rectal cancer, the clinical target volume was delineated and for breast cancer, the regional nodal areas (internal mammary, level I to IV axillary and Rotter space) were contoured. A trained radiation technologist then reviewed all cases according to the guidelines and feedback was given within 24 hours. Twenty-four departments participated to the study and in total more than 2200 contours were reviewed: over 1200 rectal cancer patients and over 1000 breast cancer patients. Evaluation of the contours showed that 74% of rectal cancer cases were modified. These high numbers indicate that the interpretation of guidelines is not always straightforward. More important however is the learning curve that was achieved. The rectal overlap and volumetric parameters significantly increased between the first ten patients per center and others. The study of the contouring of the locoregional nodal delineation in breast cancer is still ongoing and first results will be presented at the ESTRO 35. For both breast and rectal cancer, some deficiencies in the description of the guidelines were demonstrated, making the interpretation ambiguous, and the guidelines will be adapted accordingly. Within a national QA project, we have shown that clinical audit of target delineation improves the quality of the contouring: the inter-observer variability and the major deviations from the guidelines significantly reduced. Variability in anatomical contouring contributes to uncertainty in treatment planning and compromises the quality of the treatment plan and delivered treatment. The standardization of tumor and target volume contouring is therefore highly desirable and can be positively influenced by consensus guidelines, education and clinical audits.

SP-0292 Standardisation and treatment planning

B. Heijmen, A. Henry, S. Breedveeld

Erasmus MC Cancer Institute, Radiation Oncology, Rotterdam, The Netherlands

St James’s Institute of Oncology: St James’s Hospital, Radiation Oncology, Leeds, United Kingdom

Current plan generation is an iterative trial-and-error procedure in which the planner tries to steer the treatment planning system (TPS) towards an acceptable plan by tweaking of parameters, such as beam angles, goal functions or weights. A plan is generally considered acceptable if it fulfills minimum requirements for tumour and OARs, while significant further improvement of the dose distribution is considered infeasible (within the allotted time). On top of the high workload, the current planning approach leads to suboptimal plan quality: the quality is strongly dependent on the skills and experience of the planner (operator dependence), plan quality is dependent on allotted time, and quality is dependent on subjective preferences and priorities of the planner and the treating physician. Can this variability be reduced? Can treatment planning be standardised? Can we guarantee that each patient will be treated with an individualised, clinically highly favourable (best) treatment plan when generated in an efficient manner? In this presentation, data will be provided demonstrating difficulties that clinicians encounter in evaluating treatment plans. Furthermore, the concept of automated treatment plan generation will be discussed as a procedure that may be used to standardise treatment planning. Examples of the positive impact on plan quality will be presented and consequences for involved personnel and plan quality assurance will be discussed.

SP-0293 Potentials and challenges of automated contouring in treatment planning

S. Pallotta

University of Florence, Department of Medical Physics, Florence, Italy

Delineation of targets and normal tissues, typically performed on CT and/or MR images, is still one of the largest sources of variability in radiation therapy treatment plans. In fact, despite well-described guidelines for manual contouring, substantial intra and inter-observer variations exist. Moreover manual contouring is a time consuming process that, depending on the number and complexity of contours to be delineated, can hinder the implementation of adaptive radiotherapy approach. Current perspectives on contouring procedure suggest that an automated approach could reduce both the contouring time and inter-observer variations. Studies evaluating automated contouring in multiple disease sites have in fact demonstrated the potential to improve efficiency and variability associated with manual segmentation. In practice, automated contour are carried out using atlas-based, model-based or hybrid approaches. In atlas-based segmentation the CT scan of a new patient is segmented using segmentation scans of one (single-patient) or more (multi-patient) previously treated patients, called atlases. Methods based on classical deformable models use local image features and automatically adapts the model shape to fit patient’s organ. Various implementations of these two principal methods are described in the literature and are available in commercial contouring software. Prior their clinical use automated contouring methods need an accurate validation. This is a challenging task as medical image segmentation lacks a known gold standard in its real world application. Phantoms as well as synthetic datasets provide the most identifiable ground truth but are an unrealistic surrogate for patient imaging. Moreover, evaluation methods have also lacked consensus as to comparison metrics. A number of different methods have been utilized for comparing segmentation results. The common metrics used fall into one of two categories: volume based or distance based. Each of the comparison metrics has limitations and thus it is desirable to use multiple metrics where possible. This presentation will discuss the advantage in standardization deriving from the use of automatic contouring and the different approach followed in the implementation and validation of automated segmentation tools in different anatomical districts.

