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a b s t r a c t

Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of
lipidperoxidation (LPO) products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO
products are generated either via inflammation driven oxidative stress or via the induction of
cytochrome P-450 2E1 (CYP2E1). In the liver CYP2E1 is induced by various compounds including free
fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the
liver of patients with non-alcoholic steatohepatitis (NASH) as well as in the chronic alcoholic. In addition,
chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these
tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast,
in patients with non-alcoholic steatohepatitis (NASH) hepatic etheno-DNA adducts do not correlate with
CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflamma-
tion rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various
types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed
that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction

Oxidative stress is an important mechanism in the pathogen-
esis of many diseases including cancer. The generation of reactive
oxygen species (ROS) with consecutive DNA damage is an initial
step in carcinogenesis induced by inflammatory processes. During
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

https://core.ac.uk/display/81180208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.sciencedirect.com/science/journal/22132317
www.elsevier.com/locate/redox
http://dx.doi.org/10.1016/j.redox.2014.08.009
http://dx.doi.org/10.1016/j.redox.2014.08.009
http://dx.doi.org/10.1016/j.redox.2014.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.08.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.08.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.08.009&domain=pdf
mailto:helmut_karl.seitz@urz.uni-heidelberg.de
http://dx.doi.org/10.1016/j.redox.2014.08.009


K. Linhart et al. / Redox Biology 3 (2014) 56–62 57
inflammation ROS is generated among others through various
cytokines, but also through other mechanisms such as the induc-
tion of cytochrome P4502E1 (CYP2E1) as demonstrated following
chronic alcohol consumption [1,2]. This review will focus on the
effect of alcohol on CYP2E1 and its role in ROS formation, but
major emphasis will be led on the generation of carcinogenic
exocyclic etheno-DNA adducts as a consequence of the reaction
between lipidperoxidation products generated by ROS and DNA
bases following ethanol administration in vitro and in vivo. It will
be shown that these etheno-DNA adducts following chronic
ethanol consumption are of major importance with respect to
ethanol mediated carcinogenesis in the liver and in other tissues.
Fig. 1. Simplified pathophysiology of reactive oxygen species (ROS) and etheno-
DNA adduct formation. Inflammation driven cytokine secretion results among
others in NFκB activation and in the activation of NADPH oxidase (NADPH-Ox) as
well as myeloperoxidase (MPO). NFκB is also activated by acetaldehyde, the first
metabolite of ethanol oxidation. NFκB stimulates lipoxigenase (LOX), cyclooxygen-
ase 2 (COX2), and inducible nitric oxide synthase (iNOS). As a result ROS and
reactive nitrogen species (RNS) are generated, which lead to lipidperoxidation with
the occurrence of lipidperoxidation products such as 4-hydroxynonenal (4-HNE),
4-hydroxyhydroperoxy-2-nonenal (HPNE), and malondialdehyde (MDA). These
adducts react with DNA bases to form exocyclic etheno/propane-DNA adducts.
Chronic alcohol consumption results in the induction of cytochrome P-4502 E1
which is involved in ethanol oxidation through the microsomal ethanol oxidizing
pathway. During this reaction ROS is generated without inflammation. Other
compounds such as free fatty acids or acetone also induce CYP2E1 which is
especially relevant in nonalcoholic fatty liver disease (NAFLD), when the liver is
loaded with fat and in patients with diabetes mellitus when acetone is generated in
the liver.
Inflammation, oxidative stress and DNA damage

Chronic inflammation induced by various agents including
viruses and bacteria is associated with an increased cancer risk
due to tissue damage and genetic instability [3–7]. Oxidative stress
with the generation of ROS may occur in chronic infection and
inflammation primarily due to the generation of nitric oxide (NO),
superoxide anion (O2

.�) and other ROSs by macrophages and
neutrophils that infiltrate the inflamed tissue [8,9].

