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The constant dynamic movement of synapses and their components has emerged in the last decades as a
key feature of synaptic transmission and its plasticity. Intramolecular protein movements drive conformation
changes important to transduce transmitter binding into signaling. Constant cytoskeletal rearrangements
power synapse shape movements. Vesicular trafficking at the pre- and postsynapse underlies transmitter
release and receptor traffic between the cell surface and intracellular compartments, respectively. Receptor
movement in the plane of the plasma membrane by thermally powered Brownian diffusion movement and
reversible trapping by receptor-scaffold interactions has emerged as the main mechanism to dynamically
organize the synaptic membrane in nanoscale domains. We will discuss here the different conceptual and
methodological advances that have led to a rethinking of the synapse as an organelle whose function is
tightly linked to its dynamic organization.
Introduction: Synapses Are Dynamically Organized
Elements
Our view of synapse organization has evolved during the past

couple of decades from that of a hard-wired element built for

fast electrochemical transmission to that of amultiscale dynamic

organelle whose function is intimately linked to movement of its

individual components in space and time. Hence, neuronal

communication must be seen as a dynamic process derived

from the integration of the movement of synaptic elements at

the intramolecular, intermolecular, and subcellular scales.

After the proposal by Cajal of the discontinuity between

neuronal cells (Ramón y Cajal, 1904) and the demonstrations

that nerve cells communicate through specialized junctions

called synapses (Foster and Sherrington, 1897), the first

dynamics of synaptic components was highlighted at the level

of the presynapse through the discovery that neurotransmission

relies on the fusion of transmitter-filled vesicles with the presyn-

apticmembrane. The importance ofmembrane trafficking for the

function of the presynapse was further reinforced through iden-

tification of the complementary endocytic pathway that allows

vesicles to be recycled after their fusion (Heuser and Reese,

1973). In parallel, intramolecular protein movement was shown

to translate ligand binding to the extracellular domain of certain

neurotransmitter receptors into opening of the associated chan-

nel through allosteric conformational changes (Changeux, 2012).

Up to the end of the 1990s, our picture of the synapse was that

vesicles, ions and protein domains were the only elements of

synapses whose movements had relevance to fast synaptic

transmission. Synapses were envisioned as a two-compartment

system with distinct mode of function: a presynaptic element

containing vesicles dedicated to fast calcium-dependent fusion

and recycling to permit neurotransmitter release in the synaptic

cleft and a postsynaptic element containing a hard-coded and
invariant number of receptors. Activity-dependent plasticity of

synaptic transmission was recognized early as a key property

of brain function likely to underlie learning and memory (Bliss

and Lomo, 1973). It was then attributed either to presynaptic

changes in the efficacy of neurotransmitter release (Bear and

Malenka, 1994; Bliss and Collingridge, 1993; Enoki et al., 2009;

Lisman, 2003) or to postsynaptic changes in the biophysical

properties of the receptors such as conductance or open prob-

ability (Banke et al., 2000; Derkach et al., 1999; Scannevin and

Huganir, 2000). Neurotransmitter receptors were then thought

to be stable in synapses, residing trapped for about the lifetime

of the protein; i.e., days to weeks. This stability was believed to

account for the robustness of synaptic transmission and the sta-

bility of memories, although Lynch and Baudry hypothesized

early that some forms of memory could be coded by a change

in glutamate receptor numbers (Lynch and Baudry, 1984).

And, yet, even at this time, there were hints from other

research fields, such as cell biologists, that the synapse was

more dynamic than this cartoon view. More than 40 years ago,

membrane biophysicists highlighted the molecular dynamic

within membranes (Singer and Nicolson, 1972) related to ther-

mally driven Brownian movement of the embedded proteins.

Consequently, diffusion trapping was recognized as the only

way to organize membranes. Meanwhile, cell biologists demon-

strated the power of vesicular membrane recycling to exchange

components between subcellular compartments. Curiously,

except for the presynaptic vesicle dynamics, most of the neuro-

science community remained blind to these then-new concepts

emerging from cell biology until the late 1990s, when a series

of papers established that neurotransmitter receptors are not

stable in the postsynaptic membrane but undergo constant

turnover through endocytic and exocytic processes (Bredt and

Nicoll, 2003; Carroll et al., 2001; Collingridge et al., 2004; Lüthi
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Figure 1. Trafficking Pathways at Excitatory
and Inhibitory Synapses
Representation of a piece of dendrite harboring
a spine opposed to an excitatory glutamatergic
presynaptic terminal (left) next to a shaft inhibitory
synapse. The dendritic spines are actin-rich pro-
trusions, which constitute the main site of excit-
atory connections and form the postsynaptic
compartment of most glutamatergic synapses in
the mammalian brain. The spine head is separated
fromthedendritic shaftbyamicron longneckabout
100 nm wide. Inhibitory synapses using glycine or
GABAasaneurotransmitter arealwaysondendritic
shafts or cell bodies. Beside this fundamental dif-
ference, the general organization and dynamic
properties of both synapse types are very similar.
Receptors can traffic either intracellularly (intracel-
lular red arrows) in vesicles bound to microtubules
for active transport or on the cell surface by Brow-
nian thermally driven diffusion (extracellular red
arrows). Exchange of receptors between the cell
surface and intracellular compartments occurs at
specific extrasynaptic sites by endocytosis and
exocytosis. Presynaptic receptors can also diffuse
on the membrane. In the presynapse (top element
of both synapses), transmitter filled vesicle exocy-
tosis and recycling is the basis of fast chemical
synaptic transmission. This vesicle cycling has
been the first demonstration of the dynamic prop-
erties of synapses over 40 years ago. At both