SP-0294 Implementation of new standards in your department: a RTT perspective

A. Baker, Y. Tsang

Mount Vernon Cancer Centre, Department of Radiotherapy, Middlesex, United Kingdom

Standardisation of clinical practice is essential for the delivery of safe, accurate radiotherapy treatments. Implementation of new standards can be at both local and national levels and examples of these approaches, from an RTT perspective, will be discussed. New standards should be developed and implemented within a multi-professional team setting. Each profession has a role to play and bring different perspectives to the development and implementation process. Development of training and competency assessments for the use of new delivery techniques are an essential aspect of implementing any new standards. These assessments can be established locally using national guidelines. For example the UK National Radiotherapy Implementation Group IGRT recommendations1 which was written by a multi-profession team to assist centres in utilising IGRT equipment and details content for IGRT training and competency assessment programmes. This recommendation document has been instrumental in the UK with ensure appropriate utilisation of IGRT for each anatomical site and ensuring quality IGRT is delivered to patients. RTTs are also involved in the preparation of national SABR guidelines, as part of the UK SABR consortium, particularly focusing on the treatment delivery and IGRT sections. Clinical trials provide a controlled environment where new standards can be developed in a quality assured way. A UK prostate radiotherapy clinical trial utilised both IMRT and IGRT within the context of a study evaluating a number of fractionation schedules. This assisted the centres involved to develop IMRT and IGRT standards within their departments within a quality assured clinical trial. RTTs were able to use IGRT processes clearly defined within the protocol and the support of the QA team for the trial were available for advice...
and support. This same method is currently being adopted in the UK for a number of adaptive radiotherapy trials and this will assist in establishing new evidence for adaptive radiotherapy and the community will be prepared for routine implementation if the results favour an adaptive approach. It is important to consider the role of QA together with audit programmes both during the implementation phase and also on a routine basis following the implementation of the new evidence based standards. RTTs are a key component of this process within the multi-professional team.

Conclusion

Utilisation of national recommendations or clinical trial processes ensure that new standards are developed and implemented safely and accurately. There is sometimes a tendency to slowly adopt new technologies and evidenced based practice into routine practice but by having national protocols, quality assurance and multi-centre clinical trials, new standards can be implemented timely, appropriately and safely.

References

OC-0295

Improvement of delineation quality of organs at risk in head and neck using the consensus guidelines

R. Steenbakkers1, C. Brouwer1, J. Bourhis2, W. Budach3, C. Grau4, V. Gregoire5, M. Van Herk6, A. Lee7, P. Maingon8, C. Nutting9, W. O’Sullivan10, S. Porceddu11, D. Rosenthal12, N. Sijssema1, J. Langendijk1

1University Medical Center Groningen, Radiation Oncology, Groningen, The Netherlands
2Hospitalier Universitaire Vaudois, Radiation Oncology, Lausanne, Switzerland
3University Hospital Düsseldorf, Radiation Oncology, Düsseldorf, Germany
4Aarhus University Hospital, Oncology, Aarhus, Denmark
5Cliniques Universitaires St-Luc, Radiation Oncology, Brussels, Belgium
6University of Manchester, Centre for Radiotherapy Related Research, Manchester, United Kingdom
7The University of Hong Kong Shenzhen Hospital, Clinical Oncology, Hong Kong Shenzhen, China
8Centre Georges-François Leclerc, Radiation Oncology, Dijon, France
9Royal Marsden Hospital and Institute of Cancer Research, Radiation Oncology, London, United Kingdom
10Princess Margaret Hospital, Radiation Oncology, Toronto, Canada
11Princess Alexandra Hospital, Cancer Services, Brisbane, Australia
12University of Texas M. D. Anderson Cancer Center, Radiation Oncology, Houston TX, USA