Activated inflammatory cells in various tissues including the
liver in turn induce oxidant generating enzymes such as NADPH
oxidase, inducible nitric oxide synthetase (iNOS), xanthine oxidase
(XO) and myeloperoxidase (MPO) [10,11]. In such conditions ROS
and reactive nitrogen species (RNS) are generated. As a conse-
quence ROS and RNS can damage DNA, RNA, lipids and proteins
through nitration and oxidation resulting in an increased mutation
load [10,11].

Furthermore, cytokines are released in inflammatory tissues
which not only activate the above mentioned enzymes to create
ROS and RNS, which also activate NFκB a nuclear transcription
factor which among others stimulates cyclooxygenase 2(COX2),
lipoxygenase (LOX), and iNOS [4,10–12]. Upregulation of iNOS,
COX2, and LOX results also in an overproduction of ROS and RNS
[10].

iNOS catalyses nitric oxide (NO) generation which reacts with
oxygen to produce N2O3 a strong nitrosating compound which
deaminates DNA bases and react with secondary amines to form
N-nitrosoamines which are highly carcinogenic [10].

Another reaction with O2 leads to peroxynitrite with the
formation of 8-nitroguanine. Peroxynitrite also results in single
strand breakage of DNA [7,10].

COX2 catalyse the conversion of arachidonic acid (AA) to
prostaglandins is inducible by various factors including NFκB,
cytokines and tumour promoters and may influence apoptosis,
angiogenesis, tumour invasion, but also the generation of oxidative
stress [12,13]. An upregulation of COX2 has been shown in familial
adenomatous polyposis (FAP) and in the Apc Min mouse model
which resembles FAP and this was associated with a highly
significant increase in various etheno-DNA lesions [13–16].

LOX metabolizes AA to hydroxyeicosatetraenoic acids (HETEs)
or leukotrienes. It has been shown in mouse skin carcinogenesis
that LOX isoenzymes are overactivated and some of the metabo-
lites cause chromosomal damage which was found to be inhibited
by LOX inhibitors [17,18].

Thus, all the factors mentioned above lead to the generation of
ROS and RNS with consequent lipid peroxidation and the produc-
tion of lipidperoxidation products such as 4-hydoxynonenal
(4HNE), 4-hydoxyhydroperoxy-2-nonenal (HPNE) and malondial-
dehyde (MDA) (Fig. 1). These lipidperoxidation products react with
DNA either directly or through bifunctional intermediates to form
various promutagenic exocyclic etheno-DNA adducts. Some major
types are depicted in Fig. 2.
LPO products derived from y-linoleic acid, including HNE, a
major LPO product and its electrophilic epoxy-, hydroperoxy-, and
oxo-enal intermediates react with the DNA bases A, C, and G to
yield inter alia the unsubstituted etheno-DNA adducts 1,
N6-etheno-2′-deoxyadenosine (εdA), 3, N4-etheno-2′-deoxycyti-
dine (εdC), 1,N2-etheno-2′-deoxyguanosine (1,N2εdG), and
N2,3-etheno-2′-deoxyguanosine (N2,3εdG). In addition, also sub-
stituted base adducts are formed such as HNE-dG carrying a fatty
acid chain residue (Fig. 2). 2,N4-etheno-5-methyl-2′-deoxycytidine
(ε5mdC), an endogenous, hitherto unknown LPO-derived adduct
was identified in the DNA of human tissue which could play a role
in epigenetic mechanisms of carcinogenesis [10,19–27].

In addition, DNA can also be modified directly by ROS and RNS
to 8-nitro-dG and 8-Oxo-dG [28]. All of these DNA changes have
been detected in human specimens [29–34].
The importance of etheno DNA adducts in carcinogenesis

Exocyclic etheno-DNA adducts exhibit strong mutagenic prop-
erties producing various types of base pair substitution mutations
and other types of genetic damage in all organisms tested so far
[35,36]. εdA can lead to AT-GC transition and AT-TA and AT-
CG transversions [37,38]. εdC can cause CG-AT transversions and
CG-TA transition [39,40], and N2,3εdG can lead to GC-AT
transition [40]. Incorporation of a single εdA in either DNA strand
of HeLa cells showed a similar miscoding frequency and was more
mutagenic than 8-oxo-dG [41].



