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We show that every minor of an n × n Laplace matrix, i.e., a sym-

metricmatrixwhose row- and column sums are 0, can bewritten in

terms of those

(
n
2

)
minors that are obtained by deleting two rows

and the corresponding columns. The proof is based on a classical

determinant identity due to Sylvester. Furthermore, we show how

our result can be applied in the context of electrical networks and

spanning tree enumeration.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Identities between various minors of a matrix have a long tradition that dates back at least to the

18th century; the book of Muir [1] provides an excellent treatise on the theory of determinants. In

combinatorics, determinants are frequently used to solve enumeration problems, in particular in the

context of graph-theoretical problems: it is well-known that every principal minor of the Laplace

matrix of a graph can be interpreted as the number of certain spanning forests of the graph, see for

example [2–4]. In particular, the determinant of a matrix that is obtained by deleting any single row

and any column of the Laplace matrix is, except possibly for the sign, the number of spanning trees of

the corresponding graph—Kirchhoff’s celebratedMatrix-Tree Theorem [5]. Kirchhoff’s motivation was

the study of electrical networks: an edge-weighted graph can be regarded as an electrical network,
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where the weights are the conductances of the respective edges. The effective conductance between

two specific vertices v,w can be written as the quotient of the (weighted) number of spanning trees

and the (weighted) number of so-called thickets, i.e., spanning forests with exactly two components

and the property that each of the components contains precisely one of the vertices v,w [6]. By the

aforementioned properties of the Laplace matrix, this can be rewritten as the quotient of two minors

of the Laplace matrix.

To make things precise, let G be a graph with loops and parallel edges and let c : EG → [0,∞)
define weights (conductances) on the edges. The Laplace matrix L = L(G) is defined by its entries

Lx,y = − ∑
e∈EG

e connects x,y

c(e) and Lx,x = − ∑
z∈VG
z /=x

Lx,z ,

where x, y are vertices in VG, x /= y. We say that two edge-weighted graphs (networks) G and H

are electrically equivalent with respect to Θ ⊆ VG ∩ VH, if they cannot be distinguished by applying

voltages to Θ and measuring the resulting currents on Θ . By Kirchhoff’s current law this means that

the rows corresponding to Θ of LGH
VG
Θ and LHH

VH
Θ are equal, where HVG

Θ is the matrix associated to

harmonic extension, see for instance [7,8]. If u, v ∈ VG are vertices in G and H is the complete graph

with vertex set {u, v}, then there exists a conductance ceff (u, v) on the single edge of H, so that G and

H equipped with ceff (u, v) are equivalent with respect to {u, v}. The number ceff (u, v) is called effective

conductance and the number reff (u, v) = ceff (u, v)
−1 is called effective resistance between u and v. By

Kirchhoff’s famous result connecting currents and spanning trees (see for example [6]), the effective

resistance is given by

reff (u, v) = τ−1 Duv
uv , (1)

where τ is the number of spanning trees in G and Duv
uv is the determinant of thematrix that is obtained

from the Laplace matrix by deleting the rows and columns corresponding to u and v. This determi-

nant is also known to count rooted spanning forests with root set {u, v} (so-called thickets, see [6]).

Furthermore, by the matrix-tree theorem, all cofactors of the Laplace matrix are equal to τ , so that τ
is also a subdeterminant of L.

Noticing that an electrical network on n vertices is uniquely determined by
(
n
2

)
conductances, a nat-

ural question is: is it possible to reconstruct them from the
(
n
2

)
effective conductances?While the step

from conductances to effective conductances only involves the computation of certain determinants,

the reverse step is not quite as obvious: it is known that the effective conductances determine the

network uniquely, see for example [7], but a priori, determining all conductances amounts to solving a

nonlinear systemof equations in
(
n
2

)
unknowns. To the best of our knowledge, nobody has ever treated

the question whether an explicit formula for the conductances of an electrical network in terms of the

effective conductances exists.

In this paper, we will show that such a formula indeed exists and that it can be obtained from a

determinant identity for Laplacematrices. This identity is actuallymore general: it relates anyminor of

a Laplace matrix to the specific minors that are obtained by deleting two rows and the corresponding

columns. The proof of our identity is based on a classical result of Sylvester; Section 2 is devoted to the

main result and its proof.

Our second motivation is the problem of enumerating spanning trees in graphs with a high degree

of symmetry. Once again, this stresses the close relation between electrical networks and spanning

trees. LetG be a graph and cG beunit conductances on the edges ofG.We say thatG has resistance scaling

factor ρ = ρΘ with respect to Θ ⊆ VG, if (G, cG) is electrically equivalent to (H, ρ−1cH), where H is

a complete graph with vertex set VH = Θ and cH are unit conductances on H. Note that the effective

resistance between vertices u and v in a graph with unit conductances is exactly the resistance scaling

factor with respect to {u, v}. In a recent paper by the authors [9], the following theorem was given as

a byproduct:

Theorem 1. Let G be a connected (multi-)graph, and let Θ ⊆ V be a subset of θ distinguished vertices.
Suppose that the restriction of the automorphism group of G to Θ is either the entire symmetric group or
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the alternating group. If r(A) denotes the number of all rooted spanning forests of G whose roots are the

elements of A and τ(G) is the number of spanning trees of G, then we have

r(A) = aρa−1θ1−aτ(G)

for all sets A ⊆ Θ of cardinality a. Here, ρ is the resistance scaling factor of G with respect to Θ.

We will show that this is also a corollary of our determinant identity and that it even holds in the

somewhat more general case that the automorphism group acts 2-homogeneously on the set Θ; see

Section 3 for details.