excitatory and inhibitory postsynapses, receptors are stabilized in front of neurotransmitter release sites through a set of interactions with intracellular scaffold
elements enriched in the postsynaptic densities (PSDs) and transmembrane proteins that hold the pre- and postsynapse together. The excitatory PSD is more
complex and denser than the inhibitory one, although both display high dynamics and turnover of their constituents. Altogether, regulation of receptor numbers at
synapses results from a complex dynamic equilibrium between all subcellular compartments and regulated interactions between the various elements.
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et al., 1999; Malenka and Nicoll, 1999; Mammen et al., 1997;

Nishimune et al., 1998; Song and Huganir, 2002).

For some years, endocytosis and exocytosis were thought to

be the only routes for exit and entry of receptors from and to

postsynaptic sites, respectively. In the early 2000s, by unifying

the classic Singer and Nicholson model of the membrane and

the cell biology of trafficking, we established that lateral diffusion

of receptors in the plane of the membrane is a key step for modi-

fying receptor numbers at synapses (Borgdorff and Choquet,

2002; Dahan et al., 2003; Meier et al., 2001; Tardin et al.,

2003). In the last decade, a series of studies from our labs and

many others established that neurotransmitter receptors are in

a dynamic equilibrium between the different subcellular and sub-

synaptic compartments through the synergy of lateral diffusion

and membrane recycling (Triller and Choquet, 2005, 2008).

Meanwhile, the concept of the synapse as a dynamic environ-

ment was extended to all its components, from its surface

membrane to intracellular organelles such as the endoplasmic

reticulum (Park et al., 2004) and mitochondria, to its cytoskeletal

elements, primarily actin (Matus, 2000), and to its scaffold ele-

ments (El-Husseini et al., 2000), enzymes (Shen and Meyer,

1999) and adhesion proteins. Furthermore, the findings that

different forms of activity-dependent synaptic plasticity are

associated with modifications of the trafficking of either recep-

tors, vesicles or enzymes, has now firmly established that

synapses must be understood in the context of their multiscale

dynamics at the cellular, intermolecular, and intramolecular

levels (Choquet, 2010; Kennedy and Ehlers, 2006; Lisman

et al., 2007; Ribrault et al., 2011b; Shepherd and Huganir,

2007) (Figure 1).
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Today, the main challenge that lies ahead is to understand the

relationship between the above-mentioned different dynamic

levels and how they eventually integrate to control neural network

activity and, hence, brain function. A starting point toward this

end is to determine the characteristic times of the various pro-

cesses and how they are interconnected and regulated by

external stimuli. All cellular andmolecular dynamics are governed

by thermodynamic laws and can be first approximated through

the concept of diffusion reaction within multimolecular assem-

blies. The membrane, as a two-dimensional diffusional space,

represents a simplified case particularly amenable to experi-

mental and theoretical investigations of dynamic processes. In

the rest of this Perspective, we will focus our examination on

recent progress on the issues related to molecular diffusion

and, more specifically, within synaptic membranes.

The Synaptic Membrane as a Dynamically
Nano-Organized Space
The neuronal membrane, as any cellularmembrane, is a dynamic

environment that behaves in first approximation according to the

Singer-Nicholson model of the fluid mosaic membrane (Singer

and Nicolson, 1972). This model postulated that the membrane

is a ‘‘two-dimensional oriented solution of integral proteins

embedded in a viscous phospholipid bilayer.’’ In this model,

membrane proteins and lipids undergo free thermal diffusion in

a two-dimensional space. This vision originated, in part, from

the observation of diffusion of molecules between cells (Frye

and Edidin, 1970) and was further supported by FRAP experi-

ments (Axelrod et al., 1976). However, this model was soon

regarded as incomplete, because the measured diffusion
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coefficients in biological membranes are more than one order of

magnitude lower than those predicted from theory or from mea-

surements in reconstituted lipid bilayers. Work from a number of

labs, largely based on high-resolution, single-molecule tracking

of proteins and lipids, led to the proposition that the plasma

membrane is partitioned into a variety of subdomains, ranging

from a few nanometers to microns, within which proteins and

lipids are reversibly trapped for varying amounts of time. This

partitioning has been proposed to result from the cooperative

action of a hierarchical three-tiered mesoscale (2–300 nm)

domain: membrane-actin-cytoskeleton-induced compartments

(40–300 nm), raft domains (2–20 nm), and dynamic protein-com-

plex domains (3–10 nm). Membrane compartmentalization in

subdomains is critical for cell function and distinguishes the

plasma membrane from a classical Singer-Nicolson-type model

(Kusumi et al., 2012).

