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This paper considers the classification properties of two-layer
networks of McCulloch�Pitts units from a theoretical point of view. In
particular we consider their ability to realise exactly, as opposed to
approximate, bounded decision regions in R2. The main result shows
that a two-layer network can realise exactly any finite union of bounded
polyhedra in R2 whose bounding lines lie in general position, except for
some well-characterised exceptions. The exceptions are those unions
whose boundaries contain a line which is ``inconsistent,'' as described
in the text. Some of the results are valid for Rn, n�2, and the problem
of generalising the main result to higher-dimensional situations is
discussed. ] 1996 Academic Press, Inc.

1. INTRODUCTION

In this paper we consider a mathematical problem which
arises in the study of two-layer neural networks of
McCulloch�Pitts neurones [1] (see also MADALINE
networks [2]), which incorporate one hidden layer of units,
a single output unit, and which use a step-function for the
node activation function. Such a network accepts an input
x # Rn which is passed to the m units in the hidden layer of
the network. Each hidden-layer unit is specified by a weight
vector wi # Rn and a bias qi , 1�i�m, and computes as its
output yi= f (wi } x+qi), where f : R � [0, 1] is defined by
f (s)=1, if s�0 and f (s)=0 otherwise. In the networks
which we consider the (binary) vector of hidden-layer out-
puts y=( y1 , ..., ym) is passed as input to the single unit in
the output layer which is specified by a weight vector a # Rm

and bias b # R. The network therefore implements a func-
tion g : Rn � [0, 1], defined by

g(x)= f (a } y+b),

where

yi= f (wi } x+qi), 1�i�m.

Now let S/Rn be a bounded set and let h : Rn � [0, 1] be
the function defined by h(x)=1, if x # S, and h(x)=0
otherwise. We say that S is exactly realisable if there exists
a two-layer network of the above form for which g(x)=h(x)
almost everywhere. The question we investigate is that of
characterising realisable subsets of Rn.

Many researchers have considered networks with three or
more layers of units, whose classification capabilities are

more easily understood (see later). In a three-layer network
of McCulloch�Pitts units the output vector from the first
hidden layer, y # Rm is passed as input to a second hidden
layer consisting of m$ units, specified by weight vectors aj

and biases bj , 1� j�m$. The output vector from this second
hidden layer, y$=( y$1 , ..., y$m$) is then passed as input to
the nodes in the output layer. In the case where the output
layer consists of a single unit, with weight vector a$ # Rm$

and bias b$, the three-layer network implements a func-
tion g : Rn � [0, 1] defined by g(x)= f (a$ } y$+b$), where
yj$= f (aj } y+bj), 1� j�m$, and yi= f (wi } x+qi), 1�
i�m.

There are, nevertheless, several results in the literature
which deal with the capabilities of two-layer networks.
The approximation results of Hornik et al. [3], Cybenko
[4] and Funahashi [5] demonstrate that all bounded,
measurable sets are ``almost'' realisable. Li [6] has appealed
to these results to show that any two disjoint, compact sub-
sets of Rn can be separated by a two-layer network. The
abilities of neural networks to classify finite input spaces
have been considered by several researchers (see, e.g.
[7�9]). Exactly realisable sets (which, in essence can be
separated from their complements in Rn) have not received
the same attention. The subject was treated in [10] by
Gibson and Cowan, where examples of realisable sets and
unrealisable sets were constructed, but no general charac-
terisation of realisability was given. A similar approach to
the problem, relating the construction of decision regions to
problems involving separation of subsets of hypercube ver-
tices, was taken in [11]. Some general classes of realisable
sets have since been described in [12�14].

The main contribution of this paper is to provide a simple
geometrical characterization of the bounded realisable sets
of R2, whose bounding lines are in general position. The
main result of the paper demonstrates that, with the excep-
tion of some nongeneric cases, the abilities of two- and
three-layer networks of McCulloch�Pitts neurones are
similar when inputs are two-dimensional. Examples are
given which show that our main result does not hold if
the assumptions of boundedness and general position of
bounding lines are relaxed. We also discuss how readily the
result might be generalised to higher dimensional situations.
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2. BOUNDED REALISABLE SUBSETS OF R2

We begin by generalising our notion of realisability. Let
Fn denote the set of all functions g : Rn � R of the form

g(x)= :
m

i=1

ai f (wi } x+qi), m # N, wi # Rn,
(2.1)

ai , qi # R, 1�i�m.

