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The inflorescences of several members of the Arum lily family warm up during flowering and are able to
maintain their temperature at a constant level, relatively independent of the ambient temperature. The heat
is generated via a mitochondrial respiratory pathway that is distinct from the cytochrome chain and involves
a cyanide-resistant alternative oxidase (AOX). In this paper we have used flux control analysis to investigate
the influence of temperature on the rate of respiration through both cytochrome and alternative oxidases in
mitochondria isolated from the appendices of intact thermogenic Arum maculatum inflorescences. Results
are presented which indicate that at low temperatures, the dehydrogenases are almost in full control of
respiration but as the temperature increases flux control shifts to the AOX. On the basis of these results a
simple model of thermoregulation is presented that is applicable to all species of thermogenic plants. The
model takes into account the temperature characteristics of the separate components of the plant
mitochondrial respiratory chain and the control of each process. We propose that 1) in all aroid flowers AOX
assumes almost complete control over respiration, 2) the temperature profile of AOX explains the reversed
relationship between ambient temperature and respiration in thermoregulating Arum flowers, 3) the
thermoregulation process is the same in all species and 4) variations in inflorescence temperatures can easily
be explained by variations in AOX protein concentrations.
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1. Introduction [16,17] their role in promoting thermogenesis still remains unclear [18,19].

In thermogenic inflorescences, respiration via AOX can achieve rates
comparable to that observed in ‘a hummingbird in flight’ [20]. As a result of
this activity, the temperature of the inflorescence may rise up to 35 °C
above ambient temperature [21] (see Fig. 1). This heat release may be used

It is well documented that the inflorescences of a large number of
species such as those from the Arum lily family are able to increase their
temperature considerably above ambient temperature during thermo-

genesis. Inflorescences generate heat via a mitochondrial respiratory
pathway that is distinct from the cytochrome chain and involves a cyanide
(CN)-resistant alternative oxidase (AOX) [1]. This alternative pathway
branches from the cytochrome pathway at the level of ubiquinone (UQ)
and consists of a single protein, a ubiquinol: oxygen oxidoreductase [2—4].
Although no high-resolution AOX structure has been determined to date
the current structural model predicts that AOX is an integral (~32 kDa)
interfacial membrane protein that interacts with a single leaflet of the lipid
bilayer, and contains a non-haem diiron carboxylate active site [5,6]. This
model is supported by extensive site-directed mutagenesis studies [7-9]
and EPR spectroscopic experiments have confirmed the presence of a
binuclear iron centre [10,11]. The redox energy released during AOX
activity is not conserved for the production of ATP, but is liberated as heat
[12]. In addition to the alternative oxidase, cDNAs encoding uncoupling
proteins (UCPs) have been isolated from several plants [13-15] and
although some tissues have been shown to co-express UCPs with AOX
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to volatilise malodorous compounds and/or maintain a warm environ-
ment in the flower [1,22], thereby attracting insects for pollination.

It has been reported that members of the Araceae, such as Philo-
dendron selloum [23], Symplocarpus foetidus [21,24-28] and Dracun-
culus vulgaris [29], in addition to non-aroids such as the sacred lotus,
Nelumbo nucifera [18,30,31], regulate their heat production in such a
way that a constant temperature is maintained which is independent
of the ambient temperature [32]. The question therefore arises as to
what is the mechanism of thermoregulation in these plants. If, for
instance, the ambient temperature increases, the process generating
the heat (respiration) slows down in order to maintain a constant
flower temperature [23,32,33]. Since the process has been shown to
be reversible, however, it is highly unlikely that denaturation of
respiratory enzymes is the mechanism responsible for thermoregula-
tion [33]. A more popular explanation for thermoregulation is the
temperature sensitivity of AOX itself [33,34]. However, scrutiny of
published data reveals that the answer to the question is not that
straightforward. Firstly, the flower temperature is species-dependent
and although the temperature optimum of respiration via AOX has
also been reported to be species-dependent, there appears to be no
direct correlation between the two. For example it has been observed
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Fig. 1. Thermographic analysis of Arum maculatum spadix. (A) Structural features of an A. maculatum flower used for thermographic analysis. The unfolded spathe reveals the
appendix (the spadix) which is the thermogenic organ. (B) Thermal imaging of the plant shown in A using a high-resolution infrared thermal imaging camera. The temperature scale
of the thermographic analysis is shown on the right and the temperature of the spadix is indicated on the top right of the figure. The temperature measurement was taken at 18.00 h
and within 2 h the temperature of the spadix had returned to the ambient temperature of 17 °C.