In the last section, we will describe how our determinant identity can be exploited to provide a

very general method for the enumeration of spanning trees; roughly stated, if any part of a graph is

replaced by an electrically equivalent graph, the number of spanning trees only changes by a factor

that is independent of the rest of the graph. This allows us to determine the number of spanning trees

in a graph by the samemethods that are used to simplify electrical networks. The described technique

proves to be most useful if the graphs under consideration are highly symmetric; in particular, it can

be applied to the enumeration of spanning trees in self-similar graphs such as the Sierpiński graphs,

a problem which has recently gained attention in physics [10].

2. Main result

Let L be a square matrix. Given a set A = {a1, . . . , am} of row indices and a set B = {b1, . . . , bm}
of column indices we write LAB for the submatrix of L, where rows in A and columns in B are deleted,

and write DA
B = detLAB for the associatedminor. For convenience, we write D

ij
kl instead of D

{i,j}
{k,l}. Wewill

make use of the following identity for minors of a matrix that is due to Sylvester, see [11,1] and the

references therein.

Theorem 2. Let A = {a1 < a2 < · · · < am} and B = {b1 < b2 < · · · < bm} be sets of row and column

indices of the matrix L, respectively. Then, for any k and l,

DA
B

(
D
ak
bl

)m−2 = (−1)k+l
∑
π∈Sm
π(l)=k

sgnπ
∏

1� i �m
i /=l

D
aπ iak
bibl

. (2)

In the following we always assume that the matrix L is symmetric and that it has zero row/column

sum. Then L is a (weighted) Laplace matrix of a graph G with edge weights c(e), e ∈ EG. We note

that all graphs under consideration are allowed to have parallel edges and loops. By the matrix-tree

theorem the cofactors (−1)a+bDa
b are all equal and count the number of (weighted) spanning trees

in G, as mentioned in the introduction. We denote their common value by τ = τ(G) = τ(G, c). More

generally, DA
A counts (weighted) spanning forests each of whose components contains exactly one

vertex from A, see [2,3,4]. Whenever edgeweights are given, the number of spanning trees and similar

objects is always counted with respect to these weights.

Using the symmetry condition and the zero row sum condition we express the left hand side

DA
Bτ

m−2 of Eq. (2) in terms of minors of the form Drs
rs. In order to state the main theorem, we need a

few definitions:

Definition 1. Let G(A, B) be the family of graphs Λ which satisfy the following properties:

• The vertex set VΛ is A ∪ B.

• The edge set EΛ has size m − 1.

• The set of components consists of paths (including isolated vertices) and cycles (excluding loops,

but allowing 2-cycles).

• The vertices of cyclic components are contained in A ∩ B.

• Path components of length 1 and more have one end-vertex in A and the other in B. All internal

vertices are contained in A ∩ B.
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Furthermore, fix a bijection f : A → B with the property that f |A∩B = id, and let εf be the sign of

the associated permutation ν with respect to the canonical order. In other words, if A = {a1 < a2 <
· · · < am} and B = {b1 < b2 < · · · < bm}, and ν is the permutation that satisfies f (ai) = bνi for all

i, then εf = sgnν . For a graph Λ in G(A, B), let γ (Λ) be the number of components of the graph that

results from Λ if every a ∈ A \ B is identified with f (a). Then we define the sign of Λ to be

ε(Λ) = (−1)
∑

A+∑ B+γ (Λ)−1εf ,

where
∑

A = a1 + · · · + am and
∑

B = b1 + · · · + bm. As will become clear from the proof of the

main theorem, ε(Λ) does not actually depend on f . Finally, the coefficient of Λ is

α(Λ) = ε(Λ) ·
(
1

2

)m−1

· ∏
C∈CΛ

β(C),

where CΛ is the set of all components of Λ and β(C) is given as follows: β(C) = 1 if C is a single

vertex, a 2-cycle, or a path of length  � 1 with a vertex in A 	 B, whereas β(C) = 2 if C is a cycle of

length  � 3, or a path of length  � 1 in A ∩ B.

Remark 1. It follows from the definition that a graph Λ in G(A, B) has exactly |A \ B| + 1 path com-

ponents and there are unique vertices a ∈ A and b ∈ B (a = b is allowed) so that Λ + ab has constant

degree 1 on the symmetric difference A 	 B and constant degree 2 on A ∩ B. This property of Λ,

together with the conditions that no loops are allowed and that paths must have one endpoint in A

and one endpoint in B, provides an alternative definition of G(A, B) that also allows one to construct

all graphs in G(A, B) in a recursive manner; to this end, it is somewhat easier to first construct the

“augmented” graph Λ′ = Λ + ab and then delete an edge in all possible ways.

In order to construct all possible graphs Λ′, proceed as follows: any element in A \ B must be an

end of a path in Λ′. Choose the other endpoint from B \ A as well as (possibly) a sequence of internal

points from A ∩ B in all possible ways, remove all vertices involved, and iterate. If A = B, Λ′ must be

a union of cycles in A ∩ B, which can be constructed in a similar iterative way (pick an element in A,

create all possible cycles involving this element, and apply the procedure recursively to the remaining

elements). The only condition that one needs to take care of is that there may only be at most one

1-cycle (loop), which has to be removed from Λ′ at the end, if present.

Finally, note that if elements ofA \ B andB \ A are identified according to abijection f , the graph that

results from Λ′ is 2-regular (and thus an undirected version of the cycle structure of a permutation).

With the definitions of G(A, B) and α(Λ) at hand, we are finally ready to state the main theorem:

Theorem3 (Main result). Let A and B be sets of row and column indices of thematrix L with |A| = |B| = m.
Then

DA
B τm−2 = ∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

Drs
rs,

with G(A, B) and coefficients α(Λ) as defined above.