Suppose S/C/Rn. We say S is realisable in C if there
exists g # Fn such that (almost everywhere) g(x)>0 if x # S
and g(x)<0 if x # C"S. In the notation of the previous
section S is realisable if it realisable in Rn.

It is clear from (2.1) that a realisable set must be a finite
union of polyhedral sets in Rn, ignoring discrepancies of
zero measure. This follows from the fact that the function g
in (2.1) is constant over any connected component (cell)
of Rn"�m

i=1 Hi where Hi is the hyperplane defined by
wi } x+qi=0, for those wi{0. Each cell is a polyhedral set.
However, it is well known (e.g., [10, 14, 15]) that not all
unions of polyhedral sets are realisable. Before identifying a
general class of unrealisable sets we give some definitions.

Definition 1. Let S/Rn be a union of polyhedral sets
and let H1 , ..., Hk be the hyperplanes which have a non-
trivial (i.e., (n&1)-dimensional) intersection with the
boundary of S, B(S ). Then we say H1 , ..., Hk are the essen-
tial hyperplanes of B(S ).

Definition 2. Let Pj , 1� j�s, denote the connected
components of Rn"�m

i=1 Hi . The hyperplane Hi is said to be
inconsistent if there exist Pj1 , Pj2 , Pj3 and Pj4 such that

(i) Pj1 , Pj2
/S and Pj3 , Pj4/Rn"S,

(ii) P� j1 & P� j3 & Hi and P� j2 & P� j4 & Hi are both (n&1)-
dimensional sets, where A� denotes the closure of the set A,
and

(iii) wi } x+qi>0, \x # Pj1 _ Pj4 , wi } x+qi<0, \x #
Pj2 _ Pj3 .

The above definition can be restated more intuitively. An
inconsistent (essential) hyperplane is one whose intersection
with B(S ) contains two regions which jointly have the
following property. On one of these regions, crossing Hi in
a given direction takes one from S into Rn"S, whilst on the
other region crossing Hi in the same direction takes one from
Rn"S into S. Figure 1 is a simple example of a set whose
boundary has an inconsistent hyperplane.

Concerning inconsistent hyperplanes we have the follow-
ing well-known ``folk theorem'' of neurocomputing.

Lemma 3 (cf. [10, 14, 15]). Let S be a finite union of
polyhedral sets whose boundary has an essential hyperplane,
H, which is inconsistent. Then S is unrealisable in Rn.

FIG. 1. A region whose boundary incorporates an inconsistent essential
hyperplane.

Proof. Suppose otherwise so that there exists a function
g, as defined in (2.1) such that g(x)>0, for all x # S, and
g(x)<0 otherwise. We may assume without loss of
generality that H is defined by w i } x+qi=0 for some i in
(2.1). It is easily verified that the conditions (i)�(iii) force the
coefficient ai to be simultaneously greater than, and less
than zero��a contradiction. K

Lemma 3 identifies one particular pathology which
renders a union of polyhedral sets unrealisable. A logical
question to ask is whether the converse of Lemma 3 is
true��must all unrealisable sets have an essential hyper-
plane which is inconsistent? In our main result, Theorem 4,
we prove that, apart from some nongeneric exceptions, the
converse of Lemma 3 is true when n=2.

Theorem 4. Let S/R2 be a finite union of bounded
polyhedral sets for which no three essential hyperplanes
(lines) intersect. Then S is realisable if and only if no essential
hyperplane is inconsistent.

Before we prove Theorem 4, we give some auxiliary
results which are required by the proof. The first of these,
which generalises a result of [13], allows us to focus our
attention on the boundary of a set to determine whether it
is realisable or not.

Proposition 5. (cf. [13]). Let C/Rn be compact, let
S/C have boundary B(S ) in C and let N be any open subset
of C containing B(S ). Suppose that S & N is realisable in N.
Then S is realisable in C.

