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a b s t r a c t

Ion acceleration driven by high intensity laser pulses is attracting an impressive and steadily increasing
research effort. Experiments over the past 10–15 years have demonstrated, over a wide range of laser and
target parameters, the generation of multi-MeV proton and ion beams with unique properties, which
have stimulated interest in a number of innovative applications. While most of this work has been based
on sheath acceleration processes, where space-charge fields are established by relativistic electrons at
surfaces of the irradiated target, a number of novel mechanisms has been the focus of recent theoretical
and experimental activities. This paper will provide a brief review of the state of the art in the field of
laser-driven ion acceleration, with particular attention to recent developments.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The first experiments reporting laser acceleration of protons
with beam-like properties and multi-MeV energies in laser experi-
ments were reported in 2000 [1–3]. Experiments over the following
13 years have demonstrated, over a wide range of laser and target
parameters, the generation of multi-MeV proton and ion beams
with unique properties such as ultrashort burst emission, high
brilliance, and low emittance, which have in turn stimulated ideas
for a range of innovative applications. While most of this work has
been based on sheath acceleration processes [3–5], a number of
novel mechanisms have been at the center of recent theoretical and
experimental activities. This paper will provide a brief review of the
state of the art and recent developments in the field. A more
extensive survey is provided in [6–8].

2. Sheath acceleration

This is the acceleration mechanism active in most experiments
carried out so far, and it was proposed [4] as an interpretative
framework of the multi-MeV proton observations reported in [2],
obtained on the NOVA Petawatt laser at LLNL (the name Target
Normal Sheath Acceleration, TNSA, is generally used).

Acceleration through this mechanism employs thin foils (typi-
cally from a few mm to tens of mm thickness), which are irradiated
by an intense laser pulse. In the intensity regime of relevance (as a

guideline, Iλ241018 W/cm2), the laser pulse can couple efficiently
energy into relativistic electrons, mainly through ponderomotive
processes (e.g., J�B mechanism [9]). The average energy of the
electrons is typically of MeV order, e.g., their collisional range is
much larger than the foil thickness, so that they can propagate to
the rear of the target, and drive the acceleration of ions from
surface layers via the space-charge field established as they try to
move away from the target. While a limited number of energetic
electrons will effectively leave the target, most of the hot electrons
will be backheld within the target volume by the space charge, and
will form a sheath extending by approximately a Debye length λD from
the initially unperturbed rear surface. According to the model devel-
oped in [2], the initial accelerating field will be given by

Eð0Þ ¼ KTh

eλD
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nhKTh

eλD

s
ð1Þ

where nh and Th are density and temperature of the hot electrons,
which for typical values at Iλ2�1019 W/cm2, i.e., λd�1 mm and
Th�1MeV, gives field amplitudes of order TV/m. Under the right
combination of target thickness and pulse duration, the hot electrons
recirculate through the target during the ion acceleration process,
which can lead to an enhancement of the ion energy [10]. TNSA from
the front surface has normally reduced efficiency due to the presence
of a preplasma, although symmetric acceleration from front and rear
has indeed been observed in ultra-high contrast interactions with
moderate intensity ultrashort pulses, where front preplasma forma-
tion is effectively suppressed [11].

While TNSA can in principle accelerate any ion species present in
surface layers, in most experimental settings this results in preferential
acceleration of light ions (protons, carbon and oxygen ions) from
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contaminant layers rather than ions from the target bulk. Protons,
with the highest charge to mass ratio, are therefore the dominant
component of TNSA ion beams, unless the target is suitably treated
prior to the laser irradiation to remove the contaminants [12].

According to (1) the field can be large enough to accelerate ions to
multi-MeV energies, which have indeed been observed in a very large
number of experiments. The energy spectra of the ion beams observed
are broadband, typically with an exponential profile, up to a high
energy cut-off, which is the quantity normally used to compare
different experiments and determine experimental scaling laws for
the acceleration process. The highest TNSA energies reported are of
the order of 60 MeV, obtained with large PW systems, and available
data (e.g., see Fig. 1) generally shows that, at equal intensities, longer
pulses (of �ps duration) containing more energy generally accelerate
ions more efficiently than pulses with duration of tens of fs. Using
state of the art fs systems has however recently allowed increasing the
energies of accelerated protons up to a reported 40MeV [14], obtained
with only a few J of laser energy on target (see [17] for an up to date
survey).