Remark 2. It is interesting to note that the family G(A, B) that occurs in the summation is reminiscent

of the family of elementary subgraphs, as they occur in a Theorem of Harary (see [12, Proposition 7.2]).

It is conceivable that there is some relation between the two theorems.

For the proof of this theorem, we need a sequence of lemmas. Note first that by symmetryDX
Y = DY

X

for any index sets X and Y . For convenience we set Dii
kl = Dkl

ii = 0 for arbitrary (possibly equal) i, k, l.

The following lemma expresses all minors DY
X with |X| = |Y | = 2 in terms of minors of the form Drs

rs.

Lemma 4. If i � j and k � l, then

D
ij
kl = 1

2
(−1)i+j+k+l

(
Dil
il + D

jk
jk − Dik

ik − D
jl
jl

)
. (3)
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Proof. If i = j and/or k = l then we get 0 on both sides. If i = k and j = l, then the statement is

also trivial. For certain fixed indices r and s, denote by v1, v2, . . . the columns of Lrs (rows r and s are

deleted). Consider three columns i < j < k; in the following, if the sequence v1, v2, . . . occurs inside
determinants, the columns vi, vj and vk must be omitted (so as to obtain square matrices). One has

0 = det(vi + vj + vk , v1, v2, . . .)

= det(vi, v1, v2, . . .) + det(vj , v1, v2, . . .) + det(vk , v1, v2, . . .)

= (−1)i−1Drs
jk + (−1)j−2Drs

ik + (−1)k−3Drs
ij

by the zero row sum property. Denote the right hand side of the last equation by RHS(r, s); then by

symmetry

0 = (−1)k−3RHS(i, j) + (−1)j−2RHS(i, k) − (−1)i−1RHS(j, k)

= 2(−1)j+k+1D
ij
ik + D

ij
ij + Dik

ik − D
jk
jk.

Solving this for D
ij
ik yields

D
ij
ik = 1

2
(−1)j+k

(
D
ij
ij + Dik

ik − D
jk
jk

)
.

By similar calculations we get

D
ij
jk = 1

2
(−1)i+k

(
Dik
ik − D

ij
ij − D

jk
jk

)
,

Dik
jk = 1

2
(−1)i+j

(
Dik
ik + D

jk
jk − D

ij
ij

)
.

Note that the three identities above match the statement of the lemma since Dii
ii = 0, etc. If i < j <

k < l, then

0 = RHS(k, l) = (−1)i−1Dkl
jk + (−1)j−2Dkl

ik + (−1)k−3Dkl
ij

= 1

2
(−1)i+j+l−1

(
D
jl
jl − D

jk
jk − Dkl

kl

)

+ 1

2
(−1)i+j+l−2

(
Dil
il − Dik

ik − Dkl
kl

)
+ (−1)k−3Dkl

ij

= 1

2
(−1)i+j+l

(
Dil
il + D

jk
jk − Dik

ik − D
jl
jl

)
+ (−1)k−3Dkl

ij

and therefore

Dkl
ij = 1

2
(−1)i+j+k+l

(
Dil
il + D

jk
jk − Dik

ik − D
jl
jl

)
.

Similarly, considering the equations 0 = RHS(j, l) and 0 = RHS(i, l) yields the identity for Dik
jl and Dil

jk .

�

Now we substitute (3) into Sylvester’s identity (2) for k = l = m and obtain

DA
B τm−2 = (−1)

∑
A+∑ B

(
−1

2

)m−1

× ∑
π∈Sm−1

sgnπ
∏

1� i<m

(
D
aπ ibi
aπ ibi

+ D
ambm
ambm

− D
aπ ibm
aπ ibm

− D
ambi
ambi

)

(4)

after some simplification,where
∑

A = a1 + · · · + am and
∑

B = b1 + · · · + bm.When the products

are expanded, a fair amount of cancellation occurs. In a first step we temporarily consider the minors
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Drs
rs as a set of indeterminates which do not satisfy Drs

rs = Dsr
sr or D

rr
rr = 0. Hence, whenever we come

across a minor Drs
rs in the expanded right hand side of (4), we can conclude that r ∈ A and s ∈ B. It

turns out that all cancellation already takes place in this first step. In a second step, we collect terms

involving Drs
rs = Dsr

sr for r, s ∈ A ∩ B.

First of all, let us expand the product∏
1� i<m

(
D
aπ ibi
aπ ibi

+ D
ambm
ambm

− D
aπ ibm
aπ ibm

− D
ambi
ambi

)
(5)

for some π ∈ Sm−1. Then, for each 1� i < m, we heave four choices. We collect those indices i for

which the first summand is chosen in a set M1, collect those indices i for which the second summand

is chosen in a setM2, and so on. Then every term that we get after expansion of (5) can be written as

Π(M,π) = ∏
i∈M1

D
aπ ibi
aπ ibi

∏
i∈M2

D
ambm
ambm

∏
i∈M3

D
aπ ibm
aπ ibm

∏
i∈M4

D
ambi
ambi

forM = (M1,M2,M3,M4). Therefore the product (5) is equal to∑
M

(−1)|M3|+|M4|Π(M,π),

where the sum is taken over all tuplesM = (M1,M2,M3,M4)with the property thatM1 � M2 � M3 �
M4 = {1, . . . ,m − 1}. We replace the product by this sum in (4) to obtain

DA
B τm−2 = (−1)

∑
A+∑ B

(
−1

2

)m−1∑
M

(−1)|M3|+|M4| ∑
π∈Sm−1

sgnπ Π(M,π) (6)

after changing the order of summation.

Lemma 5. Let M = (M1,M2,M3,M4) be a tuple of index sets as before. If |M2| + |M4| � 2, then∑
π∈Sm−1

sgnπ Π(M,π) = 0.

