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Abstract Coupled coincidence and fixed point problems have been in the focus of
the research interest for last few years. The problem was introduced in fuzzy metric
spaces only very recently. In this paper, we work out a weak coupled coincidence
point theorem for a compatible pair of mappings in fuzzy metric spaces. As one of
the corollaries we have a weak coupled fuzzy contraction mapping theorem. The
space is endowed with a partial ordering. We use a combination of analytic and order
theoretic concepts in the proof of our main theorem. The result is illustrated with an
example.
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1. Introduction

Fuzzy metric spaces have been introduced in various ways by several authors over the
years, for examples, in the works noted in [16, 18, 22]. Metric fixed point theory has
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been extended to several of these spaces amongst which it has developed in a large
way on the fuzzy metric space introduced by George et al. [16] who defined a fuzzy
metric space by modifying the definition given by Kramosil et al. [24]. The motiva-
tion of George et al. [16] was to ensure a Hausdroff topology of the space and this is
one of the reasons why the metric fixed point theory has very successfully developed
in this space. References [14, 17, 28, 29, 35, 44] are instances of some important
works on fixed point and related topics in the context of fuzzy metric spaces as de-
fined by George and Veeramani [16].

In this paper our aim is to establish some coupled coincidence point results in
fuzzy metric spaces described by George and Veeramani [16]. The idea of coupled
fixed points was introduced by Guo et al. [19] in 1987. Later Bhaskar et al. [3] es-
tablished a coupled contraction mapping theorem in partially ordered metric spaces
in 2006 which was followed by a large number of papers dealing with coupled fixed
and coincidence point theorems [5, 23, 26, 30, 39]. Such problems are also addressed
in the settings of several other spaces which are generalizations of metric spaces, like
that in cone metric spaces [23], G-metric spaces [6], probabilistic metric spaces [12],
partial metric spaces [38, 40] etc.

In metric fixed point theory, there is an effort over the years to extend and gen-
eralize the Banach’s contraction mapping principle. References [2, 4, 27, 42] are
some examples from the large literature existing in this line of research. One such
generalization is the weak contraction principle which introduces a new contraction
intermediate to the Banach’s contraction and the non-expansive mapping. It was first
proved in Hilbert spaces by Alber et al. [1] and was adapted to metric spaces by
Rhoades [37]. Using the same idea behind such weak contractions many theorems
were established in a large number of works, not all of which are extensions of Ba-
nach’s theorem. In fact they provide us with a much larger class of contractions,
called weak contractions, in metric fixed point theory. Some instances of these works
are in [7, 15, 33, 45]. Coupled weak contraction results also appeared in works like
[10, 11, 13]. Many of the above mentioned results are established in partially ordered
metric spaces. In fact, the result of Bhaskar et al. [3] was established in such spaces.
Fixed point theory in partially ordered metric spaces has begun to develop recently in
the first decade of the present century, although the initial result in this line of study
was first established in the work Turinici [43] in 1986. Some instances of this works
are in [31, 32, 34]. One of reasons for the widespread interest in these problems is the
blending of the analytic and order theoretic approaches in the proofs of the associated
theorems.

In fuzzy metric spaces, coupled fixed point theorem was proved successively by
Zhu et al. [46] which was followed by works of Hu [20], Choudhury et al. [8, 9],
etc. Amongst these works partially ordered fuzzy metric spaces was considered in
[8]. The purpose of this paper is to establish a coupled coincidence point theorem
utilizing a weak contraction inequality with the help of two control functions. The
main theorem has two corollaries which are shown to be properly contained in the
main theorem. An illustrative example is given.

Definition 1.1 [41] A binary operation * : [0, 11> — [0, 1] is called a t-norm if the
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following properties are satisfied:

(a) = is associative and commutative;
(b) ax1=aforallac]l0,1];

(c) axb < cxdwhenever a < candb < d, for each a,b,c,d € [0, 1].

ab

Generic examples of continuous —norms are axb = min{a, b}, ax,bp = ———
max{a, b, 1}

forO<A<1,a*3b=abanda+4 b =max{a+b-1,0}.

The following is the definition given by George and Veeramani [16].

Definition 1.2 [16] The 3-tuple (X, M, %) is called a fuzzy metric space in the sense
of George and Veeramani if X is an arbitrary non-empty set, * is a continuous t-
norm and M is a fuzzy set on X* X [0, 00) satisfying the following conditions for each
x,y,z€ Xandt,s>0:

(@) M(x,y,1)>0;

(b) M(x,y,) = 1ifand only if x=y;

(©) M(x,y,t) = M(y,x,1);

(d) M(x,y,0) = M(y,2,5) < M(x,z,t + 5);

(&) M(x,y,”) : (0,00) —> [0, 1] is continuous.

Let (X, M, %) be a GV-fuzzy metric space. For t > 0, 0 < r < 1, the open ball
B(x, r, t) with center x € X is defined by

B(x,r,t)y={ye X | M(x,y,t) > 1 —r}.