Fig. 2. Generation of various etheno DNA-adducts. Deoxyadenine, deoxycytosine, and deoxyguanosine react with lipidperoxidation products to form 1N6-ethano-2′-deoxyadenosine
(εdA), 3,N4-etheno-2′-deoxycytidine (εdC), and 1,N2-etheno-2′-deoxyguanosine (1,N2εdG), N2,3-etheno-2′-deoxyguanosine (N2,3-εdG), and HNE-derived 1,N2-propano-2′-
deoxyguanosine adduct (HNE-dG).
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Some etheno-adducts are poorly repaired in some tissues and
cells supporting their biological relevance [42]. Strong support
that etheno-DNA adducts play a causal role in the initiation and
progression of liver carcinogenesis comes from the formation of
εdA and εdC in vivo by the human liver carcinogen vinyl chloride
[43] and by the potent multiorgan, multispecies carcinogen
urethane via their reactive epoxy-intermediates [44]. The biologi-
cal importance of etheno-DNA adducts is further stressed as they
are preferentially formed in codon 249 of TP53 (which encodes
p53), leading to a mutation that renders cells more resistant to
apoptosis and provides them some growth advantage [45].

LPO-derived reactive products and their macromolecular inter-
actions have been so far characterized primarily by in vitro studies,
making it difficult, to pinpoint the main precursors and pathways
involved in the generation of cancer-relevant DNA damage in
human in vivo. For this reason earlier studies analysed in human
specimens εdA and εdC as maker lesions for several other
exocyclic adducts that could be formed with DNA in vivo, for
which sensitive detection methods were not yet available.

Using ultrasensitive and specific detection methods [46], two
miscoding etheno-DNA adducts εdA and εdC and also ε5mdC were
unequivocally identified in humans. Samples were collected from
“at-risk” patients affected by chronic inflammatory processes,
persistent viral infections, iron storage- and alcohol-related dis-
eases or exposed to inherited/acquired cancer risk factors. Adduct
levels increased 10–100-fold progressively in human cancer-prone
organs including liver, bile duct, oesophagus, colon and pancreas.
Consistent results were also observed in rodent tumour models,
that mimick human disease (for review [47]). Taken together these
data incriminate LPO-derived adducts as strongly mutagenic
cancer-causing lesions.
Alcohol and oxidative stress

Chronic ethanol consumption may results in the development
of alcoholic liver disease (ALD) and cancer of various sites includ-
ing the liver and the upper aerodigestive tract [2,48]. One
mechanism by which alcohol exerts its deleterious effects is the
generation of ROS. As already pointed out the formation of ROS
such as superoxide anion (O2�) and hydrogen peroxide (H2O2)
causes oxidative injury [1,2]. ROS as well as acetaldehyde, the first
metabolite of ethanol oxidation, both activate NFκB an important
transcription factor involved in carcinogenesis [48]. Inflammation
driven oxidative stress including activated hepatic macrophages as
observed in alcoholic hepatitis (AH) is predominantly responsible
for the generation of ROS in AH [49]. Also hepatic iron overload as
observed in the alcoholic increases ROS [50,51]. Furthermore,
ethanol also results in the increase of iNOS with an increased
production of nitric oxide and the generation of the highly reactive
peroxynitrite (ONOO�) [52].