Proof. If |M2| + |M4| � 2, then there exist two distinct elements k, l ∈ M2 ∪ M4. Write τ = (k, l) for
the transposition of k and l. Note that aπk and aπ l do not occur as indices of minors in Π(M,π) for

any π ∈ Sm−1, since the summand that is chosen from the kth factor of the product (5) is either D
ambk
ambk

or D
ambm
ambm

in this case; the same holds analogously for l. Therefore we may freely interchange them

without changing the monomials: Π(M,π) = Π(M,πτ) for all π ∈ Sm−1. We decompose Sm−1 into

the disjoint sets Am−1 and Am−1τ and obtain∑
π∈Sm−1

sgnπ Π(M,π) = ∑
π∈Am−1

(sgnπ Π(M,π) + sgnπτ Π(M,πτ))

= ∑
π∈Am−1

Π(M,π) (sgnπ + sgnπτ) = 0. �

This shows that after cancellation, the sum in Eq. (6) only runs over allM = (M1,M2,M3,M4)which

satisfy M1 � M2 � M3 � M4 = {1, . . . ,m − 1} and |M2| + |M4| < 2 as well as |M2| + |M3| < 2 (by

symmetry, since the rôles of rows and columns are interchangeable). The following lemma simplifies

the sum even further:

Lemma 6. We have

DA
B τm−2 = (−1)

∑
A+∑ B

(
−1

2

)m−1 ∑
σ∈Sm

sgnσ
m∑

k=1

m∏
i=1
i /=k

D
aσ ibi
aσ ibi

. (7)
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Proof. We claim that the right hand side of (7) is equal to the right hand side of (6), which will prove

the statement. Given a pair (σ , k) with σ ∈ Sm and 1� k �m we associate a permutation π ∈ Sm−1

and a tupleM = (M1,M2,M3,M4)with the above properties (M1 � M2 � M3 � M4 = {1, . . . ,m − 1},
|M2| + |M4| < 2 and |M2| + |M3| < 2), so that

sgnσ
m∏
i=1
i /=k

D
aσ ibi
aσ ibi

= (−1)|M3|+|M4|sgnπ Π(M,π) (8)

holds. First note that the indices aσ k and bk donot occur on the left hand side of the equation above. The

rough idea is that the left hand side was generated by choosing the second, third or fourth summand

in the expansion of Eq. (4) when i = k and/or π i = σk. To make this precise we have to distinguish

several cases:

Case 1: k = m and σm = m. This corresponds to the case that the first summand D
aπ ibi
aπ ibi

is always

chosen in the expansion. Accordingly, we set π = σ regarding π as a permutation in Sm−1

and set M2 = M3 = M4 = ∅.

Case 2: k = m and σm /= m. This amounts to the case that the fourth summand D
ambi
ambi

is chosen

when i = σ−1m and the first one in all other cases. Hence we set π = (σm,m) ◦ σ and

M4 = {σ−1m},M2 = M3 = ∅.

Case 3: k /= m and σk = m. In this case the third summand D
aπ ibm
aπ ibm

is chosen when i = k and the

first one otherwise. Thus we set π = σ ◦ (k,m) andM3 = {k},M2 = M4 = ∅.

Case 4: k /= m and σk /= m and σm = m. This corresponds to the case that the second summand

D
ambm
ambm

is chosen when i = k and the first in all other cases. Therefore we set π = σ and

M2 = {k},M3 = M4 = ∅.

Case 5: k /= m andσk /= m andσm /= m. In this final case, the third summand is chosenwhen i = k,

the fourth summand when i = σ−1m, and the first in all remaining cases. Consequently we

set π = (σk,m) ◦ σ ◦ (k,m) andM3 = {k},M4 = {σ−1m},M2 = ∅.

In all cases M1 is defined to be {1, . . . ,m − 1} \ (M2 ∪ M3 ∪ M4). It is now easy to see that Eq.

(8) holds. Furthermore, the map (σ , k) → (π ,M) is a one-to-one correspondence between Sm ×
{1, . . . ,m} and Sm−1 times the set of tuples M = (M1,M2,M3,M4) satisfying M1 � M2 � M3 � M4 =
{1, . . . ,m − 1}, |M2| + |M3| < 2, and |M2| + |M4| < 2. This proves the claim. �

In a second step of simplifying the right hand side of Eq. (4), we collect terms on the right hand side

of (7). If A ∩ B /= ∅, then any minor Drs
rs with r, s ∈ A ∩ B also occurs in the form Dsr

sr . Now we regard

them as equal again and also use the convention that Drr
rr = 0. Given σ ∈ Sm and 1� k �m consider

the monomial

m∏
i=1
i /=k

D
aσ ibi
aσ ibi

= ∏
(a,b)∈K

Dab
ab,

where K = {(aσ i, bi) : 1� i �m, i /= k}. If K contains an element (r, r) for some r ∈ A ∩ B, then the

monomial above is 0, since Drr
rr = 0. Otherwise, regarding the elements of K as unordered pairs, K

is the edge (multi-)set of a graph Λ in G(A, B): indeed, this graph has exactly m − 1 edges, vertices

contained in A ∩ B have degree atmost 2 (they can occur once as aσ i and once as bj for suitable i, j), and

vertices contained in A 	 B have degree at most 1 for the same reason. Therefore, all components are

paths or cycles (2-cycles are possible, but loops are excluded by the condition that there is no element

of the form (r, r) in K). Vertices of cyclic components or inner vertices of paths have degree 2 and

must therefore belong to A ∩ B. Finally, since all edges are of the form (aσ i, bi), all pathsmust have one

endpoint in A and one in B (every internal vertex acts as an element of A for one of its incident edges

and as an element of B for the other).
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Therefore we have

DA
B τm−2 = ∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

Drs
rs

for suitable coefficients α(Λ), and it remains to show that these are exactly the ones that we defined.