A subset A C X is called open if for each x € A, there exist# > 0 and 0 < r < 1 such
that B(x, r,t) C A. Let 7 denote the family of all open subsets of X. Then 7 is called
the topology on X induced by the fuzzy metric M. This topology is Hausdorff and
first countable [16].

A metric space (X, d) can be considered as a fuzzy metric space (X, M, ) with

t
a * b = min{a, b} and M defined as M(x,y,t) = m

Amongst other inequivalently defined fuzzy metric spaces, we will only consider
this space and hence will refer to it simply as a fuzzy metric space.

Example 1.1 LetX =R. Letaxb =a-bforall a,b € [0, ). For each 7 € (0, 00), let

-yl
M(x,y,t)=e 1

for all x,y € X. Then (R, M, %) is a fuzzy metric space.

Definition 1.3 [16] Let (X, M, %) be a fuzzy metric space.



202 P. Saha - Binayak S. Choudhury - Pradyut Das (2016)

(a) A sequence {x,}in X is said to be convergent to a point x € X if lim,_,c M(x,, x,
t)y=1forallt>0.

(b) A sequence {x,} in X is called a Cauchy sequence if for each 0 < & < 1 and
t > 0, there exists ny € N such that M(x,, X,,,t) > 1 — & for each n,m > ny.

(c) A fuzzy metric space in which every Cauchy sequence is convergent is said to
be complete.

The following lemma, which was originally proved for the fuzzy metric space
introduced by Kramosil and Mishilek [24] is also true in the present case.

Lemma 1.1 [17] Let (X, M, %) be a fuzzy metric space. Then M(x,y, -) is nondecreas-
ing forall x,y € X.

Lemma 1.2 [36] M is a continuous function on X* x (0, co).

The concept of coupled fixed point was introduced by Guo et al. [19]. Bhaskar
et al. [3] proved a coupled contraction mapping theorem in partially ordered metric
spaces. Coupled coincidence point results were proved by Lakshmikantham et al.
[25] for two commuting mappings and by Chaudhury et al. [5] for compatible pair
of mappings. There are several results in this direction of research in metric spaces.
Some of these are noted in [26, 30, 39].

It is our purpose in this paper to prove a coupled coincidence point theorem for
two mappings in complete fuzzy metric spaces.

Let (X, <) be a partially ordered set and F : X — X be a mapping from X to itself.
The mapping F is said to be non-decreasing if for all x;,x, € X, x; < x, implies
F(x;) < F(x,) and non-increasing if for all x;, x, € X, x; < x, implies F(x;) > F(x,)

[3].

Definition 1.4 [3] Let (X, <) be a partially ordered set and F : X X X — X be a
mapping. The mapping F is said to have the mixed monotone property if F is non-
decreasing in its first argument and is non-increasing in its second argument, that is,
if for all x1,x, € X, x1 < xp implies F(x1,y) < F(xa,y) for fixed y € X and if for all
Y1,Y2 € X, y1 2 yo implies F(x,y;) > F(x, ) for fixed x € X.

Definition 1.5 [25] Let (X, <) be a partially ordered set and F : X X X — X and
g : X — X be two mappings. The mapping F is said to have the mixed g-monotone
property if F is monotone g-non-decreasing in its first argument and is monotone
g-non-increasing in its second argument, that is, if for all x;,x, € X, gx; < gx»
implies F(x1,y) < F(xa2,y) forally € X and if for all y\,y, € X, gy1 < gy, implies
F(x,y1) = F(x,y,) for any x € X.

Definition 1.6 [3] An element (x,y) € X X X is called a coupled fixed point of the
mapping F : XXX — X if

F(x,y)=x, F(y,x)=y.

Further Lakshmikantham and Ciri¢ introduced the concept of coupled coincidence
point.
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Definition 1.7 [25] An element (x,y) € X X X is called a coupled coincidence point
ofamapping F : X xX »> Xandg: X -» X if

F(x,y) = gx, F(y,x) = gy.

Definition 1.8 [5] Let (X, d) be a metric space. The mappings F and g where F :
XXX — Xand g : X — X, are said to be compatible if
Tim d(g(F (5, yo))s (@), g0) = 0
and
JLIID]Od(g(F(yn, X)), F(g()’n), g(xn))) =0,
whenever {x,} and {y,} are sequences in X such that JLrgF(xn, Vn) = Jirgg(xn) = xand

lim F(y,, x,) = limg(y,) = y for some x,y € X.
n—oo n—oo

In fuzzy metric spaces coupled fixed point results were first successfully proved by
Zhu et al. [46]. After that coupled coincidence point and coupled fixed point results
in this space have appeared in works of Hu [20], Choudhury et al. [8], Jain et al.
[21]. In particular compatibility was defined by Hu [20] as the fuzzy counterpart of
the concept introduced in Choudhury et al. [5].

Definition 1.9 [8, 20] Let (X, M, *) be a fuzzy metric space. The mappings F and g
where F : X X X — X and g : X — X, are said to be compatible if for all t > 0
Jim M(g(F (s y))s F(8(x0), 80n) 1) = 1
and
Tim M(gCF (5, %)), F(g0), 8,1 = 1,
whenever {x,} and {y,} are sequences in X such that ’}LIEO F(xp,yn) = ,}Ln;o g(x,) = x

and lim F(yy, x,) = limg(y,) = y for some x,y € X.
n—oo n—oo

We note that a compatible pair (g, F) is also commuting, that is, also satisfies
gF(x,y) = F(gx,gy) forall x,y € X.