that although the flower temperature in the cuckoo pint (Arum
maculatum) varies from 25 °C-35 °C [35], requiring respiration to slow
down above an ambient temperature of 25 °C, the optimum
temperature of respiration via AOX in A. maculatum mitochondria is
greater than 30 °C [36]. Secondly, it has been reported that in A.
maculatum and potato tuber callus mitochondria the temperature
characteristics of AOX are dependent upon the oxidizable substrate
[36,37] with temperature optima for AOX of 15 °C-17 °C as well as
>25 °C [36-39] whilst more recently AOX activity in potato leaf
mitochondria was found to be temperature insensitive between 15
and 25 °C [40]. Such data argue against a simple relationship between
the optimum temperature of AOX and the flower temperature.

In an attempt to clarify this relationship we have used flux
control analysis to investigate the influence of temperature on the
rate of respiration through both cytochrome and alternative oxidases
in mitochondria isolated from the appendices of intact thermogenic
A. maculatum inflorescences. Results are presented which indicate that
at low temperatures, the dehydrogenases are almost in full control of
respiration but as the temperature increases flux control shifts to the
AOX such that above 35 °C, AOX has almost full control of respiratory
flux. We suggest that it is the temperature profile of AOX that explains
the reversed relationship between ambient temperature and respira-
tion in aroids and propose a simple model for the regulation of the
flower temperature which not only accommodates the temperature
dependence of AOX but can also account for the variations observed in
inflorescence temperatures.

2. Materials and methods
2.1. Plant material

Appendices of A. maculatum were collected from plants growing at various sites on
the campus of the University of Sussex (Brighton, UK) and in the garden of one of the
authors (AMW) in Zoetermeer, The Netherlands.
2.2. Temperature measurements

Temperature of the appendices of thermogenic plants was measured in situ with a
thermocouple (Electronic Thermometer model 1604, Comarck Electronics Ltd.,

Hertfordshire, UK) at about 1 cm below the appendix surface. Temperatures from
non-thermogenic plants were measured after transferring the plants to pots and

placing them in incubators set at various temperatures. For continuous temperature
measurements, the upper half of the spathe of an intact plant in situ was removed to
reveal the appendix, and a thermocouple connected to a recorder was inserted.

Heat loss was measured in three appendices of about the same size (+7 g) freshly
cut from non-thermogenic inflorescences. Appendices were placed in incubators set at
various temperatures for 30 min. Rates of heat loss were measured upon transfer of the
appendices to an incubator set at 4 °C.

Thermal images were obtained using a FLIR E45 thermal imaging camera
(ThermaCAM - FLIR Systems, USA). The specified temperature resolution was below
0.01 °C at room temperature and images were analyzed directly on the camera for
temperature determination using the image analysis software provided by the
manufacturer (QuickView, FLIR Systems USA).

2.3. Isolation of mitochondria and measurements of mitochondrial respiration

Mitochondria from A. maculatum appendices were isolated and purified on Percoll
gradients as described by Moore et al. [41]. O, consumption was measured at 20 °C in
2 mL of reaction medium containing 0.3 M mannitol, 1 mM MgCl,, 5 mM KH,PO,,
10 mM KCl, and 20 mM Mops, pH 7.2, in a glass vessel housing a Rank O, electrode. A
mixture of succinate (20 mM), malate (10 mM), NADH (2 mM) and NADPH (5 mM) was
given as the respiratory substrate. ADP (0.15 mM), pyruvate (5 mM) and DTT (10 mM)
were present in all determinations. KCN (0.1 mM) was added to inhibit respiration via
the Cyt pathway, and 2.5 mM salicylhydroxamic acid (SHAM) was added to inhibit AOX.

Mitochondrial protein was determined by the method of Bradford [42], using BSA
for calibration.