In neurons, neurotransmitter receptors have long been known

to be concentrated in the postsynaptic density (PSD), a protein-

rich subdomain lining the inner surface of the postsynapticmem-

brane located in front of neurotransmitter release sites. The local

enrichment of receptors at PSDs is thought to result from recep-

tor immobilization by stable elements, a concept reinforced

by ultrastructural studies that revealed a precise subsynaptic

organization of receptors and their associated proteins in

the postsynaptic membrane (Triller et al., 1985). This network

of molecular interactions has led to the notion of a subsynaptic

scaffold between the cytoskeleton and the transmembrane

receptors (Garner et al., 2000; Moss and Smart, 2001; Scannevin

and Huganir, 2000; Sheng and Sala, 2001). PSD components

interact in a biochemical and structural network that functions

as a multimolecular machine (Craven and Bredt, 1998; Kennedy,

2000; Kornau et al., 1997; Sheng and Kim, 1996).

Based largely on work at the neuromuscular junction, recep-

tors were initially thought to be very stable in the synapse. The

first paradigm shift, however, appeared at the end of the

1990s, when a series of works demonstrated that ionotropic

AMPA-type glutamate receptors (AMPARs) could recycle at

high rates between the surface plasma membrane and intra-

cellular compartments, limiting the average residence time of

receptors at the cell surface to half an hour. This concept was

soon extended to all other types of receptors, including NMDA

receptors (NMDARs), GABA-receptors (GABARs), glycine re-

ceptors (GlyRs), and a variety of metabotropic receptors, which

were shown to recycle constitutively and in an activity-depen-

dentmanner. Fast modification of receptor numbers at synapses

thus appeared as a new mechanism to account for activity-

dependent changes in synaptic efficacy (reviewed in Carroll

et al., 2001; Malinow and Malenka, 2002).

A second paradigm shift emerged soon thereafter when we

demonstrated that both excitatory and inhibitory ionotropic re-

ceptors can traffic rapidly at the surface of the plasmamembrane

by thermally driven Brownian diffusion and exchange between

synaptic and extrasynaptic sites (Triller and Choquet, 2003).

This was later proven to be a general rule for all neurotransmitter

receptors that can diffuse on the neuronal membrane, albeit at

various rates. NMDAR have been found to be themore stable re-

ceptors (Groc et al., 2006), followed by GlyR and GABAR (Dahan

et al., 2003; Jacob et al., 2005), with AMPA andmetabotropic re-
ceptors being among the most mobile receptors (Borgdorff and

Choquet, 2002; Sergé et al., 2002). This finding, together with

the observation that sites of receptor internalization and exocy-

tosis lie hundreds of nanometers away from the PSD (Rácz

et al., 2004), led to the broadly accepted model that receptor

number at synapses results from a dynamic equilibrium between

synaptic, extrasynaptic, and intracellular compartments (Triller

and Choquet, 2008). The exchange between these various com-

partments is governed by a tight interplay between surface diffu-

sion and membrane recycling (Figure 1). Surface trafficking of

membrane elements is obviously not restricted to proteins of

postsynaptic membranes, and numerous examples of fast diffu-

sion have been found for lipids and presynaptic molecules,

including syntaxin, integrins, etc.; for example, syntaxin1A was

shown to rapidly exchange by means of surface diffusion

between synaptic and extrasynaptic regions in rat spinal cord

presynaptic terminals. Changes in syntaxin1A mobility are asso-

ciated with interactions related to the formation of the exocytic

complex. Thus, the combination of rapid diffusion with transient

localized pauses could alleviate the paradox of the structured but

dynamic membrane (Ribrault et al., 2011a).

Key general rules have evolved around the concept of diffusion

trapping in the last decade. First, receptors constantly switch on

the neuronal surface betweenmobile and immobile states driven

by thermal agitation and reversible binding to stable elements

such as scaffold or cytoskeletal anchoring slots or extracellular

anchors. Importantly, the rate of receptor diffusion in the mobile

state is relatively homogeneous between receptor subtypes,

revolving around 0.1—0.5 mm2/s. By contrast, the percentage

of time spent by a given receptor in the diffusive or immobile state

is highly variable, ranging from nearly 0% to about 100%. The

average value of this residence time in the mobile or immobile

states during the recording session is an important parameter

for a given receptor population in a given functional state. This

observation is general for all cell membranes and has led to the

concept of reversible trapping detailed below (Figure 2).