Proof. Since S & N is realisable in N, there exist g # Fn

and $>0 such that g>$ on S & N and g<&$ on N"S.
Now g is bounded so that there exists M # R such that
| g(x)|<M for all x # C. Consider the function + : C � R,
defined by

+(x)=d(x, C"S)&d(x, S ),
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where d(x, A)=infa # A &x&a&. Now + is continuous on C,
+�0 on S and +�0 on C"S. Furthermore, since B(S ) is
compact, there exists #>0 such that |+(x)|># for all
x # C"N. Now let +$=(M+$) +�#. Since +$ is continuous
we can choose h # Fn such that |h(x)&+$(x)|<$, for all
x # C, by appealing to the approximation results of [3�5].
It is easily verified that g+h # Fn satisfies h(x)+g(x)>0 for
almost all x # S, and g(x)+h(x)<0 for almost all x # C"S.
It follows that S is realisable in C. K

Lemma 6. Let x1 , ..., xk be distinct points in Rn and let
y1 , ..., yk # R. Then there exist =>0, and a function g # Fn (as
defined in (2.1) such that g(xi)=yi , for all x # N(xi , =),
1�i�k.

Proof. Let, n=1 and suppose that x1<x2 } } } <xk ,
without loss of generality. Choose =<min[(xi+1&xi)�2].
Now let g be defined by

g(x)= :
k

i=1

ai f (x&qi),

where a1=y1 , q1<x1&=, and for i�2, ai= yi&yi&1 , qi=
(xi&1+xi)�2. Then g(x)=yi for all x # N(xi , =), 1�i�k, as
required.

For n�2, we note that there exists w # Rn such that
w } xi{w } xj , i{ j. Taking the inner product of each xi with
any such w reduces the problem to the case n=1 considered
above. An identical argument has been used previously to
reduce from n dimensions to a single dimension in [8,
Lemma 5.1].

Proof of Theorem 4. The general argument given below
is illustrated in the context of a particular example, where S
is the union of shaded rectangles in Fig. 2. From Lemma 3
it suffices to show that if no essential hyperplane of B(S ) is
inconsistent then S is realisable. Therefore let S satisfy the
conditions of the theorem and further suppose that no
essential hyperplane (line) is inconsistent. Let C denote

FIG. 2. Realisable set used to illustrate the proof of Theorem 4.

a compact polyhedral set containing S (see Fig. 2). If S is
realisable in C, then a simple argument shows that it is
realisable in R2.

Let Hi=[x | wi } x+qi=0], 1�i�m, denote the essen-
tial hyperplanes of B(S ). In the example of Fig. 2, m=6,
since we only need consider essential hyperplanes which
intersect with the interior of C. Suppose further that each
(unit) normal, wi , is chosen to point towards the interior of
S at any point in the interior (in Hi) of B(S ) & Hi (see
Fig. 2). Since none of the Hi is inconsistent, wi can be chosen
thus without loss of generality.

We demonstrate the existence of a neighbourhood N
containing B(S ) such that S & N is realisable in N, then we
appeal to Proposition 5. Let Hi$ be the line
wi } x+qi+$=0, 1�i�m, where $>0, and consider the
function g # F2 defined by

g(x)= :
m

i=1

f (wi } w+qi)+ :
m

i=1

f (&wi } x&qi&$)&m+1.

Since no three of the lines Hi intersect we can choose $ to
be sufficiently small so that, for m�2, the open cells of
C"�m

i=1 (Hi _ H i$) are partitioned into three sets V&1 , V0 ,
and V1 over which g takes the values &1, 0, and 1, respec-
tively. This can be deduced in general by an inductive argu-
ment and is illustrated in Fig. 3. Concerning open polygons,
P, in V&1 and V1 , we make the following claims, which
follow from the hypotheses on S:

(i) If P # V&1 is contained in S (e.g., P1 in Fig. 3), then
d(P, B(S ))>0.

(ii) If P # V1 is not contained in S (e.g., P2 in Fig. 3),
then d(P, B(S ))>$>0.

FIG. 3. Partitioning C"[�m
i=1 (Hi _ H i$)] according to the value of g

in proof of Theorem 4.
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FIG. 4. The sets (S & C0) and C0"(S & C0) (see proof of Theorem 4).
The boundary of (S & C0) in C0 consists of the points 1�8.