2.4. Measurements of UQ reduction

UQ reduction in intact tissue and mitochondria was measured as described in
[35,43] respectively. In this technique pieces of appendix tissue of 0.5 to 1 g were cut
and immediately dropped in liquid N, ground to a fine powder with a mortar and
pestle, and 10 mL of 0.2 M HCIO4 in methanol (0 °C) was added. The mixture was
transferred to a tube with 10 mL of petroleum ether (boiling point 40 °C-60 °C) and
vortexed for 1 min. After the mixture was centrifuged at 1500 g for 2 min, the upper
petroleum ether phase was removed, transferred to a test tube, and evaporated to
dryness under a flow of N,. A further 10 mL of petroleum ether was added to the lower
phase, and the vortex and centrifugation steps repeated. The upper phase was added to
the one previously obtained. After evaporation, extracts could be stored for at least
1 day under N, at -20 °C. Immediately before use, the extracted UQ was resuspended
with a glass rod in 100 pL of N,-purged ethanol, and analyzed by HPLC at the VU
Universiteit in Amsterdam with a pump system (Gilson, Villiers le Bel, France) and
detector (model 811, Perkin-Elmer), and at the University of Sussex with an absorbance
system (model 160, Beckman), a solvent-delivery module (model 110B, Beckman), and a
reverse-phase column (model 10-RP 18 Lichrosorb, Chrompack, Bergen op Zoom, The
Netherlands; 4.6x250 mm in size). The column was equilibrated with N,-purged
ethanol-methanol (3:2, v/v) and this mixture was used as the mobile phase. Detection
of UQ was performed at 290 nm.
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2.5. Estimation of flux control distribution in the respiratory chain

The flux control distribution in respiring A. maculatum mitochondria was estimated
with the following approximations (see Fig. 2):

1. The kinetics for both UQ-reducer (dehydrogenases, DEH) and UQH,-oxidizer (AOX)
is approximately linear at all temperatures (cf. the results depicted in Fig. 6A and B
for 15 °C and 25 °C).

2. The rate v is 0 at both the minimal reduction level of the UQ pool g, (no substrates)
and the maximal reduction level of the UQ pool gmax (complete inhibition of UQ
oxidation).

With these approximations, the procedure follows three steps:

1. Estimation of the slopes of the DEH and AOX kinetics from the steady-state values of
rate v and UQ reduction q. This procedure is illustrated in Fig. 2 and yields Fig. 6C.

2. Calculation of the elasticity coefficients sgeh and &3°* by normalizing the slopes of

the DEH and AOX kinetics. Note that the values of these coefficients only depend on

the three UQ reduction levels:

den 4 aox _ 4
I (P a——
q — qmax q — Amin
3. Calculation of the flux control coefficients from the elasticity coefficients using the
summation and connectivity theorems of metabolic control analysis [44], to yield:
q — dmin

(Jmax — qmin

_ QGmax — ¢ d

a0x

The values of the flux control coefficients are plotted as a function of temperature.

2.6. Modelling

Warming up (increasing T,p, by heat production by respiration) and cooling down
(decreasing T,pp, by heat loss to the environment at T,p,) was modeled as a temperature
change described by a third order polynomial (see Fig. 7):Heating up:

dTapp . 2 3
=320~ [protein]-(4.24 + 4.7123 Ty — 0.21339 T2, +0.0023841 T}, )

Cooling down:

ATy

= 7(0.13422 (Tapp — Tamb) + 0.0001669 (Topp, — Tamb)3>

For the modelling Stella II software (High Performance Systems Inc. Hanover NH, USA)
was used.

3. Results

During previous work from our laboratories with A. maculatum
spadices [35], it was noted that the temperature which the spadix
achieved during thermogenesis was relatively independent of the
ambient temperature. Such observations are summarised in Fig. 4 which
indicates that in non-thermogenic plants there is a linear relationship

Q-reducer: 1
slope=v/(q— qmm)

a

rate

QHQ-oxidfser:

L slope =v/(q— qmm)

0 q 50 q g 100

min max

UQH2 as % of (UQ + UQHZ)

Fig. 2. Modelling of theromoregulation in thermogenic plants. Estimation of flux control
distribution in the respiratory chain of Arum maculatum mitochondria. For further
details see Materials and methods.

between ambient and appendix temperature whereas in thermogenic
inflorescences such a relationship exists to a much lesser extent. Such
results indicate that A. maculatum regulates its flower temperature in a
similar manner to that reported for a number of other aroid species
[21,23,30,31]. Hence it is logical to surmise from the above that
respiration of the thermogenic appendix decreases with increasing
ambient temperature.