Second, the membrane is structured and compartmentalized

by ‘‘pickets’’ and ‘‘fences’’ consisting largely of submembranous

actin creating nonspecific obstacles that restrain the free move-

ment of membrane proteins and weakly confine movement in

membrane subdomains of varying sizes, from as big as a whole

spine to as small as a few hundreds of nanometers. Third, recep-

tor surfacemobility and stabilization is regulated on a wide range

of time scales by various stimuli, including neuronal activity,

hormones, toxins, pathological states, etc., that have their action

mediated largely by expression levels of binding sites (‘‘the

immobilization slots’’) (Lisman and Raghavachari, 2006; Opazo

et al., 2012) as well as posttranslational modifications of recep-

tors or scaffold elements. A well-established example at excit-

atory synapses is the neuronal-activity-dependent stabilization

of AMPARs through binding of the C terminus of their auxiliary

subunit stargazin to PSD-95. This interaction is regulated by

CaMKII-dependent phosphorylation of a stretch of serines in

the intracellular domain of stargazin (Opazo et al., 2010; Schnell

et al., 2002; Tomita et al., 2005). An analogous example at inhib-

itory synapses is the regulation by neuronal activity of the diffu-

sion properties of type-A GABARs [GABA(A)Rs] (Bannai et al.,

2009). The extracellular matrix (ECM) and adhesion proteins
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 693
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Figure 2. Receptor Diffusion within the Postsynaptic Membrane
(A) Membrane organization and domains.
Excitatory synapse: the left micrograph shows the diffraction-limited, wide-field fluorescence image of the distribution of the Eos-tagged GluA1 subunit of
AMPARs at a single spine in a live neuron. Eos is a photo-switchable fluorescent protein. Fine details of GluA1 localization are not evident. Themiddle micrograph
shows the super-resolved image of the same spine reconstructed by photoactivation localized microscopy (PALM) of Eos::GluA1. The nanoscale organization of
AMPARs in small clusters is apparent. The right micrograph shows the trajectories of several individual Eos::GluA1 tracked with single-particle tracking PALM in
the same spine. Receptors in nanoclusters are immobile (red traces) whereas receptors outside clusters are highly mobile (blue and green traces). Modified from
Nair et al., 2013.
Inhibitory synapse: at a given synapse (dotted line), gephyrin forms microclusters (PALM reconstruction using mEos2-gephyrin). SPT-QD trajectory of a single
endogenous GlyR swapping from one micro-domain to another with short confinement periods (red-blue-green). White dotted lines represent the synapse
border.
(B) Schematic birds-eye view of receptor diffusion at synapses: receptors (orange dot) may enter the postsynaptic membrane area (light green) by lateral diffusion
(blue line) or fail to enter (light blue line). Within the synapse, the receptors can enter and exit microdomains with higher scaffold proteins densities (darker green)
and then eventually exit the synapse. Right inset: higher magnification of a microdomain. Diffusing receptors (orange dots) may bind or unbind to and from
scaffold proteins (green donuts) within nanodomains of higher densities. Receptors in the center of the nanodomains (purple) have difficulty escaping and are thus
more stable. Exchanging receptors are likely to originate from the periphery of the nanodomains.
(C) Microscopic reaction rate accounting for receptor (R)-scaffold(S) interactions. Extrasynaptic receptors can be unbound (RE) or bound (RES) to scaffolding
proteins; they may enter the synaptic area (light green) as RS or RSS. Receptors in the core of nanodomains (RS*S) are more stabilized, likely due to multiple
interactions (super bound). Underlying reactions are reversible, reflecting molecular scaffold binding-unbinding and molecular crowding, but that from RS*S to
RSS is slower.
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such as integrins also participate in the dynamic of synapse or-

ganization by creating obstacles to the lateral diffusion of recep-

tors, thus modulating short-term plasticity (Frischknecht et al.,

2009) or synaptic strength (Cingolani et al., 2008). It was also

shown that the b3 subunit of integrin is a key regulator of synaptic

scaling and that a crosstalk between b1 and b3 subunits of integ-

rin regulates GlyRs at synapses via a pathway converging on

CaMKII (Charrier et al., 2010).

Altogether these rules can be summarized by the concept

that diffusion trapping is the major mechanism that can generate

molecular heterogeneity in the membrane through reversible

binding-unbinding between membrane and submembrane or
694 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
supramembrane elements. Within this framework, nonspecific

corralling of receptors by cytoskeletal elements encourages mo-

lecular partitioning, which favors receptor stabilization resulting

from binding to specific scaffold elements.

The key parameter for diffusion trapping is the residence time

for each molecule within a given interaction. Although residence

time reflects in first approximation the affinity of the interaction,

recent work has highlighted the important complementary role

of multivalency. Indeed, on the one hand, receptors are mostly

multimeric complexes that harbor many similar or identical intra-

cellular ligand sequences, while scaffold proteins are also often

composed of repeats of similar binding sites. A good example is
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again that of stargazin that is present in many copies on a single

AMPAR and whose C terminus is a PDZ domain ligand. It binds

to the multi-PDZ module scaffold PSD-95 and although the

monomeric stargazin-PDZ interaction has a weak affinity in the

micromolar range, the multivalent interaction of the AMPAR

complex to PSD-95 provides a much more stable interaction

(Sainlos et al., 2011).

Diffusional trapping was first studied by diffraction-limited

techniques such as FRAP (fluorescence recovery after photo-

bleaching) or by sparse single-molecule tracking in live cells.