Hence, there exists an open set N containing B(S ) such
that N does not intersect with any of those sets P to which
claims (i) and (ii) apply.

We now consider the set

C0=. [P | P # V0].

We claim that (S & C0) is realisable in C0, the closure of C0 .
Now the boundary of (S & C0) in C0 consists of a finite
set of points [zj | 1� j�r], where r=8 in the case of our
example (see Fig. 4). Now consider a neighbourhood of this
boundary of the form

A= .
r

j=1

N(zj , =),

where =R$ selected above. For each zj we select a line Hj

defined by vj } x+sj=0, which contains zj and whose

FIG. 5. Separating (S & C0) from C0"(S & C0) on a neighbourhood of
the boundary (see proof of Theorem 4).

normal, vj , points into the interior of S & C0 at zj . This is
illustrated for the particular case of points 1 and 2 in Fig. 5.
Assume further that Hj does not intersect any of the
neighbourhoods N(zi , =), i{ j. The last condition can
always be achieved after reducing = if necessary. Consider
the function u # F2 defined by

u(x)= :
r

j=1

2f (vj } x+sj).

It is clear that on each neighbourhood N(zj , =), u(x)=:j , if
x � S, and u(x)=:j+2, if x # S, for integers :1 , ..., :r . By
Lemma 6, we can choose t # F2 , such that t(x)=:j for
all x # N(zj , =) (reducing = again, if necessary). Let
s(x)=u(x)&t(x)&1. Then s(x)=1 for all x # S & A, and
s(x)=&1 for all x # A"S. It follows from Proposition 1 that
(S & C0) is realisable in C0. There exists, therefore, some
h # F2 , such that h(x)>0 for almost all x # S & C0 , and
h(x)<0 for almost all x # C0"S. We can assume without
loss of generality that |h(x)|<1 for all x # C. Then
h(x)+g(x)>0 for almost all x # S & N and h(x)+g(x)<0
for almost all x # N"S, so that S & N is realisable in N. It
follows from Proposition 5 that S is realisable and the proof
is complete. K

Remark. It is well known (e.g., [16]) that the set of
possible decision regions for the three-layer architecture
described in Section 1 consists of all finite unions of
polyhedral sets in Rn. Theorem 4 demonstrates that, for
n=2, the two-layer architecture is almost as versatile. If we
restrict attention to bounded sets whose bounding hyper-
planes lie in general position then the decision regions for
which a three-layer architecture is necessary are precisely
those whose boundaries contain an inconsistent line, as
exemplified by Fig. 1.

However, while Theorem 4 enables a set S to be
recognised as realisable from the geometry of its boundary,
it says little about the number of first-layer nodes (equiv-
alently, the number of terms in (2.1) for which wi{0, ai{0)
required in a two-layer network realising S. If B(S ) has k
essential hyperplanes, then (see, e.g., [10]) k represents a
lower bound for this number. Previous research (e.g, [12])
has identified some general classes of realisable sets for
which this lower bound on network size can be attained. In
general, however, the number of first-layer nodes required
may be strictly greater than k. For example, Fig. 6a (see
[10]) depicts a set S which is realisable by Theorem 4, but
which cannot be realised by a two-layer network whose
first-layer nodes represent only eight essential hyperplanes
of B(S ). One further node is required whose weight vector
w and bias q define, for example, the line L in Fig 6a.
Increasing the ratio d1�d2 (Fig. 6b) results in a set for which
three additional nodes (corresponding, for example, to L1 ,
L2 , and L3 in the figure) are required in any network realising
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it. Moreover, it is proved in [17], that as d1�d2 � � in
Fig. 6b, so does the minimum number of first-layer nodes in
two-layer network realising S. Thus, the number of first-
layer nodes required in a two-layer network to realise a set
S may be arbitrarily greater than the number of essential
hyperplanes of B(S ). In contrast, regardless of the value of
d1 �d2 in Fig. 6b, S can be realised exactly as the decision
region of a three-layer network with eight first-layer and
two second-layer nodes, and a single output node. Hence,
although two- and three-layer networks offer an exact solu-
tion to this classification problem, the three-layer solution
in general will be more efficient in terms of the total number
of units required.