Fig. 5 shows respiratory activity and ubiquinone (UQ)-pool reduction
in mitochondria isolated from the appendices of thermogenic inflor-
escences either in the presence or absence of respiratory inhibitors. It is
apparent from Fig. 5A that although respiration is linearly dependent
upon the assay temperature it is inhibited at assay temperatures above
32 °C Since flower temperatures range between 25 °C and 35 °C, a direct
relationship between flower temperature and mitochondrial respiratory
activity apparently cannot simply account for thermoregulation.
Furthermore Fig. 5A clearly shows that the activity of the cytochrome
pathway (respiration in the presence of SHAM), is very low in
mitochondria isolated from thermogenic appendices of A. maculatum
[45,46] and hence electron transport via the AOX can be regarded as the
main respiratory pathway in thermogenic inflorescences [46]. Previously
we reported [35] that in intact, thermogenic inflorescences of
A. maculatum, the UQ pool is almost fully reduced during thermogenesis.
Fig. 5B shows that this high level of in vivo UQ reduction occurs at
appendix temperatures from 24 °C-30 °C. In isolated mitochondria,
however, it is apparent that even in the presence of a mixture of
substrates (thereby engaging all dehydrogenases and hence ensuring
that the reduction of UQ is maximal), the UQ pool was no higher than
50% reduced at 24 °C, and only at assay temperatures of 35 °C-40 °C, did
it become as reduced as that observed during in vivo thermogenesis.
Such a result suggests that in isolated mitochondria, the dehydrogenases
(DEH) apparently cannot achieve activities, relative to AOX, as those
observed in vivo. In other words, the redox level of the UQ pool is
determined by the balance between the activities of DEH and AOX. When
the UQ pool is maximally reduced it is AOX that controls the respiratory
flux and when UQ is fully oxidized it is DEH that exerts the most control.

Since both AOX and DEH use UQ as a substrate, a plot of rate against
UQ reduction can be used to characterize both processes kinetically
[47] and the results are depicted in Fig. 6. In Fig. 6A the UQ-oxidizing
pathway (AOX) is plotted, whereas in Fig. 6B the UQ-reducing
pathways (all dehydrogenases engaged) are shown. It is apparent
from Fig. 6A that when the rate of succinate oxidation is varied
through titration with malonate a linear relationship between UQ
reduction and the respiratory rate is obtained which is comparable to
that previously observed in thermogenic Arum mitochondria [45,46].
Interestingly Fig. 6A also reveals that, although the uninhibited
respiratory rates increase when the temperature increases from 15 °C
to 25 °C, the slope of the line representing the relationship between
AOX and substrate concentration (reduced UQ), is lower at 25 °C than
at 15 °C. Since the slope is a measure for the potential activity of AOX,
this means that at 15 °C AOX activity is higher at a certain level of
reduced UQ than at 25 °C.

In a similar manner, the temperature characteristics of DEH
activities have been estimated. DEH uses UQ as the substrate and
the rate of DEH will be zero when UQ is fully reduced. We determined
the characteristics of DEH by measuring the reduction level of UQ and
varied the rates by titrating with 1 mM SHAM. Fig. 6B shows that the
total rate of the dehydrogenases is also linearly dependent upon UQ
reduction, in accordance with previous results [47]. However, in
contrast to the reaction of AOX to temperature, the slope of the line,
representing the relationship between DEH rate and substrate
concentration (oxidized UQ), is higher at 25 °C than at 15 °C.