Although these techniques have provided valuable insight into

the concept of reversible receptor stabilization, they have until

recently lacked the spatial resolution to investigate the detailed

organization of molecules at the molecular scale, particularly in

live cells. Electron microscopy (EM) has long provided nano-

meter level information on synaptic molecule organization, but

classical postembedding EM methods have generally lacked

the sensitivity to provide exhaustive information on protein

distribution. It is only the recent development of optical superre-

solution methods (Dani et al., 2010) on the one hand and of pre-

embedding EM (Tao-Cheng et al., 2011) or freeze-fracture

replica stainingmethods (Masugi-Tokita et al., 2007) on the other

hand that have provided simultaneously the sensitivity and reso-

lution to observe organization of synaptic components at the

nanometer scale. All these approaches have come together to

establish that neurotransmitter receptors and scaffold elements

are often organized in nanodomains rather than diffusively

distributed in the synapse (Fukata et al., 2013; MacGillavry

et al., 2013; Nair et al., 2013; Specht et al., 2013) (Figure 2A).

Conversely, presynaptic molecules and the release machinery

are also organized in microdomains as postulated long ago

from EM data (Siksou et al., 2007; Sur et al., 1995) and also

found recently by optical superresolution microscopy (Pertsini-

dis et al., 2013).

At excitatory postsynaptic sites, AMPAR subunits are mostly

found concentrated in nanodomains < 100 nm in size. These

nanodomains are rather stable in time, although individual sub-

units can enter and exit them by lateral diffusion (Nair et al.,

2013). Most interestingly, AMPARs were found to be highly mo-

bile in the synaptic area outside the nanodomains. Hence, our

vision of dynamic receptor organization in the synapse must

bemodified again. Rather than a continuum ofmobile and immo-

bile receptors exchanging between a mobile state outside the

synapse and a stabilized stated bound to the scaffold inside

the synapse, we must now envision the postsynaptic density

as a highly heterogeneous space where individual components

are organized in nanodomains (Figure 2B). Receptors in nanodo-

mains are rather stable whereas they can move at much higher

rates outside. This finding explains why synapses harbor a rela-

tively high proportion of mobile receptors and has important

implications for our understanding of synaptic function and on

the interplay between synapse dynamic organization and plas-

ticity as detailed further in the text.

The Synapse as a Small System; the Issue of Synaptic
Noise
The small size of the synapse combined with the molecular dy-

namics observed at this level raises a number of fundamental
questions related to long-term ‘‘stability’’ or robustness and

plasticity. Understanding the mechanisms that underlie the sta-

bility and plasticity of synapses requires a probabilistic approach

accounting for the more or less unstable molecular interactions.

Thus, the postsynaptic membrane has to be seen as a complex

multimolecular assembly containing a large variety of molecules,

each of which exists at a given synapse in a relatively small

number of copies. Consequently the synapse has to be consid-

ered as a nanoscale entity with a dynamic structure reflecting

molecular interactions. Indeed, the synapse fulfills specific func-

tions and, as such, enters into the category of ‘‘small systems’’

within the mesoscopic realm. It must be the aim of future

research to (1) access quantitative parameters related to the

synaptic structure; (2) determine quantitatively the number of

molecules involved, their dwell times in the synaptic domain,

and their diffusion behavior; and finally (3) determine the energies

involved inmolecular interactions within and outside of synapses

(Figure 2C).

There has been some progress in this direction already. We

already know that the size and shape of synapses and their sub-

domains are variable. The diameter of synapses ranges between

200 and 800 nm (m= 300–400) (Carlin et al., 1980; Schikorski and

Stevens, 1997; Sheng and Hoogenraad, 2007; Siksou et al.,

2007). As seen from a bird’s eye view, their global shape can

vary, being macular, more or less elongated, having the form

of a donut, or that of a horseshoe (Carlin et al., 1980; Chen

et al., 2005; Triller and Korn, 1982). Superresolution approaches

on unfixed neurons have revealed that inhibitory (Specht et al.,

2013) and excitatory (Fukata et al., 2013; MacGillavry et al.,

2013; Nair et al., 2013) PSDs are organized in submicron

domains of 50–80 nm in diameter that can be more or less

confluent.

Within the PSD, the numbers of given molecular entities are in

the range of tens to a few hundred depending on the brain area,

synapse type, and activity status (Ribrault et al., 2011b). At excit-

atory synapses, the number of NMDA or AMPA receptors ranges

between 0 and 20 (Masugi-Tokita and Shigemoto, 2007; Okabe,

2007) and between 0 and 200 (e.g., Nusser, 1999; Nusser et al.,

1998) copies, respectively, whereas the number of the scaf-

folding protein PSD-95 is 200–400 (Chen et al., 2005) and that

of the key enzyme CaMKII is 40–120 (Chen et al., 2005). At inhib-

itory synapses, the numbers or GlyRs and GABARs (Ribrault

et al., 2011b)) range between 10 and 100 and 30 and 200,

respectively, while that of the gephyrin scaffolding protein is

40–500 (Specht et al., 2013). Yet, the situation is likely to be

more complicated than these numbers imply, as we will need

to take into account cell and synapse types as well as subunits

and splice variants. However, these available data show that at

steady state, the number of core PSD-95 and gephyrin scaf-

folding proteins far exceeds that of the receptors, thus providing

an excess of binding sites to accommodate more receptors in

case of plasticity events. These additional sites may be either

free or occupied by other proteins of the PSD sharing similar

binding capacities. For example, PSD-95 can accommodate

not only the AMPAR complex through TARP binding, but also

adhesion proteins, NMDA receptors, etc. This is also the case

for gephyrin, which can accommodate glycine and GABA recep-

tors. Thus, several molecular entities of the synapse compete for
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 695
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similar binding sites, increasing the complexity of the diffusion-

reaction model.