In the following, we prove two lemmas which we use in the proof of our main
theorem in the next section.

Lemma 1.3 [f * is a continuous t-norm, and {a,}, {8,} and {y,} are sequences such
that @y — @, y, — yasn — oo, then lim(ag * By * y¢) = a = limBy =y and
k—o0 k—00

Lim (e By yi) = @+ lim By +y.

k—eo k—oo
Proof  From the definition of limit supremum, there exists {8,,)} C {8,} such that
Jim ) = limpy = B (say).
Then
@ impyoey = lim ) = mpg) = 1im o)
= lim (an(p) * Bup) * V()
(by the continuity property of )

< Tim (a * B * 7). )
We now show that the equality in (1) must hold. If not, then there exists a sequence
of natural {n(q)} such that
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a * klgl;loﬁk *y < l}gg(ak *ﬁk * 7/() = ‘}Lrg(an(q) *,Bn(q) * yn(q))
= Jim a(g) * limpig) * im yug)
(by the continuity property of )
=a* limp, ) * .
g—o0
By the monotone property of * we have that
klim,Bk < limg,,), which is contradiction.
—00 q—
Therefore, we conclude that a * gimﬁk xy = klim (ax * Br * yi)-

The other part of the lemma is similarly proved.

Lemma 1.4 Let {f(k,-) : (0,00) — (0,1],k = 0,1,2,---} be a sequence of func-
tions such that f(k,-) is continuous and monotone increasing for each k > 0. Then
klim f(k, 1) is a left continuous function in t and lim f(k, t) is a right continuous func-

k—oo

tion in t.

proof  For fixed t € (0, 00), let g(n, t) = supf(p, t). Then limg(n,t) = kli_mf(k, 1). By
pen n—oo —00
the conditions of the lemma, the above limit exists finitely. Let 0 < n < ¢ be arbitrary.

We can find g > n such that
f(g.0) > supf(p,n) —n = g(n,1) —n, thatis, g(n, 1) <n + flg,1).
p=n
Since f(p, t) is monotone increasing in ¢ for each p, g(n, t) = supf(p, t) is also mono-
n

p=
tone increasing in ¢ for each n. Then

0<gnt—gnt-—mn <n+ f(gt)—supf(p,t—1n)
pzn
<n+ flg,0) - flg.1—mn).
Taking n — oo in the above inequality,
limg(n,t)— limg(n,t—n) = klimf(k,t)—klimf(k,t—n) -0 as np—o0.
This establishes that kh_m f(k, 1) is left continuous in 7.

The other part of the lemma, that is, lim f(k, ) a right continuous function in ¢ is
k—co
similarly established.
2. Main Result

Theorem 2.1 Let (X, <) be a partially ordered set and (X, M, *) be a complete fuzzy
metric space where = is an arbitrary continuous t-norm. Let F : X X X — X and
g 1 X — X be two mappings such that F has the mixed g-monotone property and that
the following conditions are satisfied:

(a) FIXxX)CgX;
(b) g is continuous and monotonic increasing;

(c) (g, F) is a compatible pair;
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(d) Y(M(F(x,y), F(u,v),1) * M(F(y, x), F(v, u), 1))
< Y(M(gx, gu, 1) = M(gy, gv, 1)) — p(M(gx, gu, 1) = M(gy, gv, 1)) 2

forall x,y,u,v € X, t > 0 with gx < gu and gy > gv, where y,¢ : (0,1] — [0, o0)
are two functions such that:

(i) ¢ is continuous and monotone decreasing with y(s) = 0 if and only if s = 1,
(i) ¢ is lower semi-continuous with ¢(s) = 0 if and only if s = 1.

Also suppose that X has the following properties:
(a) if a non-decreasing sequence {x,} — x, then x,, < x foralln > 0, 3)
(b) if a non-increasing sequence {y,} — y, theny, >y foralln > 0. “4)

If there exist xy,yo € X such that gxo < F(xo,y0) and gyo > F(yo, X0), then there exist
x,y € X such that gx = F(x,y) and gy = F(y, x), that is, g and F have a coupled
coincidence point in X.