Let f be the fixed bijection between A and B that occurs in the definition of α(Λ), and let ν be

the associated permutation (that is, f (aj) = bνj for all j). Rewrite (7) by substituting i = νj and then

σ̃ = σν , as follows:

DA
B τm−2 = (−1)

∑
A+∑ B

(
−1

2

)m−1 ∑
σ∈Sm

sgnσ
m∑

k=1

m∏
j=1
νj /=k

D
aσνjbνj

aσνjbνj

= (−1)
∑

A+∑ B ·
(
−1

2

)m−1 ∑
σ̃∈Sm

sgnσ̃ (sgnν)−1
m∑

k=1

m∏
j=1
νj /=k

D
aσ̃ j f (aj)

aσ̃ j f (aj)

= (−1)
∑

A+∑ B · sgnν ·
(
−1

2

)m−1 ∑
σ∈Sm

sgnσ
m∑

k=1

m∏
j=1
νj /=k

D
aσ j f (aj)

aσ j f (aj)
.

At the end, we replace σ̃ by σ for notational convenience. Note that we have sgnν = (sgnν)−1, since

sgnν = ±1. Now, for a given Λ ∈ G(A, B), we have to collect the contributions of all permutations

σ ∈ Sm with

m∏
j=1
νj /=k

D
aσ j f (aj)

aσ j f (aj)
= ∏

rs∈EΛ

Drs
rs (9)

for some k. If aj and f (aj) are identified for every j, then the components of Λ correspond exactly to

the cycles of σ ; hence all such permutations σ have the same sign (so that there are no cancellations

between them), which is (−1)m−γ (Λ). This completely explains the sign in the definition of α(Λ). It
remains to determine the number of permutations that correspond to a given graph Λ ∈ G(A, B).

For σ ∈ Sm define a directed graph Xσ as follows: the vertex set of Xσ is A ∪ B and the edges are

(aσ j , f (aj)) for 1� j �m. Obviously, Xσ has constant out-degree 1 on A and constant in-degree 1 on B,

and σ → Xσ is one-to-one.

Let Λ ∈ G(A, B). There are unique indices a ∈ A and b ∈ B such that Λ + ab has constant degree 1

on A 	 B and constant degree 2 on A ∩ B. Assume that σ ∈ Sm satisfies (9). Then Xσ is an orientation

ofΛ + ab. Since a path component inΛ + ab has one end-vertex in A \ B and the other in B \ A, there

is only one allowed orientation of the component. Thus σ is uniquely determined by Λ + ab on all

indices i, for which f (ai) is contained in a path component of Λ + ab. If C is a cyclic component of

Λ + ab, then a cyclic orientation of C is a component of Xσ too; there are two possible orientations

for a cycle unless it is a 2-cycle or a loop. The number of cyclic orientations of cyclic components in

Λ + ab explains the value of β(C), with one exception: if C is a 2-cycle of Λ + ab so that ab is an edge

of C, then we have two choices for the edge ab (corresponding to two choices for the index k in (9)),

which yields a factor 2 in this case, although there is only one cyclic orientation.

This finishes the proof of Theorem 3. An interesting special case follows immediately: if A = B, the

formula for the coefficients simplifies greatly, andwe obtain the following result that was conjectured

by the authors, see [13].

Corollary 7. The number DA
A of rooted spanning forests with root set A of size m � 2 satisfies

DA
A τm−2 = ∑

Λ∈G(A,A)

α(Λ)
∏

rs∈EΛ

Drs
rs.
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The coefficient α(Λ) is given by

α(Λ) = (−1)|CΛ|−1

(
1

2

)m−1 ∏
C∈CΛ

β(C),

with CΛ and β(C) as in Definition 1.

Proof. Simply note that
∑

A = ∑
B, and that f is the identity function in the definition ofα(Λ) in this

special case, so that γ (Λ) = |CΛ|. �

Remark 3. In this special case, one can also provide very precise information on the size of G(A, B)
(which only depends on m now): the associated exponential generating function is given by
x(2−x)

2(1−x)3/2
ex(x−2)/4, which leads to the asymptotic formula

|G(A, B)| ∼
√

m√
πe1/4

m!.
If, on the other hand, A ∩ B = ∅, then no cancellation takes place at all in (7), and one simply has
|G(A, B)| = m · m!.

3. Electrical networks

Given all effective resistances on a simple graph (no loops or parallel edges), one may ask whether

it is possible to reconstruct the edge weights. Indeed, this is possible, as it is shown in [7, Section 2.1]

using an inductive argument. As a consequence of Theorem 3 we can give an explicit solution to this

inverse problem.Without loss of generality wemay assume that our network forms a complete graph,

since non-existent edges can be regarded as edges of weight 0.

Corollary 8. Let G be a complete graph with three or more vertices and let c : EG → [0,∞) define

conductances, so that τ /= 0. If all effective resistances are known, then it is possible to reconstruct the

original conductances on G. Assume that VG = {1, . . . , n}; then the edge weight c(e) of the edge e = kl

(k, l ∈ VG, k /= l) can be computed as follows: Set A = VG \ {k} and B = VG \ {l}, define edge weights

c̃(e) by

c̃(e) = − ∑
Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

reff (r, s)

and write τ̃ for the number of spanning trees in G with respect to the weights c̃. Then

c(e) = τ̃−1/(n−2) c̃(e).

Proof. Since c(e) = −DA
B and Drs

rs = τ reff (r, s), Theorem 3 implies

c(e) = −τ
∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

reff (r, s) = τ c̃(e).