Another important parameter is that of the molecular dwell

time at synapses. This parameter contributes to changing the

number of receptors at non-steady state when the net molecular

flux (entering or exiting synapses) is different from zero and at

steady state in setting the level of robustness of synapses. The

dwell times derived from single-particle tracking revealed that

receptors display relatively complex behavior with a strong het-

erogeneity even for a given receptor. One can thus observe

receptors dwelling in synapses tens of seconds to minutes or

longer (Dahan et al., 2003; Ehrensperger et al., 2007; Heine

et al., 2008a; Nair et al., 2013). Interestingly, FRAP experiments

evaluating the synaptic recovery of fluorescence associated

with scaffolding proteins indicate a much slower recovery in

the range of tens of minutes (Specht and Triller, 2008).

The diffusion behavior at synapses is not just a slowdown, an

increased confinement, and finally a trapping of receptors. Actu-

ally, receptors may integrate into synapses already bound to

a scaffolding protein, in which case it depends on scaffold-

scaffold interactions. Alternatively, freely diffusing receptors

(unbound to a scaffold protein) may access a free slot; in other

words, they may bind to a scaffold protein already present at

synapses (Ehrensperger et al., 2007). Furthermore, diffusion

within the synapse may display a complex behavior swapping

from one microdomain to another. This behavior needs to be

aligned with the inhomogeneous distribution of scaffolding pro-

teins (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al.,

2013; Specht et al., 2013), thus defining subdomains within the

PSD. Notably, the diffusion and the trapping of the receptor

can be regulated by the activity of the neuron via phosphoryla-

tion events that tune the scaffold-scaffold (e.g., Charrier et al.,

2010) or the receptor-scaffold (e.g., Opazo et al., 2010; Mukher-

jee et al., 2011; Specht et al., 2011) interactions.

The demonstration that the molecular dynamics of receptor-

scaffold interactions can be regulated physiologically (Triller

and Choquet, 2008) has reinforced the notion that molecular

movements can link physiology and morphology by providing

access to the chemistry in the living cell. The measurement of

dwell times and the knowledge of the number of copies of

each molecular species together with the three-dimensional

organization of the molecules will give access to a real chemistry

in living cells, a chemistry ‘‘in cellulo.’’ In fact, the dwell time

within a multimolecular assembly reflects association and disso-

ciation constants. Furthermore, high-density single-molecule

imaging and statistical approaches provided access to the

energies involved in the trapping of receptors at synapses

(Hoze et al., 2012; Masson et al., 2009; Türkcan et al., 2012).

The diffusion trapping of receptors and the dynamics of scaf-

folding proteins, each with specific physical constraints and

properties, is at the origin of time-dependent fluctuations in

molecule numbers referred to as a ‘‘molecular noise.’’ It reflects

the rate of entry and exit of molecules from the PSD. Fluctuations

in the number of receptors, which is one of the determinants of

the amplitude of the postsynaptic potential (PSP), may account

for part of the variability in PSP amplitudes observed between

repeated identical patterns of stimulation (Heine et al., 2008a).

However, other stochastic processes such as vesicular release,
696 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
transmitter diffusion, or channel kinetics also contribute to time-

dependent PSP variability (Ribrault et al., 2011b). Thus, recep-

tor-associated molecular noise is an important parameter not

only in setting the robustness of the synaptic response, but

also in accounting for the stochastic molecular interactions

among the constituents of the PSD.

This molecular dynamic approach imposes on our vision of

synaptic function the need to incorporate new theoretical frame-

works to integrate the cooperative effects between the molecu-

lar constituents of the PSD and their regulation, as well as to

traverse the scale between the behavior of single molecules

and tens-to-hundreds of molecules. A model taking into account

the chemical potentials has been proposed for the regulation of

receptor numbers at a quasi-equilibrium state (Sekimoto and

Triller, 2009). The formation and stability of the synapse can

then be modeled via Turing instability in terms of diffusion

reaction (Haselwandter et al., 2011). Still, more effort will be

needed to fully understand the microscopic biophysical deter-

minants of stability and plasticity of synapses that are under

non-equilibrium conditions using fluctuation-dissipation ap-

proaches (see Ritort, 2008).

Beside these theoretical approaches, the noise (fluctuations)

related to dwell time of themolecular constituents of the synapse

may fulfill a specific function. Since the ‘‘stability’’ of the synapse

is related to a dynamic equilibrium resulting from the concen-

tration of the molecules inside and outside the postsynaptic

domain, an increased noise would favor the shift to another

steady state (Sekimoto and Triller, 2009). Along such lines,

AMPAR diffusional exchange may account in part for the sto-

chastic variability of postsynaptic EPSCs (Heine et al., 2008a).

The newly ‘‘stabilized’’ number of receptors being higher or

lower would thus correspond to LTP or LTD, respectively.