Proof According to a condition of the theorem there exist xp,yo in X such that
gxo = F(xo,y0) and gy = F(yo, xp). We define the sequence {x,} and {y,} in X as
follows:
gx1 = F(xo, yo) and gy = F(yo, x0),
gx2 = F(x1,y1) and gy» = F(y1, x1),
and in general, for all n > 0,
8Xn+1 = F(men) and 8Yn+1 = F(ymxn)- (5)
This construction is possible by the condition F(X X X) C gX.
Next, we prove that for all n > 0,
8Xn 2 8Xn+1 (6)
and
8Vn Z &Vn+1- (7
Since gxo < F(x0,Yy0) and gyo > F(yo, xo), in view of the fact that gx; = F(xo,yo)
and gy; = F(yo, X0), we have gxo < gx; and gyo > gy;. Therefore (6) and (7) hold for
n=0.
Let (6) and (7) hold for some n = m. As F has the mixed g-monotone property,
8Xm = X1 and gy, = gym+1, from (5), we get
8Xm+1 = F(xnu ym) =< F(xn1+1sy7n) and F(Ymﬂ»xm) < F(ym» xm) = &Vm+1- (8)
Also, for the same reason, we have
8Xmi2 = F(Xima1, Yme1) = Fonets Ym)s
FQms1s Xm) Z FQmr1s Xme1) = &Ym+2- (©)]
Then from (8) and (9),
8%m+1 X 8Xms2 ANA gVit1 Z V2.
Then, by induction, it follows that (6) and (7) hold for all n > 0.
Letforallr>0,n> 0,
On(t) = M(gXn, 8Xns1,1) * M(gYn, 8Vn+151)- (10)
By using (6) and (7), from (2) and (5), we have forall > O andn > 1,
Y(M(gxn, X115 ) * M(gYns 8Ynt1,1))
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= Y(M(F (X0—15 Yn-1)s F s yn), 1) % M(F Y15 Xn-1)s F Vs X0, 1))
< w(M(gxn—l > 8Xn» l) * M(gyn—l > 8Yn> t))
—Pp(M(gxn-1, 8%Xn, 1) * M(gYn-1, &¥n, 1))-
By using (10), we have
Y(0,(1)) < Y(6p-1(1) — $(6p-1(1)). (11)
The above inequality implies that /(5,(¢)) < ¥(d,-1(¢)). Since ¢ is a monotone
decreasing function, we have that 6,(f) > 6,-(¢) for all n > 1. Thus for each ¢ > 0,
{0,(¢);n > 0} is an increasing sequence in [0, 1] and hence tends to a limit a() < 1.
We claim that a(¢) = 1 for all £ > 0. If there exists 7o > 0 such that a(ty) < 1, then
taking limit as n — oo for ¢ = 7y in (11), we get Y(a(ty)) < ¥(a(ty)) — ¢(a(ty)), which
is a contradiction since ¢(a(fp)) # 0. Hence a(r) = 1 for every ¢ > 0, that is, for all
t>0,

1im8,(1) = Tim (M(g20, 8111, = M(8Yis 8Ynets D} = 1. (12)
Now we prove that {gx,} and {gy,} are Cauchy sequences. Let, to the contrary, at
least one of {gx,} and {gy,} be not a Cauchy sequence. Then there exist €, 4 > 0 with
A € (0, 1) such that for each integer k, there are two integers /(k) and m(k) such that
m(k) > I(k) > k and
either
M(gx,(k),gxm(k), E) <1 - Aforall k,
in the case where {gx,} is not a Cauchy sequence
or
M(gYiky> 8Ymk)» €) < 1 — A for all k,
in the case where {gy,} is not a Cauchy sequence.
In either case we have, for all kK > 0,
rr(€) = M(gxik), 8%m(k)» €) * M(8Yik)> 8Ymity» €) < 1= A. (13)
By choosing m(k) to be the smallest integer exceeding /(k) for which (13) holds, we
have, for all k > 0,
M(gxikys 8Xmury-15 €) * M(gYikys §Ymik)-1,€) > 1 — 4. (14)
Now, by the triangle inequality, for any s with 0 < s < 5 for all k > 0, we have

1 = A2 ri(€) = M(gx1k), 8Xmy» €) * M(8Yiky> 8Ym(tys €)
2 M(gxl(k)»gxl(k)+l’ ) * M(gxl(k)+1»gxm(k)+ls €—2s)
*M(XimGioy+1 8Xmk)» 8) * M(8Yiw) 8Vitky+1> S)
#M(EY1)+1> 8Ym(ky+15 € = 28) * M(EYmk)+15> 8Ym(k)» 5)
> {M(gxiky> 8Xiky+15 ) * M(8Yik)s 8Yicky+15 5)}
#{ M X1k +15 8Xmty+15 € = 28) * M(8Yiky+15 8Ymiky+1, € — 28)}
H{M(&Ymw)+15> 8Ym(ky> ) * M(ZXmy+1, §Xmays $)}- 15)

For ¢ > 0, we define the function
(1) = ]}i_)T?o{M(gxl(k)Hsgxm(k)Hs 1) * M(gYiy+15 &Ymty+1> D} (16)
Taking limit supremum on both sides of (15), using (12), and by the continuity prop-
erty of *, by Lemma 1.3, we obtain
1-22=nr(e)
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> 1= I}L_Holo{M(gxz(k)+1’ 8Xim(ky+15 € = 25) * M(gYity+1> 8Ym(ky+1, € — 25)} * 1
= hi(e — 2s).
Since M is bounded with range in [0, 1], continuous and, by Lemma 1.1, monotone
increasing in the third variable ¢, it follows by an application of Lemma 1.4 that h,, as

given in (16), is continuous from the left. Then letting s — 0 in the above inequality,
and by using (13), we obtain

hi(e) = I}LI{}O{M(gXI(k)+1,ng<k)+1, €) * M(gYiky+1, 8Ymy+1,€)} < 1 — A a7
Next, for all ¢ > 0, we define the function
ho(t) = im {M(gX1+1> 8Xmky+15 D) * M(EYViky+1> 8Ym(ky+1, D} (18)
praest