By the matrix-tree theorem it follows that τ = τ̃ τ n−1, which yields the statement. �

Remark 4. We note that in the situation of the corollary above, the sign of α(Λ) for Λ ∈ G(A, B) is

given by (−1)|CΛ|−ε , where

ε =
{
0 if k and l are connected by a path in Λ,

1 otherwise.

Remark 5. If τ = 0 in the situation of the previous corollary, thenwe restrict ourselves to components

induced by edges of positiveweight. Note that these components can be determined from the effective

resistances as well.
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In combinatorics unit conductances are of great interest because of the well-known relation be-

tween electrical networks and the number of spanning trees. The following result was proved by the

authors in [9] under stronger assumptions, whereas the form here seems to be best possible.

Corollary 9. Let G be a connected graph and let Θ ⊆ VG be a subset of θ distinguished vertices. Suppose
that the restriction of the automorphism group of G to Θ is 2-homogeneous, i.e., for all u, v,w, x ∈ Θ with

u /= v and w /= x there is an automorphism ϕ with ϕ(Θ) = Θ and ϕ({u, v}) = {w, x}. Then we have

DA
A = aρa−1θ1−aτ

for all sets A ⊆ Θ of cardinality a, where ρ is the resistance scaling factor of G with respect to Θ.

Proof. Let H be a complete graph with vertex set Θ and unit resistances. By assumption, we have

rGeff (r, s) = ρ rHeff (r, s) for r, s ∈ Θ . Then, using the identity (1) and Theorem 3, we get

DA
A(G)

τ (G)
= ∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

rGeff (r, s) = ρa−1 · DA
A(H)

τ (H)
.

It is well known that τ(H) = θθ−2, and DA
A(H) = a θθ−a−1. Putting everything together yields the

statement. �

4. Counting spanning trees

In this section, we show how our determinant identity can be applied to the enumeration of

spanning trees. Specifically, we prove that if a subgraph of a graph G is replaced by an electrically

equivalent graph, the number of spanning trees only changes by a factor that does not depend on G.

This allows us to employ techniques from the theory of electrical networks—such as the Wye–Delta

transform—to determine the number of spanning trees of a graph. This is particularly useful when one

is working with graphs with a high degree of symmetry; several examples are given at the end of this

section. Formally, the main result of this section reads as follows:

Theorem 10. Suppose that X is a (possibly edge-weighted) graph that is decomposed into two graphs G and

H in the following way: EX = EG � EH (i.e., the edge set of X is partitioned into the edge sets of G and H)
and VX = VG ∪ VH, where VG ∩ VH = M. Furthermore, we assume that τ(X) /= 0 and τ(H) /= 0. Now
suppose that H′ is another graph with the property that EG ∩ EH′ = ∅ and VG ∩ VH′ = M, and suppose

that H and H′ are electrically equivalent with respect to M. Finally, set X′ = G ∪ H′. Then, the following

formula holds:
τ(X′)
τ (X)

= τ(H′)
τ (H)

.

Proof. Any spanning tree of X induces spanning forests on G and H; these spanning forests must have

the additional property that any of their components contains a vertex ofM. For a fixed spanning forest

F on G with this property, let σF(H) be the number of spanning forests F ′ on H with the property that

F ∪ F ′ is a spanning tree on X . Then

τ(X) = ∑
F

σF(H),

where the sum is taken over all possible forests F . We will show that σF(H) is proportional to τ(H),
given the effective resistances of H with respect to the vertex setM that G and H have in common.

The connected components of F induce certain connections on M; If we contract the vertices that

are connected by F to single vertices, we obtain a new graph HF ; this contraction may result in addi-

tional parallel edges. It is easy to see that spanning forests F ′ in H with the aforementioned property
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Fig. 1. Wye–Delta transform.

Fig. 2. Delta–Wye transform.

correspond exactly to spanning trees in the contracted graph HF , and so we have σF(H) = τ(HF). The
effect of the contraction on the Laplace matrix is also quite simple: the rows respectively columns of

contracted vertices are added to form a single row respectively column. Because of the multilinearity

of the determinant, the determinant of the new Laplacematrix (i.e., the Laplacematrix ofHF ), reduced

by one row and one column (so that it gives exactly τ(HF)), can be written as sum of minors of the

original Laplacematrix ofH, where only rows and columns corresponding to vertices inM are removed.

By Theorem 3, each of these minors can be written as τ(H) · P(reff (H)), where P is a polynomial and

reff (H) is the vector of all effective resistances ofH with respect toM. Hence, there exists a polynomial

ΣF such that

σF(H) = τ(HF) = τ(H) · ΣF(reff (H)).

Since H and H′ were assumed to be electrically equivalent with respect to M, we obtain

σF(H
′) = τ(H′) · ΣF(reff (H

′)) = τ(H′) · ΣF(reff (H)) = τ(H′)
τ (H)

· σF(H).

Summing over all possible forests F finally yields the desired result. �

In the following,we list the effect of some simple transformations on the number of spanning trees:

1. Parallel edges: If two parallel edges with conductances a and b are merged into a single edge

with conductance a + b, the (weighted) number of spanning trees remains the same.

2. Serial edges: If two serial edges with conductances a and b are merged into a single edge with

conductance ab
a+b

, the weighted number of spanning trees changes as follows:

τ(X′) = 1

a + b
· τ(X).

3. Wye–Delta transform: if a starwith conductances a, b, c (see Fig. 1) is changed into an electrically

equivalent triangle with conductances x = bc
a+b+c

, y = ac
a+b+c

and z = ab
a+b+c

, the weighted

number of spanning trees changes as follows:

τ(X′) = 1

a + b + c
· τ(X).

