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a b s t r a c t

In this paper, the most effective methods, the homotopy perturbation method (HPM) and
the differential transform method (DTM), are applied to obtain the approximate solutions
of the nonlinear time-fractional Swift–Hohenberg (S–H) equation. The basic philosophy
of these methods does not involve linearization, weak nonlinearity assumptions or
perturbation theory. Numerical solutions for various combinations of the parameters a
(eigenvalue parameter), L (length) and α (fractional index) are obtained. The solutions of
the S–H equation are useful for studies of shear thinning effects in non-Newtonian fluid
flows. At the end, the solutions obtained are also presented graphically.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Most problems in science are nonlinear and in most cases it is difficult to solve them, especially analytically. Many
problems are modeled by difficult nonlinear differential equations. The perturbationmethod is one of themost well-known
methods for solving nonlinear problems. These methods are based on the existence of small/large parameters, the so-called
perturbation quantities. However, many nonlinear problems do not contain such perturbation quantities and, therefore,
non-perturbation techniques are used to solve such problems. During the last few decades several methods have been
used to solve ordinary and partial differential equations, integro-differential equations and fractional differential equations.
Among these methods the Adomian decomposition method (ADM) [1], He’s variational iteration method (VIM) [2], the
differential transformation method (DTM) [3,4] and the homotopy perturbation method (HPM) [5–7] have gained much
success.

Fractional differential operators have a long history, having been mentioned by Leibniz in a letter to L’Hospital in 1695.
The beauty of this subject is that the fractional derivative and the fractional integral of a given function are not based
on the local properties of that function. On the other hand, the history and non-local distributed effects of the function
are considered. In other words, this subject translates the reality of nature in more sophisticated manner. The number of
scientific and engineering problems involving fractional calculus [8] is already very large and still growing, and perhaps the
fractional calculus will be the calculus of the twenty-first century.

The Swift–Hohenberg (S–H) equation is

ut(X, t) = au − (1 + ∇
2)2u − u3

; X ∈ ℜ, t > 0, (1)

where a ∈ ℜ is a parameter. The S–H equation [9] was first proposed in 1977 by Swift and Hohenberg as a simple model
for the Rayleigh–Bénard convective instability of roll waves [10,11]. It has since featured in a variety of problems such as
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that of Taylor–Couette flow [12] and in the study of lasers [13]. The S–H equation, as a model equation for a large class of
higher-order parabolic equations, arises in a wide range of applications, e.g., as the extended Fisher–Kolmogorov equation
in statistical mechanics. In this paper, we study the Cauchy–Dirichlet problem for the S–H equation on the interval (0, L),
where, in addition to the parameter a, the length L and fractional index α will turn out to be important parameters. We
employ DTM and HPM to find approximate solutions of time-fractional S–H equations. Thus, writing the S–H equation in a
more general form, we consider the problem with time-fractional derivative

Dα
t u = −2uxx − uxxxx − (1 − a)u − u3, (2)

with boundary conditions

u = 0, uxx = 0 at x ∈ 0, L for all t > 0, (3)
u(x, 0) = u0(x), for all 0 < x < L. (4)

2. Analytical approximation of the time-fractional S–H equation

2.1. The DTM solution

We apply the DTM to Eq. (2), with the initial condition [14,15]

u(x, 0) =
1
10

sin
πx

L


. (5)

The transformed version of Eq. (2) is

Uα,1(k, h + 1) =
Γ (αh + 1)

Γ ((αh + 1) + 1)


−2(k + 1)(k + 2)Uα,1(k + 2, h) − (k + 1)(k + 2)(k + 3)(k + 4)Uα,1(k + 4, h)

− (1 − a)Uα,1(k, h) −

k−
r=0

k−r−
t=0

h−
s=0

h−s−
p=0

Uα,1(r, h − s − p)Uα,1(n, s)Uα,1(k − r − n, p)


. (6)

The generalized two-dimensional differential transform of the initial condition is given as

U(0, 0) = 0, U(1, 0) =
π

10L
, U(2, 0) = 0, U(3, 0) =

−π3

60L3
, U(4, 0) = 0,

U(5, 0) =
−π5

1200L5
, U(6, 0) = 0, U(7, 0) =

−π7

50400L7
, U(8, 0) = 0,

U(9, 0) =
π9

3628800L9
, U(10, 0) = 0, U(11, 0) =

−π11

399168000L11
.