Purpose or Objective: Very recently, the DAHANCA, EORTC, GORTEC, HKNPCG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines for delineating organs at risk (OARs) in the head and neck region have been published (1). The purpose of this study was to investigate whether these international consensus guidelines improved delineation quality among observers.

Material and Methods: Ten radiation oncologists, considered experts in the field, were asked to delineate 20 different OARs on CT images (2 mm slice thickness) in two delineation sessions. The first session was performed in 2013 without the use of any predefined guidelines. The second session was performed in 2015 just after publication of the consensus guidelines. The observer variation was measured in 3D by measuring the distance between the median delineated OAR and each individual delineated OAR (2). The variation in distance of each OAR was expressed as a standard deviation (SD). Furthermore, to assess the overlap between observers the concordance index (CI) was calculated. The CI has values ranging from 0 for no overlap to 1 for perfect agreement between all observers (3).

Results: Seven observers delineated most of the contours in the first and second session. Five observers delineated 14 OARs in both delineation sessions. For fair comparison between first and second delineation session, observer variability was only calculated among the five observers who delineated all 14 OARs in both sessions. The average 3D variation in distance for the first and second session was 3.0 mm and 2.1 mm (1 SD), respectively (Table 1).

Conclusion: The use of the consensus guidelines for head and neck OARs reduced observer variation for most OARs investigated. This stresses the importance to use uniform internationally accepted guidelines in daily clinical practice.

OC-0296

Guided radiotherapy: in what order? A study of reproducibility of contours

C. Brouwer1, J. Bourhis2, W. Budach3, C. Grau4, V. Gregoire5, M. Van Herk6, A. Lee7, P. Maingon8, C. Nutting9, W. O’Sullivan10, S. Porceddu11, D. Rosenthal12, N. Sijssema1, J. Langendijk1, R. Steenbakkers1

1University Medical Center Groningen, Radiation Oncology, Groningen, The Netherlands
2Hospitalier Universitaire Vaudois, Radiation Oncology, Lausanne, Switzerland
3University Hospital Düsseldorf, Radiation Oncology, Düsseldorf, Germany
4Aarhus University Hospital, Oncology, Aarhus, Denmark
5Cliniques Universitaires St-Luc, Radiation Oncology, Brussels, Belgium
6University of Manchester, Centre for Radiotherapy Related Research, Manchester, United Kingdom
7The University of Hong Kong Shenzhen Hospital, Clinical Oncology, Hong Kong Shenzhen, China
8Centre Georges-François Leclerc, Radiation Oncology, Dijon, France
9Royal Marsden Hospital and Institute of Cancer Research, Radiation Oncology, London, United Kingdom
10Princess Margaret Hospital, Radiation Oncology, Toronto, Canada
11Princess Alexandra Hospital, Cancer Services, Brisbane, Australia
12University of Texas M. D. Anderson Cancer Center, Radiation Oncology, Houston TX, USA

Purpose or Objective: The concordance index (CI) was calculated. The CI has values ranging from 0 for no overlap to 1 for perfect agreement between all observers (3).

Results: Seven observers delineated most of the contours in the first and second session. Five observers delineated 14 OARs in both delineation sessions. For fair comparison between first and second delineation session, observer variability was only calculated among the five observers who delineated all 14 OARs in both sessions. The average 3D variation in distance for the first and second session was 3.0 mm and 2.1 mm (1 SD), respectively (Table 1).

Conclusion: The use of the consensus guidelines for head and neck OARs reduced observer variation for most OARs investigated. This stresses the importance to use uniform internationally accepted guidelines in daily clinical practice.