4. Delta–Wye transform: if a triangle with conductances a, b, c (see Fig. 2) is changed into an

electrically equivalent star with conductances x = ab+bc+ca
a

, y = ab+bc+ca
b

and z = ab+bc+ca
c

,

the weighted number of spanning trees changes as follows:

τ(X′) = (ab + bc + ca)2

abc
· τ(X).
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Fig. 3. A simple example.

It is known that more general rules for parallel and serial edge simplifications hold for the multi-

variate Tutte polynomial, whereas no generalization of of theWye–Delta transform is known, see [14].

Let us apply these simple transforms to determine the number of spanning trees of a small graph.

Example 1. Consider the graph that is shown in Fig. 3; a few applications of the aforementioned

transformations suffice to determine the correct number of spanning trees. It is clear that theweighted

number of spanning trees in the final graph is 3
2

· 3 = 9
2
. The factors that we obtain from the three

transformations are 1
9
, 42 and 1, which shows that the original graph has

1

9
· 42 · 1 · 9

2
= 8

spanning trees.

Admittedly, the exhibited method is unnecessarily complicated in this example, and ad hoc rea-

soning would be much faster, but the technique of replacing parts of a graph by electrically equivalent

graphs becomes powerful when one is working with symmetric graphs; to this end, we extend our

list of operations a little further: a star K1,n is electrically equivalent to a complete graph Kn with

conductances 1
n
, which yields the following:

5. If a star K1,n with conductances a is changed into an electrically equivalent complete graph Kn

with conductances a
n
, the weighted number of spanning trees changes as follows:

τ(X′) = (a/n)n−1τ(Kn)

an
· τ(X) = 1

an
· τ(X).

The factor (a/n)n−1 arises from the fact that every spanning tree of the complete graph Kn has

exactly n − 1 edges, whose associated conductances are all a
n
in this case. Note that this operation

is essentially a generalization of the Wye–Delta transform (in the case that all conductances are the

same). Of course there is also an analogous reverse operation. Thewell-known formula for the number

of spanning trees in a complete bipartite graph follows immediately as an example:

Example 2. Consider the complete bipartite graph Kn,m (n� 2); it can be seen as the union of m stars

with n edges each. Replace each of these stars by an electrically equivalent complete graph with n

vertices and conductances 1
n
. The resulting graph is a complete graphwith n vertices and conductances

m
n
; now we obtain from Theorem 10 that τ(Kn,m) is given by

τ(Kn,m) = nm ·
(
m

n

)n−1

τ(Kn) = mn−1nm−n+1nn−2 = mn−1nm−1.

It is actually evenpossible todeduceCayley’s formula for thenumberof spanning trees ina complete

graph in this vein without circular reasoning:

Example 3. Consider the complete graph Kn (n� 3); replace the star that is formed by all edges going

out from a certain vertex by a complete graph with conductances 1
n−1

. The resulting graph is a
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Fig. 4. Petersen graph.

Fig. 5. First step in the reduction of the Petersen graph.

complete graph with conductances 1 + 1
n−1

= n
n−1

; hence its weighted number of spanning trees

is
(

n
n−1

)n−2
τ(Kn−1). Now Theorem 10 yields

τ(Kn) = 1

(n − 1)−(n−2)τ (Kn−1)
·
(

n

n − 1

)n−2

τ(Kn−1) = nn−2.

Note that the precise value of τ(Kn−1) was not actually used, since it cancels in our calculation.

In the following example, we show how the number of spanning trees of the Petersen graph can be

determined by hand in three simple steps without having to compute a single determinant:

Example 4. In the Petersen graph (Fig. 4), replace four stars by triangles (the centers are indicated in

the figure) to obtain a complete graph with six vertices; all edges have conductance 1
3
(indicated by

dashed lines in Fig. 5), except for three remaining edges whose conductances are still equal to 1. We

regard each of them as two parallel edges with conductances 1
3
and 2

3
and replace the complete graph

Fig. 6. Second step in the reduction of the Petersen graph.
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that is formed by all edgeswith conductance 1
3
by a star with conductances equal to two. The resulting

graph consists of three triangles joined at a common vertex (Fig. 6); the last step is to determine the

number of its spanning trees; it would be possible to reduce further, but it is easy enough to determine

the number directly: a spanning tree in this graph must consist of spanning trees in each of the three

triangles, which shows that the weighted number of spanning trees is (22 + 2 · 2 · 2
3
)3 = 8000

27
. The

factors that we obtain from the two transformations are 34 and 1
12

respectively, which shows that the

number of spanning trees of the Petersen graph is

34 · 1

12
· 8000

27
= 2000.

Remark 6. A graph that can be reduced to isolated vertices by means of successively removing loops,

deleting vertices of degree 1, simplifying serial and parallel edges and applying the Wye–Delta and

Delta–Wye transforms is calledWye–Delta–Wye reducible (see for instance [15]). Thepresentedmethod

for determining the number of spanning trees is (at least in theory) applicable to any graphwithin this

family, and therefore in particular to all planar graphs, by a theorem of Epifanov [16].