In order to further establish the temperature profiles for the UQ-
oxidizing and -reducing pathways, we determined slopes at a range of
temperatures, using the data presented in Fig. 5. The slopes for total
respiration, AOX, the cytochrome pathway and DEH were determined
for each temperature using the respiratory rates and UQ reduction
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Fig. 3. The Stella model for thermoregulation in aroids. For details see Materials and methods.

levels measured in Fig. 5 along with the UQ reduction levels measured
in the absence of substrate and following full inhibition with CN and
SHAM. In this manner three points for each assay temperature were
obtained, from which the slopes for DEH and AOX can be calculated for
each temperature (see Fig. 2; Materials and methods for methodol-
ogy). A comparison of the temperature profiles of the slopes (Fig. 6C)
reveals that in A. maculatum the optimum temperature for total
respiration and AOX is approximately 16 °C, whereas the optimum
temperature for DEH is approximately 35 °C. It is also apparent from
Fig. 6C that the slopes for the cytochrome pathway are very low, again
indicating that respiration via this pathway does not significantly
contribute to total respiration, and furthermore that the slopes of the
cytochrome pathway are higher at 25 °C than at 15 °C.

Flux control coefficients of AOX and DEH can be calculated from
the slopes plotted in Fig. 6C. Fig. 6D shows that at low temperatures
DEH is almost in full control of respiration, but as the temperature
increases, flux control shifts from DEH to AOX. It is apparent that at
those temperatures where UQ is fully reduced in mitochondria (above
35 °C), AOX has almost full control of the respiratory flux.

4. Discussion

A principal objective of the present study was to determine
whether there was a simple relationship between the optimum
temperature for AOX activity and the flower temperature as current
data provides conflicting results. An answer to this question is of
importance since a strong correlation between these two parameters
would suggest that it is the alternative oxidase pathway activity that is
responsible for the temperature rises observed in such tissues and
furthermore would argue against AOX possessing differing tempera-
ture sensitivity that is species-dependent. The results expressed in
Figs 5 and 6 clearly demonstrate that although both the redox poise of
the UQ pool and total respiration are linearly dependent upon the
assay temperature this is the case only up to 32 °C. Above this
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Fig. 4. Temperatures of appendices of intact thermogenic (M) and non-thermogenic (®)
A. maculatum inflorescences. Lines are linear fits with slopes of 0.98 (non-thermogenic)
and 0.39 (thermogenic).

temperature, although the UQ pool becomes further reduced, total
respiration is severely inhibited suggesting that since flower tem-
perature varies between 25 and 35 °C a simple relationship between
respiration and flower temperature cannot exist. In addition, the
finding that cytochrome pathway activity during thermogenesis only
contributes less than 15% of total respiration (Fig 5A) confirms recent
oxygen isotope results which suggest that in thermogenic tissues the
alternative pathway is probably operating close to full capacity [18].
Since the optimal temperature for maximal mitochondrial respira-
tion is 32 °C yet the flower temperature is between 25 °C and 35 °C
(thereby necessitating a decrease in AOX activity at temperatures
above 25 °C) it s clear that, in vivo, the rate of respiration via AOX must
be regulated differently in comparison to isolated mitochondria. Two
mechanisms have been suggested to explain the regulation of AOX
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Fig. 5. Respiration and UQ reduction. (A) The influence of assay temperature on total
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in mitochondria isolated from the appendices of intact thermogenic A. maculatum
inflorescences. Each point represents a separate determination. Results from 4 different
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thermogenic A. maculatum (O) and UQ reductions in mitochondria isolated from
thermogenic appendices (@) respiring at various temperatures. Mitochondrial samples
were taken after respiration was measured (data in panel A).
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activity [for reviews see Refs. 3,4,48]. One involves the reduction of the
disulphide bridge that connects the two halves of the AOX dimer [49],
whereas the other involves the interaction of alpha keto-acids,
principally pyruvate, both of which stimulate AOX activity [50-53].
However, whether either of these two mechanisms plays important
roles in the regulation of AOX activity in vivo, is debatable [3,48].
Importantly, we were unable to detect any change in the reduction of
the disulphide bridge of AOX within whole thermogenic tissues upon
incubation at various temperatures, nor were any significant differ-
ences in pyruvate concentrations observed when whole plants are
incubated at a range of temperatures from 8 °C-25 °C (A. M. Wagner,
unpublished results). There are, however, two other factors that may
determine enzyme activity in vivo, namely substrate and protein
concentration. The substrate for AOX is ubiquinol (UQH,), which is the
product of the dehydrogenases [2]. This means that the activity of AOX
is not only determined by its protein concentration, but also by the
rate by which the dehydrogenases can reduce UQ. Here, in our
opinion, lies the explanation for the apparent discrepancy between
flower temperature and AOX temperature dependence. For instance,
respiration is a sequence of metabolic processes which involve not
only AOX but many other enzymes (i.e. glycolysis, citric acid cycle,
dehydrogenases) all acting in concert. Each of these processes will
have its unique temperature profile. The temperature profile of the
respiratory flux will thus depend on the profiles of these processes
and on the control of each process exerted by respiratory fluxes [39].