A next frontier will be to extend similar deep quantification to

living tissue where the connectivity is kept intact, thus accessing

mechanisms that link the diffusion dynamics of molecules with

their topological organization (at the 10 nm nanometer scale)

and synaptic function. These novel ways to approach quantita-

tively the regulation of molecular dynamics in relation to the syn-

aptic function will open new routes not only to physiology but

also to access new parameters for synaptic pharmacology.

Functional Consequences of Diffusion for Synapse
Physiology and Plasticity
The synapse dynamic is intimately linked to its formation and

function. From the start, synapse formation is based on active

and rapid cytoskeletal-based movements of growth cones and

filopodias at the origin of the future presynaptic and postsynaptic

elements. The precise mechanisms of synapse formation

involves a coordinated sequence of cell-cell contacts and

recruitment of presynaptic release machinery, closely followed

by accumulation of postsynaptic scaffolds and receptors. An

extensive set of trans-synaptic adhesion proteins such as

neurexins, neuroligins and LLRTMs, synCAMs and/or the cad-

herins are involved in initial pre- to postsynaptic contacts, the

specific sequence of events remaining to be clarified (Krueger

et al., 2012; Shen and Scheiffele, 2010). Differentiation and

specialization between excitatory and inhibitory synapses oc-

curs very early on, but the fascinating mechanisms that underlie
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partitioning of the various synaptic components between the

different categories of synapses are still not fully understood.

At the presynaptic side, recruitment of the release machinery

mainly occurs in preformed ‘‘packets’’ through active zone trans-

port vesicles, the so-called Piccolo-Bassoon transport vesicles,

which can fuse on demand with the presynaptic membrane to

rapidly form an active zone (Gundelfinger and Fejtova, 2012;

Waites et al., 2005).

In contrast, recruitment of the postsynaptic machinery is

thought to rely heavily on the diffusion trapping of components

present in the vicinity of the site of initial cell-cell contact. At

excitatory glutamatergic synapses, presynaptic beta-neurexin

recruits postsynaptic neuroligin1 from a diffuse surface pool

within minutes following initial contact (Barrow et al., 2009;

Krueger et al., 2012). Neuroligin in turn recruits the postsynaptic

scaffolding protein PSD-95, which is accumulated at sites of

neurexin-neuroligin interactions within 1–4 hr after initial contact

(Barrow et al., 2009; Heine et al., 2008b; Mondin et al., 2011).

During this process, PSD-95 molecules are—at least partly—

disassembled from preexisting synapses and recruited to

nascent sites of neurexin-neuroligin contact, creating direct

competition between earlier and newly formed synapses (Mon-

din et al., 2011). Following recruitment of PSD-95, functional

membrane-diffusible AMPARs are trapped within 2–4 hr. This

presumably involves their interaction with neuroligin–PSD-95

complexes through auxiliary subunits such as stargazin (Heine

et al., 2008b; Mondin et al., 2011). A similar process involving

neuroligin2 recruiting gephyrin likely occurs for the formation of

inhibitory synapses.

Whereas excitatory and inhibitory synapses coexist within

microns on the same dendritic shaft, they exhibit different

shapes and molecular compositions (Figure 1). Indeed, several

elements of both synapse types are identical or very similar,

such as actin or adhesion proteins like neuroligins. Recent

work indicates that ligand-dependent phosphorylation of neuro-

ligin subtypes could regulate their binding to specific scaffolds

such as gephyrin or PSD-95 (Giannone et al., 2013; Poulopoulos

et al., 2009). In conclusion, postsynapse formation depends

heavily not only on diffusion-trapping rates, but also on the avail-

ability of the components and their respective affinity that is

regulated by posttranslational modifications. Hence, equilibrium

between diffusion-reaction rates of molecular interactions is at

the heart of synapse formation.

The plasticity of mature synapses is a hallmark of learning and

memory. It must comply with the paradoxical long-term stability

necessary to store memories and high dynamics necessary for

their fast encoding. As presented above, a major paradigm shift

in the last decade has been the emergence that synapses main-

tain global stability while their components are in a dynamic equi-

librium between subcellular compartments, hence shifting the

concept of stability toward that of metastability (Figure 3). Activ-

ity-, development-, or environment-dependent changes in the

efficacy of synaptic transmission are related to the modification

of both synapse composition and biophysical properties of their

individual elements. At the presynaptic level, modifications in the

properties of neurotransmitter release mostly underlie plasticity.

Mechanisms involve modifications of pre-existing elements of

the release machinery (e.g., phosphorylation of synaptotagmin-
12) (Kaeser-Woo et al., 2013) as well as relocalization of modu-

latory elements such as calcium channels (Hoppa et al., 2012)

or metabotropic receptors (Bockaert et al., 2010; Suh et al.,

2008). It is, however, at the postsynaptic level that dynamics

of synaptic components have been best demonstrated to

account for synaptic plasticity. Numerous examples have been

provided in which diffusion-trap processes or their regulation

underlies short- or long-term modification of synapse efficacy

(Figure 3A). These include reversible binding between receptors

and scaffold elements, oligomerization between various synap-

tic components, and posttranslational modifications of these

same elements, leading to changes in diffusion reaction (phos-

phorylation/dephosphorylation, ubiquitination, etc.).