Example 5. Finally we would like to exhibit the type of problem where our transformation theorem

proves to bemost useful: self-similar graphs such as the Pentagasket that is shown in Fig. 7: it has been

shown [17] that the level-n Pentagasket PGn is electrically equivalent to a pentagon (in graph-theoretic

terms, a complete graph K5) whose outer edges have conductance an and whose diagonal edges have

conductance bn; (an, bn) are given as n- fold iterates of the following map:

R(a, b) =
⎛
⎝5(8a + 7b)

(
a2 + 3ab + b2

)
176a2 + 228ab + 71b2

,
5(4a + b)

(
a2 + 3ab + b2

)
176a2 + 228ab + 71b2

⎞
⎠ . (10)

The initial values are (a0, b0) = (1, 0). Since PGn+1 is made up of five copies of PGn, we may replace

each of these parts by an electrically equivalent pentagon with conductances an and bn. The weighted

number of spanning trees of the resulting graph (denoted by Yn) is easily determined explicitly by

means of a computer (since it only consists of 20 vertices). The same applies to theweighted pentagon

(denoted by Zn), so that we obtain the following formula that is a direct consequence of Theorem 10:

τ(PGn+1) = τ(Yn)

τ (Zn)5
· τ(PGn)

5

= 6250(2an + 3bn)
(
a2n + 3anbn + b2n

)9
(
5
(
a2n + 3anbn + b2n

)2)5 · τ(PGn)
5 (11)

= 2(2an + 3bn)

a2n + 3anbn + b2n
· τ(PGn)

5.

PG0

PG1

PG2

Fig. 7. The Pentagasket: a pentagonal analogue of the Sierpiński gasket.



E. Teufl, S. Wagner / Linear Algebra and its Applications 432 (2010) 441–457 455

Set qn = 2(2an+3bn)
a2n+3anbn+b2n

; it is not difficult to check that qn satisfies the recurrence

qn = 9

5
qn−1 + 4

5
qn−2,

with initial values q0 = 4 and q1 = 56
5
. Thus

qn =
(
2 + 38√

161

)
ρn +

(
2 − 38√

161

)
ρ̄n,

where

ρ = 1

10

(
9 + √

161
)

and ρ̄ = 1

10

(
9 − √

161
)

are the roots of the characteristic equation. Now iteration yields

τ(PGn) = τ(PG0)
5n ·

n−1∏
k=0

q5
n−k−1

k = 55
n ·

n−1∏
k=0

q5
n−k−1

k .

It is also possible to deduce the asymptotic behavior from this formula: take logarithms to obtain

log τ(PGn) = 5n log 5 + 5n
∞∑
k=0

5−k−1 log qk −
∞∑
k=n

5n−k−1 log qk.

The infinite sum converges, since

log qk = k log ρ + c + O(εk),

where c = log

(
2 + 38√

161

)
and ε = |ρ̄/ρ| < 1. Furthermore,

∞∑
k=n

5n−k−1 log qk = 1

4
n log ρ + 1

16
(log ρ + 4c) + O(εn).

Finally, we obtain

τ(PGn) = exp

(
− 1

16
(log ρ + 4c) − 1

4
n log ρ

)
· C5n (1 + O(εn)

)
= A · ρ−n/4 · C5n (1 + O(εn)

)
,

where the numerical values of A and C are given by

A
.= 0.637317153240 and C

.= 7.514181930576.

Remark 7. The method that was shown in this example does not only apply to the specific example

of the Pentagasket; it can be used to any sequence X0, X1, . . . of self-similar graphs that is defined in

a similar way; we refer to [18,7,19] for precise definitions. Roughly speaking, we start with X0 = Kθ

and say that all θ vertices are “boundary” vertices. Now, given Xn and θ boundary vertices of Xn, we

construct Xn+1 as the union of s copies of Xn, where some boundary vertices are glued together by a

prescribed rule. Additionally, θ boundary vertices of Xn+1 are chosen according to a prescribed rule,

too. The boundary vertices are ordered by the rule, so that we may speak about the first, second, etc.

boundary vertex of Xn.

Given some conductances c0 on X0, the graphs X1, X2, . . . inherit weights in a natural way from

X0 (every edge in Xn is a copied version of a unique edge in X0). In particular, we write S(c0) to

denote the conductances on X1 inherited from (X0, c0). On the other hand, given conductances c1 on

X1 there are unique weights c̄1 on the complete graph X1 whose vertices are the boundary vertices of

X1, so that the networks (X1, c1) and (X1, c̄1) are electrically equivalent with respect to the boundary
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vertices. (X1, c̄1) is often called the trace of X1 with respect to the boundary vertices. The so-called

renormalization map R is the composition of copying conductances from X0 to X1, taking the trace

from X1 to X1, and identifying X1 with X0 using the ordering of boundary vertices. Consequently, R

maps conductances of X0 into itself. If we write T(c1) for the conductances which emerge by taking

the trace, we have R = T ◦ S up to identification. In the case of the Pentagasket the map R is given by

Eq. (10).

Let c0 be some conductances on X0 and denote by cn the conductances on Xn inherited from X0.

Then it is easy to see that (Xn, cn) is electrically equivalent to (X0, R
n(c0))with respect to the boundary

vertices, where Rn denotes the n- fold iterate of R. The method employed above can be generalized as

follows: The graph Xn+1 is an amalgamation of s copies of Xn. If we replace each copy by the electrically

equivalent network (X0, R
n(c0)), we get (X1, S(R

n(c0))), where the conductances S(Rn(c0)) on X1 are

inherited from (X0, R
n(c0)). Using Theorem 3 we obtain

τ(Xn+1) = τ(X1, S(R
n(c0)))

τ (X0, R
n(c0))s

· τ(Xn)
s,

which is the general formof Eq. (11). Therefore the counting problem is closely related to the dynamical

behavior of the renormalization map R. Whenever there are a factor ρ and conductances c∞ on X0

solving the non-linear eigenvalue problem c∞ = ρR(c∞), so that ρnRn(c0) converges to c∞, then

τ(Xn) ∼ A · ρ−n/(s−1) · Csn

by the reasoning of the example above, where A, C are constants. The number ρ solving the non-linear

eigenvalue problem is called resistance scaling factor, see [18]. The dynamical behavior of Rwas studied

in [19] (see also the references therein). In the case where the sequence X0, X1, . . . satisfies a strong

symmetry condition, a closed formula for the number of spanning trees was shown before in [9].
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