In order to explain the discrepancy in temperature optimum of
in vivo respiration compared to that observed in isolated mitochon-
dria, we suggest that the activity of AOX has a lower temperature
optimum than that of the DEHs. During thermogenesis in vivo UQ is

always highly reduced (Fig. 5B) and AOX exerts a high control on
respiration. As a consequence of the above the temperature dependence
of respiration in vivo will almost be completely determined by the
temperature dependency of AOX. In isolated mitochondria, however,
UQ reduction increases with increasing temperatures but is always
much lower than in intact thermogenic tissue (Fig. 5B) and therefore in
isolated mitochondria the temperature profile of the DEH will co-
determine the net temperature profile of mitochondrial respiration
thereby, resulting in a higher temperature optimum for mitochondrial
respiration compared to in vivo respiration.

We propose that in intact thermogenic tissues AOX has a similar
temperature profile to that observed in isolated mitochondria with an
optimum at around 16 °C. The temperature profile of the whole
respiratory chain is thus determined by the amount of control exerted by
AOX and DEH respectively. In non-thermogenic tissues AOX is present in
a fairly low concentration, and when the cytochrome pathway is
inhibited by cyanide, UQ is generally fully reduced and AOX exerts a high
flux control. This is consistent with the findings that, for respiration in
potato tuber callus and wheat mitochondria [37,38] utilizing AOX, the
temperature optima are in the range of 16 °C. Interestingly, when the
activity of AOX in potato tuber callus was stimulated by keto-acids (thus
decreasing the level of control by AOX) the temperature dependency
changed to a higher optimum [37] as predicted by this hypothesis.

It should be noted that Atkin et al. [39] determined the temperature
profile of AOX in mitochondria isolated from soybean cotyledons in a
similar manner to that outlined in this paper by determining the
relationship between UQ reduction levels and respiratory rates (thereby
excluding an effect of a switch in control from AOX to DEH). These
authors found an increase in AOX rate with increasing temperatures up
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to 25 °C. An explanation for this apparent discrepancy may lie in the
finding that in higher plants there are two gene families of AOX (Aox1
and Aox2). Aox1 type genes are present in both monocotyledon and
dicotyledon plants, whereas Aox2 type are expressed only in dicotyle-
dons [54,55]. Moreover, in soybean, Aox1 expression has only been
reported in exceptional conditions such as upon respiratory inhibition
by antimycin A in cell cultures [56]. It is not inconceivable that Aox1 and
Aox2 gene products may differ in temperature optima, with an optimum
ataround 16 °C for AOX1 and a much higher optimum (>25 °C) for AOX2.
Our results with potato tuber callus [37] coupled with the recent results
of Covey—Crump [40], in both of which a temperature optimum of 16 °C
was observed, are completely in line with this proposal since only AOX1
is expressed in potato [54,55].

An implication of the model presented in this paper, in which the
temperature profile of AOX in aroids explains the reversed relation-
ship between ambient temperature and respiration, is that thermo-
genic tissues cannot maintain an inflorescence temperature below
16 °C. Indeed, as far as we are aware, the lowest temperatures reported
for such tissues appear to be approximately 15 °C in D. vulgaris and
S. foetidus [21,29].

For species with a higher inflorescence temperature than that
observed in A. maculatum, it is possible that if the temperature optimum
shifts to a higher temperature the switch in control (see Fig. 6D) also rises
to a higher temperature. However, experimental data indicates that
although Amorphophallus krausei maintains a maximum flower tempera-
ture of 38 °C, the level of UQ reduction measured in intact appendices is
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91% during thermogenesis [35]. This suggests that AOX always retains full
control during thermogenesis, a result that is inconsistent with the notion
that there is a shift in control from DEH to AOX. A change in the balance
between heat production and heat loss could, of course, also account for
the maintenance of a higher temperature.