Again for any s > 0, for all integer k > 0, we obtain
M(gXity+1> 8Xm(y+1- € + 38) * M(Yiy+1, &Ymty+1, € + 35)
> {M(gXiy+1> 8Xiky» S) * M(EYicy+15 8Vicky» $)}
* {AM(gX1k)> 8Xmr)-1 €) * M(gY14)> 8Ym(k)-1, €)}
#AM(Xm(k)—1 8Xm(k)» 8) * M(EYm(ty1> &Vm(k)» $)}
# {AM(8Xm(k)> 8Xm(ky+15 8) * M(Ym(k)> &Ymky+15 $)}-
> {M(gXiky+15 8Xuky> 8) * M(&Yitky+15 8Vickys $)}

#*(1=2)
# AM(ZXmk)-15 8Xm(ky> 8) * M(EYmk)-15 8Ym(k)> $)}
# {M(8Xim(ky> 8Xm(ky+15 8) * M(EYmky> &¥mty+15 $)}- (by (14)) (19)
Taking limit infimum as k — oo on both sides of the above inequality and using (12),
we obtain
Lim M(gXiy+1, 8Xmiioy+15 € + 38) ¥ M(Vidy+1> 8Vmpy+1, € +38) 2 1+ (1 =) x 1% 1,
koo
that is,
hy(€ + 3s) = lim M(gXi(ky+1> 8Xmky+1, € + 38) * M(Yiky+1, &Ymky+1, € + 35)
k—oo
>(1-2). (20)

Since M is bounded with range in [0, 1], continuous and, by Lemma 1.1, monotone
increasing in the third variable ¢, it follows by an application of Lemma 1.4 that &, as
given in (18) is continuous from the right. Taking s — 0 in the above inequality (20),
we obtain

hy(€) = Dm{M(gxix)+1, 8Xmky+1> €) * M(Yiky+15 &Ymty+1, €)= (1 — ). 2n
Combiningk(ﬁ1m7) and (21), we have
I}Lrg{M(gxl(k)H’gxzn(k)+1’ €) * M(gYity+1> 8Vmky+1> €)} = (1 = ). (22)
Again, by (22),
Jim (M (g1, 8%nty» €) * M(gYiy» 8¥mity» ) < 1= . (23)
For ¢ > 0, we define the function
hs(t) = kli_m{M (&Xi(ky+1> 8Xmky+15 1) * M(EYiky+1> 8Ymiky+1, D} (24)

For any s > 0,
M(gxuk)> §Xmik) € + 25) * M(8Yikys 8Ymit) € + 25)
> {M(gxik)> 8X1ky+15 S) * M(&Yiky> 8Vicky+15 $)}
# AM(gXi(ty+1> 8Xmky+15 €) * M(Yiy+1, &mky+1» €)}
# A M Xk 15 8Xmikys 8) * M(EYm(ky+1> 8Ymky> $)}-
Taking limit infimum k& — oo in the above inequality and, using (12) and (13), by
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Lemma 1.3, we have
Lim {M(gxik)> 8Xm(ky» € + 25) * M(8Yitky> &Ym(ky» € + 25)}

koo
2 1+ Dm{M(gxX1w)+1, 8Xmky+1> €) * M(EViky+15 8Ymky+1, €)} * 1
oo
=1-A

Then, using (24), we have
hs(€ + 2s) = im {M(gXiw), §Xmk)» € + 25) * M(gYik), 8Ymik)» € + 25)}

k—oo

>1-a (25)
Since M is bounded with range in [0, 1], continuous and, by Lemma 1.1, monotone
increasing in the third variable z, it follows by an application of Lemma 1.4 that A3 as
given in (24) is continuous from the right. Taking s — 0 in the above inequality (25),
we obtain

h3(e) = Lim {M(gxyk), 8Xmk)» €) * M(Yitk)> 8Vmeky» €)} = (1 = A). (26)
k—o0
Combining (23) and (26), we have
]}LT?G{M (8X10)> 8%m(y» €) * M(&Yiky> 8Ymity> €)Y = (1 = ). 27)
Now

Y(M(gXinky+15 8Xiky+15> €) * M(Vm(ky+1> 8Viky+15 €))
= Y(MF Xy Ymw))s F iy Yicw)» €) % MCF Vmgys Xme)s F iy Xicky)» €))
< Y(M(Xmy» 8Xick)> €) * M(EYm(ky» 8Vich)» €))
— (M (Xmky» 8Xitk)> €) * M(Vmx)> &Viky» €))- (by using (4))
Taking k — oo in the above inequality, using (22) and (23), we have
YA =) <yl =D - ¢(1 =),
which is a contraction since ¢(1 — 1) # 0.
Therefore, {gx,} and {gy,} are Cauchy sequences. Since X complete, there exist
X,y € X such that
limgx, = x and limgy, =y. (28)
Therefore, lim g1 = 1im F(x, ,) = %, lim gyt = lim F(y,, %) = .