The properties of the beams accelerated via TNSA are quite
different from those of conventional RF beams, to which they are
superior under several aspects. The beams are characterized by
ultralow transverse emittance (as low as 0.004 mm-mrad, accord-
ing to the estimate given in [18]), and by ultrashort (�ps) duration
at the source. The beams are bright, with 1011–1013 protons per
shot with energies 4MeV, corresponding to currents in the kA
range if co-moving electrons are removed. However, the number
of protons at the high-energy end of the spectrum (i.e., the
energies plotted in Fig. 1) can be as low as 107–108 particles/
MeV/sr, (e.g., see [17] for a discussion related to recently published
data)- with a divergence of a few degrees this gives �106–107

particles/MeV. Drawbacks, as compared with conventional accel-
erator beams, are the larger divergence (up to 10 s of degrees, and
energy dependent) and, as mentioned earlier, the broad spectrum.

3. Applications

A broad range of applications employing these ion beams has
been proposed [8], some of which have been already implemented

and use advantageously peculiar properties of the beams such as
the extreme laminarity and short duration. Laser-driven proton
radiography has allowed to map electric and magnetic fields in
plasmas with very high spatial and temporal resolution, while
exploiting the broad energy spectrum to achieve a multiframe
capability [8]. The short duration of the ion bursts, coupled to their
high flux, also facilitates the production of warm dense matter
(i.e., matter at solid density and 1–100 eV temperatures) from
isochorically heated samples [8]. In view of possible future use of
laser-driven beams as a source for cancer radiotherapy, a number
of experiments have investigated their biological effects on cellular
media [8], reporting on-cell dose rates of the order of 109 Gy/s
[19,20], which are 9 orders of magnitude higher than normally
used in radiobiology.

Future use of the beams in cancer therapy however, requires a
marked improvement of the beam parameters currently available, as
energies in the range of 150–300MeV/nucleon are needed for treating
deep-seated tumors with protons or carbon ions. A clinical fraction is
currently delivered at 2–5 Gy/minutes, which, using 200 MeV on a
typical tumor size (5�5�5 cm3), requires the delivery of �5�108

particle per second. Other proposed applications in energy production
schemes or schemes or particle physics also demand a significant
progress. This motivates ongoing research aimed to improving the
beam characteristics, either by optimizing TNSA acceleration or by
exploring different mechanisms.

4. TNSA scaling and optimization

Increasing the laser intensity on target should generally lead to
an increase of the cut-off energies of TNSA spectra, as shown in
Fig. 1. However there is still debate on what is the most appro-
priate scaling for ion energies as a function of irradiance, and is
also clear that, in addition to the role of pulse energy highlighted
in Fig. 1, several secondary factors (e.g., such as prepulse energy
and duration, target thickness) also affect the maximum energy
measurable. Parametric investigations of the dependence of Emax

on laser pulse irradiance, duration, energy and fluence have been
reported (e.g., [15,16,21,22]). Two main classes of approaches have
been developed to describe analytically the TNSA process with the
aim of matching current results and predict performance at higher
intensities. A first approach considers ions and hot electrons as an
expanding plasma, described with fluid models [4,5,21] as an
extension of the classical case of a plasma expanding into vacuum,
driven by the ambipolar electric field generated in a narrow layer at
the front of the plasma cloud. Simplest models are isothermal, and
require that the acceleration time is artificially constrained [22], while
more realistic adiabatic models, accounting for the finite energy of the
hot electrons, have also been developed [22,23].

A different class of models assumes that the most energetic
ions are accelerated as test particles in a static sheath field,
unperturbed by their acceleration. These static models rely on an
accurate description of the sheath field based on realistic assump-
tions on the fast electron distributions. For example, in [24], a
spatial truncation of the electric potential in the sheath is
introduced, and used to develop a model for the maximum ion
energy as a function of the relevant laser parameters (energy and
intensity). Scalings for the ion energy based on this model appear
to match a large fraction of experimental results so far [25], and
can be used as a predictive tool for future performance. Taking
200 MeV Hþ energy as a benchmark, predictions of the intensity
requirement for reaching this cut-off value based on the two
different approaches discussed above give intensities of mid
1021 W/cm2 for �ps pulses [22], and �1022 W/cm2 for 10 s of fs
pulses [25].