(7)

Eqs. (6) and (7) give some values of U(k, h). Subsequently substituting all values of U(k, h) into Eq. (6), we obtain the series
form solutions of Eq. (2), with initial condition (5), as

u(x, t) =


πx
10L

+
πx3

60L3
+

πx5

1200L5
+

πx7

150400L7
+ · · ·


+


(a − 1)π

10L
+

π3

5L3
−

π5

10L5


x +


(47 − 50a)π3

3000L3
−

π5

30L5
+

π7

60L7


x3 + · · ·


tα

Γ (α + 1)

+


(1 − a)2π

10L
+

(−97 + 100a)π3

250L3
+

5(27 − 10a)π5

50L5
−

2π7

5L7
+

π9

10L9


x

+


−19π3

1500L3
+

11aπ3

375L3
−

a2π3

60L3
+

(61 − 100a)π5

1500L5
+


−3π7

500L7
+

aπ7

30L7


+

π9

15L9
−

π11

60L11


x3 + · · ·


t2α

Γ (2α + 1)
+ · · · . (8)

2.2. The HPM solution

Let us construct the homotopy map for Eq. (2), as follows:

H(v, ε) = Dα
t v − Dα

t u0 + ε(Dα
t u0 + 2uxx + uxxxx + (1 − a)u + u3). (9)
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Fig. 1. Profiles for a = 0.3 and different choices of L: (a) L = 3, α = 1, t = 0, 0.08, 0.09, 0.1 (dashed, black, red, purple). (b) L = 6, α = 1,
t = 0, 0.6, 0.8, 0.9 (dashed, black, red, purple). (c) L = 9, α = 1, t = 0, 1, 2.2, 2.6 (dashed, black, red, purple). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

The solution to the equation

H(v, ε) = 0 (10)

is sought in the form of a power series in ε:

v =

∞−
j=0

εjvj. (11)

Substituting Eq. (11) into Eq. (9) and comparing the same powers of ε, we get

Dα
t u0 = 0, (12)

Dα
t ui = −2

∂2ui−1

∂x2
−

∂4ui−1

∂x4
− (1 − a)ui−1 −

i−1−
m=0

ui−m−1

m−
j=0

um−juj, i ≥ 1. (13)

Applying the Riemann–Liouville fractional integral operator Jαt on both sides of Eqs. (12) and (13) and solving the ith-order
deformation equations, we get the components of the homotopy series

u0 =
1
10

sin
πx

L


, (14)

u1 =


100((1 − a)L4 − 2L2π2

+ π4) + L4 sin2 πx
L


sin


πx
L


tα

1000L4Γ (α + 1)
, (15)

u2 =


A1 sin

πx
L


+ A2 sin


3πx
L


+ A3 sin


5πx
L


t2α

1600000L8Γ (2α + 1)
, (16)

where

A1 = 10(16483 + 160a(−203 + 100a)L8 + 320(−203 + 200a)L6π2

+ 160(603 − 200a)L4π4
− 64000L2π6

+ 16000π8),

A2 = 5L4((−323 + 320a)L4 + 1920L2π2
− 6720π4) and A3 = 3L8.

We use a nine-term approximate solution and set

u(x, t) = u0 + u1 + · · · + u8. (17)

3. Conclusion

In this paper, the differential transformation and homotopy perturbation techniques are used to solve S–H equations.
The analytical solution u(x, t) of the time-fractional S–H equation has been obtained for the one-dimensional domain (0, L).
The effects of the eigenvalue parameter a, fractional index α, and the length L of the domain are also shown graphically. We
show by means of the approximate solutions obtained how different values of these parameters may lead to qualitatively
different profiles. In order to gain insight into the different kinds of limiting behaviors and the effects of the parameter α
and the length L of the domain on the final profiles of the solution, we carried out a series of numerical simulations. In the
study of the S–H equation, the profile comprises many periods of a periodic solution but here we focus on smaller domains
with only a few periods. In these simulations, we keep a fixed and compare the dynamics of the profiles as the size L of the
domain increases (see Fig. 1). In Fig. 2, we give results of simulations for different values of these parameters.
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Fig. 2. Profiles for (a) L = 9, α = 1, 0.8, 0.6, 0.5, t = 1 (dashed, black, red, purple), (b) L = 9, α = 1, t = 1.4, a = 0.3, 0.5, 0.9 (dashed, black, red, purple),
(c) L = 6, 6.5, 7, 14, α = 1, t = 1 (dashed, black, red, purple). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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