Since, (g, F) is a compatible pair, using continuity of g, we have

lim g(gxs1) = gx = 1im g(F(xy, y,)) = 1im F(gxi, gyn), (29)
r}l_{?cg(g))nﬂ) =gy= }Lﬂclog(F(yn, xn)) = Y}I_P;F(gyns gxn)- (30)

By (6), (7) and (28), it follows that {gx,} is a non-decreasing sequence with gx, — x
and {gy,} is a non-increasing sequence with gy, — y as n — oco. Then by (3) and (4)
we have for all n > 0,

gx, < xand gy, > y.

Since, g is monotonic increasing, we have
8(gxn) < gx and g(gy,) = gy (€29)

Now we show that gx = F(x,y) and gy = F(y,x) for all x,y € X. Forall r > 0,

n > 0, we have
M(F(x,y), g(8Xn+1), 1) * M(F(y, X), 8(8Yn+1), 1)
= M(F(x,y), (F(xn, yn)), 1) = M(F(y, x), 8(F (yu, X1)), 1).
Taking n — oo on the both sides of the above inequality, and using the properties of
Y and ¢, for all ¢ > 0, we obtain
Tm M (F (), 808051 1) * MCF(, 1), 8(8Yne1), 1)
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= Hmy(M(F(x,), §(F (n, yu), 1) % M(E (v, %), 8(F (Vs X)), 1),
By the continuity property of , M and =, (29) and (30), for all 7 > 0, we have
Y(M(F(x,y), g, 1) * M(F(y, x), gy, 1))
= Hmy(M(F(x, ), (F (xn, yu)), 1) % M(F (3, ), 8(F (Y, X)), 1))
= Y(MCF(,Y), Tim g(F (%, ), 1)+ MG, 20, Tim gCF (v 1), 1)
YM(lim F(gx,, gy,)), F(x,y), 1) M(Iim F(gyn, g%,), F(, 9, 1))
Jim (M (F(gxn, 8yn)), F(x,3), 1) % M(F(gyn: 8%n), F(y, %), 1))
Jim [(M(g(gxn), gx,1) * M(g(8yn). 8y, )
—P(M(g(gxn), gx, 1) ¥ M(g(gyn), gy.1))] (By using (2) and (31))
(M (gx, gx. 1) * M(gy, gy, 1)) — $(M(gx, gx, 1) * M(gy, gy 1))
=yl =1)—¢(l=1)
=y(D) - (1)
=0.
By using a property of ¢, we have M(F(x,y), gx,t) = M(F(y, x), gy,t) = 1, that is,
M(F(x,y),8x,t) = 1 and M(F(y, x),gy,t) = 1, which implies that gx = F(x,y) and
gy =F@y,x).
Thus we conclude that (x, y) is a coupled coincidence point of g and F.
Hence the proof is completed.

IA

Next we state a corollary of the above theorem in which we replace the compati-
bility condition (iii) of the above theorem by the commuting condition.

Corollary 2.1 Let (X, <) be a partially ordered set and (X, M, ) be a complete fuzzy
metric space where = is an arbitrary continuous t-norm. Let F : X X X — X and
g : X — X be two mappings such that F has the mixed g-monotone property and that
the following conditions are satisfied:

(a) F(XXX) C gX,
(b) g is continuous and monotonic increasing,
(c) (g, F) is a commuting pair,

(d) Y(M(F(x,y), F(u,v), 1) * M(F(y, x), F(v,u), 1)
< Y(M(gx, gu, 1) * M(gy, gv, 1)) — p(M(gx, gu, ) = M(gy, gv, 1))

forall x,y,u,v € X, t > 0 with gx < guand gy > gv, where y,¢ : (0,1] — [0, c0)
are two functions such that:

(1) ¢ is continuous and monotone decreasing with y(s) = 0 if and only if s = 1,
(i) ¢ is lower semi- continuous with ¢(s) = 0 if and only if s = 1.

Also suppose that X has the following properties:
(a) if a non-decreasing sequence {x,} — x, then x,, < x foralln > 0,

(b) if a non-increasing sequence {y,} — y, theny, >y foralln > 0.
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If there exist xy,yo € X such that gxo < F(xo,y0) and gyo > F(yo, Xo), then there exist
x,y € X such that gx = F(x,y) and gy = F(y, x), that is, g and F have a coupled
coincidence point in X.

Proof Since a commuting pair is also a compatible pair, Corollary 2.1 follows from
Theorem 2.1.

Later, by an example, we show that Corollary 2.1 is properly contained in Theorem
2.1.

Our next corollary is a weak coupled contraction mapping theorem.