Fig. 1. Survey of TNSA cut-off energies measured in experiments so far, plotted vs.
irradiance and labeled according to pulse duration. For references for the specific
data points, see Refs. [6] and [13]. Points labeled J-Karen, DRACO and Trident refer
respectively to Refs. [14–16].
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Several approaches have been developed to improve TNSA
efficiency by acting on the characteristics of the hot electron
population driving the acceleration through modifications of the
target design [8]. According to Ref. (1) the accelerating field can be
modified either by increasing the electron density or the tem-
perature. The use of the so-called mass limited targets, aims to
reduce the transverse size of the accelerating foils and concentrat-
ing the electrons within a smaller volume so that their density is
increased during the acceleration process. This approach was first
demonstrated in Ref. [26] where reduction of the transverse size of
the foil down to 20�20 mm2 resulted in a 3-fold protons energy
increase with respect to a large mm-size foil, jointly to a sizeable
increase in conversion efficiency. The highest published TNSA
proton energy so far (67.5 MeV) has been obtained by using
specially designed targets, i.e., flat-top hollow micro-cones [27],
based on a target design used in fast ignition experiments. In these
targets the interaction of the laser pulse with the wall of the cones
results in an increase of the number of fast electron at the high-
energy end of the spectrum, and, consequently, an enhancement
of the accelerating field. A further class of experiments aims to
optimize laser energy absorption into hot electrons by structuring
the target: a recent example of this approach is reported in Ref.
[28], where foils coated with microspheres (diameter�λ/2) on the
irradiated surface showed, compared to uncoated foils, a clear
improvement in the energy cut-off of the spectrum of the
accelerated protons. For a review of other approaches, including
the use of foam layers, controlled pre-plasmas, or double pulses,
see [8].

5. Emerging acceleration mechanisms

While experimental activity has focused until recently on the
study of TNSA beams, other mechanisms have recently attracted a
significant amount of theoretical and experimental attention, and
some of these mechanisms are briefly discussed in the following
sections. We refer the reader to Ref. [8] for a more thorough
discussion.

5.1. Hole boring acceleration

The radiation pressure of an intense laser pulse can be coupled
to the electrons of an overdense plasma slab via the ponderomo-
tive force [31]

f p ¼ �me

4
∂
∂x
v2osðxÞð1� cos 2ω0tÞ ð2Þ

where vos is the quiver velocity of the electrons and ω0 is the laser
frequency.

The force has an oscillating term (which gives rise to J�B
heating and creates a population of hot electrons [9]) and a steady
term, which acts on the bulk of the electrons, and creates a space-
charge field via their local displacement. If this is sustained for a
long enough time, it can accelerate the target ions. In a semi-
infinite target this leads to the so-called Hole–Boring (HB) phe-
nomenon [29]. Ions are set in motion toward the interior of the
target with the hole boring velocity, which is determined by the
intensity of the laser and the density of the medium. The energy of
the ions in this regime scales linearly with Iρ�1 in a classical
approach, although relativistic corrections (necessary at ultrahigh
intensities) lead to a slower, more complex scaling [30].

In a recent experiment employing CO2 lasers, evidence of “pure”
monochromatic spectra originated from this type of mechanism has
been observed [31]. This experiment employed gas jet targets,
exploiting the fact that electron densities above 1019 cm�3 are already
overdense for the �10 mm wavelength of a CO2 laser. The proton

spectra obtained show a clean monoenergetic signal at �1MeV
which is broadly consistent with HB in the conditions of the experi-
ment. Although the energy observed so far through HB is modest, the
dependence on both target density and laser intensity allows design-
ing suitable acceleration scenarios for acceleration to hundreds of
MeV, as suggested in [30,32] (see Fig. 2).

5.2. Shock acceleration

An acceleration scheme related to HB, but conceptually different,
is the so-called Shock Acceleration (SA), first proposed in Ref. [33].
In this scheme, the light applied at the front surface of the target, acts
as the source of a strong high Mach-number collisionless electro-
static shock propagating towards the bulk of the plasma. Acceleration
arises as ions present in the bulk of the target are reflected from
the shock front to twice the shock velocity. Recent results also
obtained with a CO2 laser have been explained with this mechanism,
namely monoenergetic acceleration of protons up to 22 MeV from
the interaction with hydrogen gas jets at intensities in the 1016–
1017 W cm2 regime [34].