The following examples demonstrate that Theorem 4
does not hold if S is unbounded, or if we dispense with the
condition concerning the intersection of essential lines.

Example 7. The unbounded region

S=[(x, y) | x, y�1] _ [(x, y) | x, y�&1],

illustrated in Fig. 7 is not realisable in R2.

Proof. Suppose that S were realisable by a function

g(x)= :
m

i=1

ai f (wi } x+qi), m # N,

wi # Rn, ai , qi # R, 1�i�m,

FIG. 6. Examples of realisable decision regions where number of first-
layer units strictly exceeds number of essential hyperplanes.

FIG. 7. Example of unbounded region which is unrealisable.

FIG. 8. Example of region which does not satisfy intersection condi-
tion and which is unrealisable.
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where, without loss of generality, L1 and L2 are defined by
w1 } x+q1=0 and w2 } x+q2=0. Consider the coefficients
a1 , a2 and those coefficients, aj , for which wj } x+qj=0
defines a line, Lj , parallel to L1 and L2 and located in the
slab which they bound (see Fig. 7). We can assume that
w1=w2=wj . Consider the value of g at the points
P1 , P2 , Q1 , and Q2 , where these points are chosen to lie suf-
ficiently far from the origin that the line segments [P1 , P2]
and [Q1 , Q2] do not intersect with any lines wi } x+qi=0
appearing in the definition of g, apart from L1 , L2 , and the
Lj identified above. Comparing the values of g at P1 and P2 ,
we obtain

a1+a2+:
j

aj= g(P1)& g(P2)>0.

For points Q1 and Q2 we have

a1+a2+:
j

aj= g(Q1)& g(Q2)<0.

This is a contradiction and it follows that the set S cannot
be realisable.

Example 8. The bounded region S in Fig. 8a is not
realisable in R2.

Proof. The proof is analogous to that for Example 7.
Again we assume S can be realised by a function

g(x)= :
m

i=1

ai f (wi } x+qi), m # N,

wi # Rn, ai , qi # R, 1�i�m.

However, in this case we focus attention on a neighbour-
hood of O, which is sufficiently small that it is intersected
only by those lines wi } x+qi=0 which contain O. We con-
sider the coefficients a1 and a2 associated with the lines L1

and L2 in the definition of g and those coefficients aj

associated with lines Lj which pass through O and lie in the
space T bounded by L1 and L2 as shown in Fig. 8b. Once
again we can identify points P1 , P2 , Q1 , and Q2 such that

a1+a2+:
j

aj=g(P1)&g(P2)>0

and

a1+a2+:
j

aj=g(Q1)&g(Q2)<0.

This contradiction shows that S is unrealisable. K

Example 8 is a case of the ``twisted-bow tie'' condition
which Zweitering [14, Chap. 5] has shown to characterise
a class of unrealisable regions.

3. DISCUSSION

The results presented in this paper contribute to our
understanding of the functions which are exactly realisable
by a two-layer network of McCulloch�Pitts neurones.
In particular, Theorem 4 provides a simple geometrical
characterization of all the bounded, realisable subsets
of R2, apart from those nongeneric examples which
violate the condition regarding the intersection of essential
lines. It shows that the ability of two-layer nets to create
bounded decision regions is virtually the same as that
of the three-layer architecture when inputs are two-
dimensional. However, it should be noted that the
difference in complexity between two- and three-layer struc-
tures realising the same classification may be arbitrarily
large, with the two-layer structure requiring many more
nodes. The results also indicate how the boundary lines of
an unrealisable, bounded union of polyhedra might be
deformed to produce a realisable approximation to it. Any
such deformation which removes inconsistent lines and

FIG. 9. (a) Example of three-dimensional region which is un-
realisable. (b) Intersection of region in Fig. 9(a) with plane Q to form two-
dimensional unrealisable region.
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``triplet-wise'' intersections of lines suffices. Hence the results
can be of value in identifying a realisable approximation to
a specified classification function.