Corollary 2.2 Let (X, <) be a partially ordered set and (X, M, ) be a complete fuzzy
metric space where x is an arbitrary continuous t-norm. Let F : X X X — X be a
mapping such that F has mixed monotone property and satisfies the following condi-
tion:
Y(M(F(x, ), F(u,v), ) * M(F(y, x), F(v, ), 1))
<YM(x,u, 1) « My, v, 1)) = g(M(x, u, 1) * M(y,v,1)),

forall x,y,u,ve X, t>0withx <uandy > v, where y,¢ : (0,1] — [0, ) are two
functions such that:

(1) ¢ is continuous and monotone decreasing with ¥(s) = 0 if and only if s = 1,
(ii) ¢ is lower semi-continuous with ¢(s) = 0 if and only if s = 1.
Also suppose that X has the following properties:
(a) if a non-decreasing sequence {x,} — x, then x,, < x foralln > 0,
(b) if a non-increasing sequence {y,} — y, theny, >y foralln > 0.

If there exist xo,yo € X such that xo < F(xo,y0) and yo > F(yo, xo), then there exist
X,y € X such that x = F(x,y) andy = F(y, x), that is, F has a coupled coincidence
point in X.

Proof The proof follows by putting g = /, the identity function, in Theorem 2.1.

Example 2.1 Let (X, <) be the partially ordered set where X = [0, 1] and < be the
natural ordering < of the real numbers. Let for all > 0, x,y € X,
lx =yl
M(x,y,)=e 1
Letaxb =a.bforall a,b € [0, 1]. Then (X, M, %) is a complete fuzzy metric space.
Let

Y(s) = ——1land ¢(s) = — — L\/_ where s € (0, 1]. (32)

Then ¢ and ¢ satlsfy the condltlons given in the statement of Theorem 2.1.
Let the mapping g : X — X be defined as

5
glx) = gxz forall x € X
and the mapping F : X X X — X be defined as

2 2

X" -y
Fley =4 g » forx=»
0, otherwise.
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Then, clearly, F(X X X) C gX and F satisfies the mixed g-monotone property.
Let {x,} and {y,} be two sequences in X such that
lim F(x,,y,) =a, limg(x,) = a,
Tin F(y,, 5,) = b and lim ¢(y,) = b.

Now, for all n > 0,

_ 5 2 _ 5 2
8(xy) = e 8(yn) = A8

2 2
Xy = Vn .
s if X =y,
F(xp, yn) = { 6 =

0, otherwise

and

0, ift Xy 2y,
F(yn, x,) = yﬁ —X,21
6

, otherwise.

Then necessarily a = 0 and b = 0. It then follows from Lemma 1.2 that, for all ¢ > 0,
Jim M((F (x, yn)), F(g(x), (), 1) = 1
and
Jim M(g(F (va, x0)), F((yn), §(xa)), 1) = 1.
Therefore the mappings g and F are compatible in X.
With the choices of i, ¢ as in (32) and the #-norm * being given as a * b = ab, the

inequality (2) has the form
1

M(F(x,y), F(u,v),t) * M(F(y, x), F(v,u),t) -1
1

< -1-
(M(gx, gu, 1) * M(lgy, gv,1) (M(gx, gu, 1) = M(gy, gv, 1)

+ s
V(M(gx, gu, 1) = M(gy, gv. 1))
that is,

M(F(x,y), F(u,v),t) * M(F(y, x), F(v,u),t) > \/M(gx, gu,t) = M(gy, gv,1t). (33)
2

5 5 5
Let gx < gu and gy > gv, that is, x> < =i and =y > =12,
. 6 6 6 6
that is,
x<wuandy>v. (34)
We next show that the inequality (33) holds under the above condition.

The following cases may arise:

Casel x>yandu>v.
2_\2 2_ .2
X“ =y U —v
 Flu,v) =
g Fen="7%

1
| = gl(x2 —u) = (=)

In this case, we have F(x,y) =
2y -2

6 6

Then |
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5

<—[(x2—u2)|+|(y2—v21
15, 5,

4‘6y _6v'

thatis, [Fx, ) = Fla 0| < 71200 - 560 + 1]s) - 509]
Then, for all > 0, | )
|F(x,y) — F(u,v)| 7[Z|g(X) _g(”)lzlg(y) -gMl

¢ t >e t
e gl lg&y) — gl
—e 4t .e 4t
:/ s =gl [80) - s
= e t e t s
|F(x,y) = Fu, v)l i/ ) — gl 180 — g
that is, e t > Ve t e t . (35)

In this case F(y, x) = 0 and F(v,u) = 0, then trivially we have

0= (0 - F, 0] < 11g0) = 8001 + 18(2) = gGw.
It follows that for all ¢ > 0,
FG,x) — F(v, u)l :/ g — gl 1sO) — gl
t > Ve 1 e t . (36)

l=e
From (35) and (36), for all ¢ > 0, we have
M(F(x,y), F(u,v),t) - M(F(y, x), F(v,u),1t)
> M(g(x), g(w), 1) - M(g(y), (), )M (g(x), g(w), 1) - M(g(y), g(v), 1),

that is,
M(F(x,y), F(u,v),1) * M(F(y, x), F(v,u), )
> \M(g(x), gu), 1) * M(g(y), §(v), ).

Casell x <yandu>v.