In addition, several enzyme systems are capable to produce
ROS including CYP2E1 as part of the microsomal ethanol oxidizing
system (MEOS) which metabolizes ethanol to acetaldehyde in the
presence of oxygen and NADPH [53,54]. This system is of major
importance, since it can be induced by chronic consumption of
ethanol. It has been shown that CYP2E1 induction occurs already
at a daily ethanol dose of 40 g and already at 1 week of consump-
tion, which is further enhanced with time. However, an inter-
individual intensity of CP2E1 increase has been observed. Some
individuals react to alcohol consumption with a striking CYP2E1
induction, while others reveal only a weak induction of CYP2E1
[55]. It is noteworthy that CYP2E1 induction by ethanol may also
depend on dietary factors since medium chain triglycerides
diminish CYP2E1 induction as compared to the application of long
chain triglycerides in animal experiments [56].
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CYP2E1 has a high rate of NADPH oxidase activity, resulting in
the generation of large quantities of O2� , H2O2 and hydroxyethyl
radicals [1,2,57]. Thus, CYP2E1 dependent microsomal ethanol
oxidation produces ROS leading to lipidperoxidation with the
generation of lipidperoxidation products such as 4-hydroxynone-
nal (4-HNE) and malondialdehyde (MDA) [1,2].

The role of CYP2E1 in the formation of ROS, in the progression
of ALD and in ethanol mediated carcinogenesis has been clearly
demonstrated [2,58–62]. Thus, the severity of ALD was signifi-
cantly enhanced in CYP2E1 overexpressing mice [63], and reduced
in CYP2E1 knockout mice [62]. When chlormethiazole (CMZ), a
strong and specific CYP2E1 inhibitor was given in addition to an
ethanol containing diet which induces ALD a significant reduction
of ROS and RNS was noted in the liver of these animals [62]
associated with a striking improvement of the liver disease [64].
Subsequently, oxidized DNA lesions have been found to be lower
in CYP2E1 knockout mice as compared to wild type mice following
chronic alcohol administration [65].

CYP2E1 induction and etheno-DNA adduct generation in the liver

Effect of ethanol
We have recently investigated the effect of CYP2E1 on lipidper-

oxidation products and etheno-DNA lesions in HepG2 cells over-
expressing CYP2E1, and in humans with alcoholic liver disease
[66]. When HepG2 cells overexpressing CYP2E1 were incubated
with increasing concentrations of ethanol up to 50 mM, an
increasing load of εdA and εdC could be detected as compared
to control cells. This was not only a concentration dependent, but
also a time dependent process. However, when 20 mM CMZ were
added to the cell culture a highly significant inhibition of the
generation of etheno-DNA adducts was observed [66].

Since increased levels of εdA adducts have been observed in
the hepatic nuclei of patients with ALD (Fig. 3) [30], we extended
our experiments and studied liver biopsies from alcoholic patients
with various severities of ALD by using immunohistology for the
detection of CYP2E1 and etheno-DNA adducts. Again there was a
significant correlation between CYP2E1, the lipidperoxidation
product 4-HNE and εdA, as well as εdC [66].

Most recently, we have investigated CYP2E1 and exocyclic
etheno-DNA adducts in a large cohort study of 97 alcoholics with
non-cirrhotic ALD. All patients were liver biopsied, histologically
evaluated and CYP2E1 as well as etheno-DNA adducts were
immunohistologically determined. As a result a strong significant
correlation between CYp2E1 and εdA (p¼0.0001) has been ob-
served (Seitz, personal observation).

Non-alcoholic fatty liver disease (NAFLD)
CYP2E1 is not only induced by chronic ethanol ingestion, but

also in NAFLD [67–69] possibly by free fatty acids and acetone [54].
Although, this induction is less pronounced as in ALD, it also has
severe consequences with respect to the generation of oxidative
stress. Indeed, inflammation driven oxidative stress may be an
important mechanism in the progression of NAFLD [70]. We
therefore determined CYP2E1 as well as εdA in liver biopsies from
patients with pure non-alcoholic fatty liver and patients with
NASH using immunohistology. εdA was detected in a broad range
of intensity and correlated significantly with the severity of
inflammation, but not with CYP2E1 (Linhart and Seitz, personal
communication).