There are a number of avenues for further research in the
area. There is clearly a need to investigate possible
generalizations of the results to higher dimensions.
However, initial investigations suggest that the problem of
obtaining a valid generalization of Theorem 4 to higher
dimensions is far from straightforward. For example, sup-
pose we restate the condition concerning the intersection of
essential hyperplanes in n dimensions as ``no n+1 essential
hyperplanes have a nonempty intersection,'' which reduces
to the condition of Theorem 4 when n=2. Consider now the
set S/R3, defined by

S=[(x1 , x2 , x3) | 0�x1�1, 0�x2� 1
4 ,

0�x3�1, x1+2x3�2]

_ [(x1 , x2 , x3) | 0�x1�1, 3
4�x2�1,

0�x3�1, 2x3&x1�1]

formed from the union of two polyhedral sets in R3 as
illustrated in Fig. 9a. Clearly this set satisfies the new condi-
tion, it is bounded, and none of its essential hyperplanes is
inconsistent. However, it is not realisable. To show this, we
assume first that S is realisable so that there exists a function
g # F3 defined by

g(x)= :
m

i=1

ai f (wi } x+qi)

such that g(x)>0 for almost all x # S and g(x)<0 for
almost all x # R3"S. Let L be the line of intersection of the
essential planes P1 : 2x3&x1=1 and P2 : x1+2x3=2 and
select a plane, Q, which contains L (see Fig. 9a), so that the
intersection S & Q, considered as a subset of R2, has the
form of Fig. 9b. Now there are an infinitely many Q which
satisfy these conditions and we can ensure, therefore, that Q
is distinct from each plane Hi : wi } x+qi=0, 1�i�m.
Furthermore, since each connected open cell of R3"�m

i=1 Hi

is contained either in S or in R3"S, and g is constant over
each cell, it follows that

(S & [x # R3 | g(x)<0]) _ ([R3"S] & [x # R3 | g(x)>0])

� .
m

i=1

Hi . (3.1)

Since Q is distinct from each Hi , 1�i�m, Q & �m
i=1 Hi

consists of a union of lines. Hence, (3.1) implies that,
with respect to two-dimensional Lebesgue measure on

Q, g(x)>0 for almost all x # S & Q and g(x)<0 for almost
all x # Q"S. Thus the set S & Q (see Fig. 9b) must represent
a realisable set in R2. This is a contradiction since L is
an inconsistent line in S & Q and it follows that S can-
not be realisable in R3. Thus it may be that simple
geometric characterisations of n-dimensional realisable sets
cannot be so readily obtained as in the two-dimensional
case.

Further questions to explore include that of extending the
theory to provide a geometrical characterisation of
realisable subsets of R2 which are unbounded, or which do
not satisfy the condition that no three essential bounding
lines intersect. In view of the reliance of the proof of
Theorem 4 on both the boundedness of the set and the inter-
section condition, it seems likely that a different approach
will be required in order to extend the theory to these
cases.

In this paper we have considered sets which are ``almost
everywhere'' realisable; i.e., we consider classification to be
exact if the misclassified set is of zero measure. This is a
reasonable definition in the context of classifying data
generated from a probability density which is absolutely
continuous with respect to Lebesgue measure. The question
of whether the theory can be applied in the case where a
stricter definition of realisability (i.e., one which demands
that the misclassified set be empty) has been suggested by an
anonymous referee. We claim that Theorem 4 remains true
for this stronger definition of realisability if we restrict atten-
tion to sets S which are either open or closed in Rn. This can
be proved by adapting the construction in the proof of
Theorem 4 to take account of the stronger definition and
ensure that all points in B(S ) are correctly classified. The
details are somewhat tedious and are not included in this
paper. However, Theorem 4 is not true for the stricter
definition without the condition that S is open or closed. It
is a simple matter to construct a union of polyhedral sets
which is neither open nor closed and which is realisable in
sense of this paper but unrealisable when the stricter defini-
tion is used.

The question of constructing two-layer architectures
which realise given sets has not been considered in this
paper. While some progress in this area has been made (e.g.,
[14, 17, 18]) no general method exists to the knowledge of
the author. Such techniques would be of value in the design
of neural networks to realise known functions in cases
where inefficient adaptive learning algorithms are currently
applied.
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