in Fig. 4. There is only a slightly decrease in negative Q_f after 24 h LeTID, but a high decrease in τ_{eff}. Furthermore, Q_f and τ_{eff} were determined for a LeTID free lifetime sample with defect engineered process sequence [3]. No decrease of Q_f could be recognized. It was impossible to measure the interface trap density D_{it} of the mc-Si lifetime samples, because of high trapping of accumulation capacitance during conductance measurement.

3. Conclusion

All investigated surface passivation layers, which are present during firing step, show a different time-dependent lifetime degradation. The observed severe lifetime degradation strongly depends on the type of surface passivation, but is independent of surface doping and oxide charge. Same degradation behavior for SiN$_x$ (positive surface charge) or Al$_2$O$_3$ (negative surface charge) were determined. After reaching a degradation maximum, the lifetime samples feature a regeneration phase. On extended time scale the Al$_2$O$_3$/SiN$_x$ stack almost recovered to initial lifetime value. Degradation also occurs without illumination at elevated temperatures. The degradation rate is obviously slower and up to now it is unclear if it is the same degradation effect as with enhanced excess carrier densities. C-V measurements show no significant decrease of fixed charge density, but carrier lifetime are prone to degrade. Furthermore, a correlation with the silicon bulk material is observed. Strong degradation for samples with passivation layers present during firing step were determined. Only slight degradation of τ_{eff} with passivation layers absent during firing step and final passivation were observed. The slightly degradation of τ_{eff} is related to B-O degradation in mc-Si [5]. This represents an interaction of passivation layer with mc-Si bulk material during firing step. However, this avoidance of degradation is unfeasible for industrial production, because it is impossible to passivated solar cell rear side after metallization and firing step.

Up to now there is no physical explanation for the degradation mechanism and further work is ongoing in order to create a deeper understanding of the LeTID process on mc-Si lifetime samples and solar cells.
Acknowledgements

Special thanks to the staff of the Reiner Lemoine Research Center and pilot line at Hanwha Q CELLS. This work was financially supported by German Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 0325775 (“AdmMo”).

References