5.3. Light sail acceleration

The idea of applying ultraintense radiation pressure to a thin foil
and drive forward the whole irradiated region of the foil under the
effect of the laser piston was first proposed by Esirkepov et al. [35].
This concept was later developed by several other authors (e.g.,
[36,37]) and is now generally referred to as Light Sail (LS). In LS the
irradiated region of an ultrathin foil is first compressed into a plasma
slab through an initial HB phase, and then propelled forward in
vacuum by the radiation pressure once the compressed layer has
reached the rear of the foil [38,39].

LS is effective as long as the compressed foil stays opaque to the
radiation, since target transparency implies a decrease of the
radiation pressure drive [37]. Although the detailed dynamics are
complex, in first approximation the overall motion of the foil can
be modeled by assuming that the laser momentum is transferred
to the thin foil [35], which leads to a fast scaling of the ion energy
ε�(Iτs�1)2 where s¼ρτ is the foil0s areal density (with t its
thickness) [37] and implies natively narrow band spectra. For LS
to be effective, it is essential that the radiation pressure is strong
enough to overcome detrimental effects related to electron

Fig. 2. Optimum proton energy obtainable from HB for a pure proton target as a
function of intensity (from [32]) .The black line (slower trend) is a simple prediction
based on opacity at the relativistically corrected critical density , the red line
includes ponderomotive profile steepening. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

M. Borghesi / Nuclear Instruments and Methods in Physics Research A 740 (2014) 6–98



heating, such as foil disassembly under the thermal pressure of hot
electrons, or debunching of the compressed foil [39], and to dominate
over TNSA. For this purpose, simulations have mostly used circularly
polarized (CP) pulses, for which the ponderomotive force does not
oscillate within a cycle, and electron heating mechanisms such as J�B
heating are in principle suppressed [40]. Recent work has, however,
highlighted hybrid RPA-TNSA regimes using linearly polarized pulses,
where, under appropriate conditions, RPA features dominate the ion
spectra [41], and has investigated the more complex dynamics
associated with RPA of multispecies targets.

Experiments employing ultrathin foils have recently started to
show signatures of RPA acceleration processes, namely effective
acceleration of bulk species [42], spectral peaks [43–45], fast
scaling consistent with LS theoretical predictions [43]. Fig. 3 shows
experimental data from [43] plotted against data from published
2D PIC simulation, and scaling from a simple LS model. The steep
rise in ion energy obtainable by either decreasing the areal density
or increasing the fluence is extremely encouraging. For example,
starting from the experimental data, taken using 100 nm
Cu irradiated at 3�1020 W/cm2, one may be able to reach
100 MeV/nucleon energies by increasing the fluence by a factor
2 and decreasing the target density by a factor 2.5 [43].

5.4. Relativistic transparency regimes

Acceleration regimes in which the target becomes relativisti-
cally transparent to the laser pulse are also of interest, and have
been explored recently in a number of experiments [46–49]. In
these investigations the target areal density is chosen so that the
target is quickly heated by the laser pulse, and the density
decreases below the relativistically corrected critical density near
the peak of the pulse. In this regime the interaction leads to
volumetric heating of the target electrons, and to a consequent
enhancement of the field accelerating the ions. In the Break Out
Afterburner scenario proposed by the Los Alamos group [50], non-
linear processes lead to growth of electromagnetic instabilities,
which further enhances energy coupling into the ions.

Experimental spectra obtained in this regime are generally
broadband, with particle numbers decreasing to a high energy
plateau and show efficient acceleration of the bulk components of
the target. Cut-off energies for C6þ ions from DLC target ranging
from 40 Mev/nucleon [47] to a record 80 MeV/nucleon [49] have

been recently inferred from experimental data. This latter result
employed target cleaning techniques to remove the proton con-
taminants and increase the efficiency of the acceleration of the
bulk species.

Deuteron ions produced in this regime of acceleration have
recently been used to drive, with high efficiency, neutron produc-
tion from nuclear reactions initiated in a secondary Be target [51].
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