We therefore propose that in all aroid flower appendices at the
onset of thermogenesis, when substrate supply increases due to
increased glycolytic rates (and potential contribution of uncoupling
proteins [14,17]), UQ becomes highly reduced and AOX assumes
almost complete control over respiration. Under such conditions the
maximum achievable temperature will be dependent upon the
balance between heat loss and the respiratory rate.

This can be readily illustrated by a very simple model in which;

1) the dependence of heat production on inflorescence temperature
is proportional to the fit of the AOX temperature profile shown in
Fig. 6C (see Fig. 7A for the used fit)

2) heat loss is proportional to the difference between ambient
temperature and temperature of the inflorescence (Fig. 7B).

The model (see Fig. 3), which has as inputs the ambient temperature
and the AOX protein concentration, calculates the inflorescence
temperature that the system can achieve. When the AOX protein
concentration is set to the arbitrary unit of 0.1, an inflorescence
temperature of 26 °C is predicted when the ambient temperature is set
at 13 °C (Fig. 7C).
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Fig. 7. Modelling for thermoregulation. (A) 3rd order polynomial fit to the AOX temperature profile used for the modelling of heat production. (B) 3rd order polynomial fit to cooling
down used for the modelling of heat loss. (C) Simulation of thermoregulation with arbitrary protein concentrations of 0.1 (straight line) and 1.0 (dotted line). The measured appendix
temperatures at various ambient temperatures for A. maculatum (Fig. 4) are included for comparison (@). (D) Simulation of the effect of a sudden cold shock. With a protein
concentration of 0.075 and ambient temperature 3 °C, a change in ambient temperature of —10 °C (*) leads to loss of thermoregulation. An increase in protein concentration to 0.15

(**) restores thermoregulation.
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Fig. 7C predicts that at this protein concentration, inflorescence
temperatures at ambient temperatures from 10 °C-30 °C are regulated
between 26 °C and 35 °C. As can be seen from Fig. 7C such simulations
are in very good agreement with the experimental data obtained for
A. maculatum. When the protein concentration is increased (to an
arbitrary unit of 1), inflorescence temperatures become higher,
resembling the situation in for instance P. selloum [23]. Interestingly,
the model also shows that the higher the temperature of the
inflorescence, the less is the predicted variation of the flower
temperature over the range of ambient temperatures (Fig. 7C). Again,
this result is in accordance with experimentally observed data [33].

Fig. 7C furthermore clearly shows that in order to maintain
thermoregulation, for a certain species at a most favourable tempera-
ture, adjustment of the heat production (i.e. amount of AOX) relative to
heat loss is all that is required. Protein concentration, therefore, seems
an important factor in the control of thermoregulation. It has been
reported that upon sudden drastic temperature changes, plants
temporarily lose the capability to regulate the temperature. For instance,
when snow is packed around S. foetidus, the inflorescence initially cools,
but after a short time heat production increases again and the
temperature begins to rise. It has been suggested that in such situations
protein concentration is simply insufficient to cope with the increased
heatdemand [33]. Fig. 7D mimics such a situation in which a severe drop
in ambient temperature causes the loss of the thermoregulatory power
of the appendix. A twofold increase in protein, however, can restore
thermoregulation to a level not very different from that before the
temperature drop. An alternative possibility for a loss in thermoregula-
tion is that, upon drastic environmental changes, UQ reduction levels
temporarily drop (due to a decrease in glycolytic rates) thereby resulting
in a shift of control to the DEH.

In conclusion, a very simple model is proposed that can explain
thermoregulation at various flower temperatures without the need to
postulate varying temperature optima for AOX activity in various aroid
species. Furthermore we propose that the thermoregulation process is
the same in all species and is due to a metabolic explosion resulting in
a very high supply of mitochondrial substrate, and hence a fully
reduced UQ pool, which enables AOX to set and maintain the flower
temperature through regulating its protein concentration.
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