NAFLD also is an increasing health problem in children [71–73].
As reported recently, oxidative stress as measured by the hepatic
expression of 8-hydroxy-2-deoxyguanosine (8-OHG), serum pro-
tein carbonyls, and circulating antibody against malondialdehyde
adducted human serum albumin has been frequently found in
children with NAFLD and was also found to be associated with an
increased severity of steatohepatitis [74]. Therefore, we deter-
mined εdA, and CYP2E1 in liver biopsies of children with NASH. In
these studies we also could show for the first time that not only
CYP2E1 was found to be increased, but also that εdA occurs. In a
few of these children at an age below 15 years and the diagnosis of
diabetes mellitus a striking load of εdA was found in the nuclei of
their hepatocytes [75]. In contrast to ALD these adducts did not
significantly correlate with CYP2E1, but rather with the state of
inflammation. Thus, inflammatory driven ROS production may be
predominant to explain εdA formation in patients with NAFLD.

In animal experiments, the progression of NASH is influenced
by the concomitant administration of ethanol [76,77]. This has
been shown in dietary induced NASH, which could be due among
others to oxidative, nitrosative, and mitochondrial stress, as well
as increased inflammation and cellular apoptosis [76,77].

Furthermore, in the Zucker rat, a leptin deficiency and insulin
resistance genetic NASH model the administration of ethanol not
only increased CYP2E1, but also εdA in a linear way [66].

The fact that ethanol consumption in patients with NASH
enhances oxidative stress possibly predominantly by a further
increase in CYP2E1 associated with the generation of highly
carcinogenic etheno-DNA lesions may of special interest in the
context that patients with NASH have significant higher HCC risk
and develop HCC in a much shorter time frame when they
consume alcohol even at social levels [78].

CYP2E1 induction and etheno-DNA adduct generation in the
oesophagus and in the colorectal mucosa

Chronic alcohol consumption is a major risk factor for unde-
fined cancer [2,79]. Various mechanisms may mediate carcinogen-
esis including the genotoxic effect of acetaldehyde and oxidative
stress [2,79–81]. As discussed above for the liver, ethanol may also
exert its carcinogenic effect in other tissues among others via the
induction of CYP2E1 and the generation of carcinogenic etheno-
DNA adducts. Therefore, we investigated if such effects can also be
observed in the human oesophagus [82]. We studied undefined
biopsies of 37 patients with upper aerodigestive tract cancer and
heavy alcohol consumption of more than 100 g on average per day
as well as 16 controls without tumours (12 teetotallers and
4 subjects with a maximum of 25 g ethanol/day). CYP2E1, ethe-
no-DNA adducts and Ki67 as a marker for cell proliferation were
determined immunohistologically in the undefined mucosa adja-
cent to the tumour. Chronic alcohol ingestion resulted in a
significant induction of CYP2E1 which correlated with the amount
of alcohol consumed. Furthermore, a significant correlation be-
tween CYP2E1 and the generation of the carcinogenic exocyclic
etheno-DNA adducts εdA and εdC was observed. Etheno-DNA
adducts also correlated significantly with cell proliferation, which
was especially enhanced in patients who both drank and smoked.
The results showed clearly again a correlation between CYP2E1
and etheno-DNA adducts. In contrast to the liver this induction
correlated significantly with the amount of ethanol ingested [82].

More recently, we also investigated immunohistologically the
effect of ethanol on colorectal CYP2E1 and etheno-DNA adducts in
colorectal biopsies from 31 alcoholics and 15 non-drinking con-
trols (Linhart and Seitz, personal communication). Again we found
a significant correlation between the two parameters. It is inter-
esting that chronic ethanol consumption using a Lieber DeCarli
diet resulted in a hyperproliferation of the colorectal mucosa with
an extension of the proliferative compartment towards the lumen
of the crypt, which is a first step in carcinogenesis of this tissue
[83]. A similar observation was made in patients with heavy
alcohol consumption [84]. The administration of vitamin E, a
radical scavenger, however, reduced the proliferative rate signifi-
cantly emphasizing indirectly that most likely oxidative stress



Fig. 3. Immunohistology of εdA in two liver biopsies from patients with alcoholic liver disease (A) and control patients with a normal liver (B). The brownish colour shows
εdA. This adduct occurs in the nuclei of the hepatocytes and the percentage of nuclei positive hepatocytes can be counted. A significant load of etheno adducts is observed in
ALD, while the control healthy liver reveals background activity only.
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induced by CYP2E1 may be responsible for this regenerative
behaviour [85].