2_ 2

In this case we have F(x,y) =0, F(u,v) = “

By (34), we must have x < u, it then follows that [u? — 2| < [x2 — u?|,

thatis,  |u? —v?| < |x? — u?| + [y> = v,
thatis, oS (2 — u2| 12— v2|]

, ] 7 ,

. = 1 2
that is, =22 - 24+
- 4| S+ 2

thatis, [F(u,v)| < Zlg(X) - gl + Zlg(y) -8l
that is,

1 1
[F(x,y) = F(u,v)| < Zlg(X) - g + Zlg(y) - gl (since F(x,y) =0)
Then, for all > 0,

1
. |F(x,y) — F(u,v)| . [Zl‘lg(x) - g + Z'g(y) -gmll

e t >e t
g gl ls&) — gl
4¢ e 4¢

1l
Q
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:/ g — gl gk — g(v)]

= e t .e t
FGLy) = F(u,) \/ 80— s@l  180) — g0
t > Ve ! -e t . (3N

>

thatis, e
¥ -2

and F(v,u) = 0. By (34), we must have x < u, it
then follows that |y> — x?| < |x* — 12,
thatis, [y? — 2% < |x% — u?| + [y? — V7,

In this case F(y, x) =

2 x? 5
that is, |y2 - 2' < ﬁ[lxz—u2|+|y2—v2|]
. [y — x| 5, 5 2 >
that is, TS4 |6x | y ——v|
that is,

(.0~ Ol < 7180) g0 + 71800~ gGol. (since (v, = 0)
Then, for all ¢t > 0, we have
e S R N E B DI REO )
s Ve e . 38)

e t
From (37) and (38), for all # > 0, we have
M(F(x,y), F(u,v),1) - M(F(y, x), F(v,u), 1)
> \M(g(x), g(w), 1) - M(g(y), g(v), N/M(g(x), g(w), 1) - M(g(), gv)., 1),
that is,

M(F(x,y), F(u,v),t) * M(F(y, x), F(v,u),t)
2 \M(g(x), g(w), 1) = M(g(y), g(v), 1).

Caselll x <yandu <v.
In this case, F(x,y) = 0, F(u,v) = 0. Then obviously we have
1
0=1F(x,y) = Fu,v)| < Zlg(X) - g+ Zlg(y) -8l
Then, for all # > 0,
1 1
|F(x,y) — F(u,v)| [Zlg(x) - gw)| + Zlg(y) -gmll
l=e t >e t

e
lg(x) — g(u)l lg() — gl
= g7 4t . g7 4t
:/ lg) — gl 18() — g
=Ve t e t

that is, ’
FGy) — Fu,v)l i/ gt — gl 1g() — s
> Ve ' e ' . (39)
2 _ 42 2 _ .2
Y and F,u) = “ " Then

e t

Again in this case F(y, x) =

1 5
g|(y2 -1 - (- < ﬁn(ﬁ =)+ = D)),
y2—x2_v2—uzlgl§y2 2| l§x2_§u2|

6 6 14 6 4'6
thatis,  |F(y,x) - F(v,u)| < Zlg(y) - g(V)I + Zlg(X) - g(u)|,

thatis, |
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IF(, 0 = FOv, ] < 1180) ~ )] + 71200 ~ 8001
Then, for all 7 > 0,
FG.x) = F, )l i/ g gl g0 — M)l
e t > Ve t ce t . (40)
From (39) and (40), for all ¢ > 0, we have
M(F(x,y), F(u,v),t) - M(F(y, x), F(v,u),1)
> \M(g(x), gw). 1) - M(g(). 80, DM(g(x). g(u). 1) - M(3(y), g(v). 1),

that is,
M(F(x,y), F(u,v),t) * M(F(y, x), F(v,u),t)
> M(g(x), gw), D) * M(g(), g(V), ).

The other possible choice, that is, x > y and u < v, is not consistent with (34) except
for the trivial case where x = y and u = v in which case the inequality (33) is trivially
satisfied. Hence this possibility is excluded. Combining the above cases we see that
(33) and hence (2) is satisfied under the condition gx < gu and gy > gv. Thus all
the conditions of Theorem 2.1 are satisfied. Then, by an application of Theorem 2.1,
we conclude that g and F have a coupled coincidence point. Here (0, 0) is a coupled
coincidence point of g and F in X.

Remark 2.1 In the above example, we see that (g, F) is not a commuting pair al-
though it is a compatible pair of mappings. This shows that Corollary 2.1 can not be
applied to this example. Further, in the example, g is not the identity mapping. This
shows Corollary 2.2 is also properly included in Theorem 2.1.

Open problem: It remains to be investigated whether the result of Theorem 2.1
is true with conditions weaker than the compatibility between two mappings being
satisfied.

3. Conclusion

The main theorem, which is Theorem 2.1, is proved with the help of two control func-
tions of which one is continuous and the other is lower semi continuous. The proof
is accomplished by application of two lemmas, that is, Lemma 1.3 and Lemma 1.4.
What is remarkable about the main theorem is that, it has been possible to establish
the result with arbitrary continuous #-norms. The same methodology can possibly be
applied to some other problems of fuzzy fixed point theory.
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