CYP2E1 and experimental hepatocarcinogenesis

It has been believed for a long time that ethanol by itself is not
a carcinogen rather than a co-carcinogen or a tumour promoter.
However, meanwhile various animal studies have demonstrated
that the administration of ethanol alone without any chemical
carcinogen can result in tumours of the liver [86], the upper
aerodigestive tract [87], the mammary gland [88] and the intestine
[89]. Besides the fact that DNA lesions induced either by the
binding of acetaldehyde to DNA [2,48] or by the reaction of DNA
with ROS do occur during chronic ethanol consumption, the role of
CYP2E1 in this process has not intensively investigated.

In a series of experiments we used an animal model in which a
small amount of diethylnitrosamine (20 mg/kg b.wt.) was admi-
nistered once to initiate hepatocarcinogenesis [90,91]. CYP2E1,
inflammatory proteins, cell proliferation, protein bound 4-HNE,
etheno-DNA adducts as well as 8-hydroxy-2′-deoxyguanosine (8-
OHdG), retinoid concentrations and hepatic carcinogenesis were
examined. Chronic ethanol ingestion for 1 month resulted in
increased CYP2E1 levels and an increased nuclear accumulation
of NFκB protein. In addition, TNFα expression was also enhanced
associated with increased cyclin D1 expression and p-GST positive
altered hepatic foci. All these changes were significantly inhibited
by the concomitant administration of CMZ. Following 10 months
of ethanol feeding hepatocellular adenoma were detected in
ethanol fed rats only, but not in control rats. The administration
of CMZ inhibited completely the formation of hepatic adenomas.
In addition, 8-OHdG formation was found to be significantly
increased after alcohol and almost normalized with CMZ.
Although, etheno-DNA adduct formation increased following
ethanol ingestion and decreased with CMZ, this effect was not
significant.

More recently, Tsuchishima and co-workers produced hepato-
cellular carcinoma in mice without any additional insult. This
process was significantly associated with the expression of CYP2E1
[92].
Summary

The most important mechanism associated with oxidative
stress and the generation of ROS is chronic inflammation. During
inflammation cytokines are liberated resulting in the activation of
oxidant generation enzymes such as NADPH oxidase, and NFκB
with the activation of LOX, Cox-2 and iNOS finally leading to the
formation of ROS. In addition, ROS can also be generated through
CYP2E1 which is induced by chronic alcohol consumption as well
as in NASH where free fatty acids as well as acetone (mostly in
diabetics) induce CYP2E1. ROS leads to lipidperoxidation with the
occurrence of lipidperoxidation products such as 4-HNE and MDA.
Both compounds can bind to DNA forming highly carcinogenic
etheno-DNA adducts. In a series of experiments we could show
that a significant correlation exists between CYP2E1 levels and
etheno-DNA adduct formation in cell culture, animal experiments
and biopsies from patients with ALD. Since in NASH the inflam-
matory process predominates as compared to the induction of
CYP2E1 the etheno-DNA adduct levels do not correlate with
CYP2E1 but rather with the intensity of the inflammatory process.
Conclusion

Cell culture and animal experiments as well as clinical biopsy
studies in patients with ALD emphasize an important role of
CYP2E1 in alcohol mediated carcinogenesis in the liver, but also
in other tissues. In addition, CYP2E1 seems to be a driving force in
the progression of ALD. Inhibition of CYP2E1 by a nontoxic
inhibitor may be a successful approach in the treatment of ALD
and alcohol mediated carcinogenesis.
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