One of the most striking examples of the implication of syn-

apse dynamics on plasticity derives from the large fraction

of mobile AMPARs present inside synapses (Choquet, 2010).

AMPAR movements inside PSDs are fast enough to directly

impact synaptic transmission in the millisecond time scale

(Frischknecht et al., 2009; Heine et al., 2008a) (Figure 3B).

Recovery from fast-frequency-dependent synaptic depression

at glutamatergic synapses is accelerated by exchange of desen-

sitized AMPARs for naive ones and is not solely due to recovery

of transmitter release and/or AMPAR desensitization (Choquet,

2010; Fortune and Rose, 2001; Heine et al., 2008a; Zucker and

Regehr, 2002). Furthermore, physiological regulation of AMPAR

mobility impacts the fidelity of synaptic transmission by shaping

the frequency dependence of synaptic responses (Heine et al.,

2008b; Opazo et al., 2010). Reciprocally, accelerating AMPAR

diffusion by removing the extracellular matrix suppresses

paired-pulse depression (Frischknecht et al., 2009; Kochlama-

zashvili et al., 2010). The fact that AMPARs are concentrated

to form nanodomains could provide the morphofunctional basis

for the new concept of AMPARmobility-dependent postsynaptic

short-term plasticity (Nair et al., 2013).

Long-term depression or potentiation at excitatory or inhibi-

tory synapses involves, in one form or another, modification of

synaptic molecules, properties, and/or numbers. Our under-

standing of the implicated molecular mechanisms has evolved

in the last two decades from a model dominated by posttransla-

tional modifications of stable molecules leading to changes in

their biophysical properties to a refined one in which the same

modifications induce primarily a change in their traffic rates,

leading to changes in their type/number at synapses.

At excitatory synapses, activity-dependent modifications in

AMPAR, NMDAR or Kainate receptor trafficking leading to

changes in their accumulation in front of transmitter release site

have been largely documented (reviewed in (Anggono andHuga-

nir, 2012; Bard andGroc, 2011; Lisman and Raghavachari, 2006;

Opazo and Choquet, 2011)) all the way from cell culture systems

(e.g., (Carta et al., 2013; Park et al., 2004; Petrini et al., 2009)) up

to ex vivo brain slices (e.g., (Bellone andNicoll, 2007;Makino and

Malinow, 2009; Mameli et al., 2007; Shi et al., 1999)) and even

in vivo (Brown et al., 2010; Rao-Ruiz et al., 2011; Rumpel et al.,

2005). Altogether, data frommany labs favor a three-step mech-

anism for the regulation of AMPARnumbers at synaptic sites dur-

ing LTP involving exocytosis at extra/perisynaptic sites, lateral

diffusion to synapses and a subsequent rate-limiting diffusional

trapping step (Opazo and Choquet, 2011). Conversely, LTD has
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 697
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Figure 3. Plastic Regulation of Synaptic Strength
(A) Calcium-dependent regulation of AMPAR, GABA(A)R, and GlyR mobility and confinement at synapses. Lower inset: the increased and decreased
confinement leads to increased and decreased receptor numbers at synapses, respectively. Receptor trapping at synapses is regulated by calcium-dependent
phosphorylation or dephosphorylation events involving CaMKII, PKC, PTK, and calcineurin (CaN).
(B) Receptor diffusion tunes short-term synaptic plasticity of fast synaptic transmission. The area over which receptors are activated by neurotransmitter (green)
is usually limited in space (e.g., 150 nm for AMPAR), and receptors rapidly enter a desensitized state (red) after initial activation. Thus, receptor fast diffusion
allows for exchange of desensitized receptors by naive ones (blue), allowing for a faster recovery from short-term synaptic depression due to postsynaptic
receptor desensitization.
(C) Changes in receptor trafficking underlie many forms of long-term synaptic plasticity. NMDA-dependent long-term potentiation (LTP) of glutamatergic syn-
apses is mediated by an increase in AMPAR synaptic content due to the consecutive trapping of diffusing AMPARs and exocytosis of new receptors. Conversely,
long-term depression (LTD) originates from decreased trapping of AMPARs at synaptic sites and diffusion to sites of endocytosis.
(D) Extrinsic tuning of receptor diffusion-trap: Excitatory events may tune inhibitory receptor lateral diffusion (1). Volume-transmitted molecules may tune the
synaptic trapping of excitatory (2) and inhibitory (3) receptors as well as glial-cell-derived factors (4).
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been proposed to involve lateral diffusion out of synapses, fol-

lowed by endocytosis at extra/perisynaptic sites (Groc and

Choquet, 2006; Newpher and Ehlers, 2009) (Figure 3C). These

different trafficking steps are regulated during synaptic plasticity

and their detailed description is beyond the scope of this review.

As a representative example, changes in the synaptic accumula-

tion of AMPARs at synapses have been suggested to be a major

substrate for NMDAR dependent LTP (Choquet, 2010; Kennedy

and Ehlers, 2006; Lisman et al., 2007; Shepherd and Huganir,

2007). LTP at CA1 synapses in the hippocampus is initiated by

the influx of Ca2+ through NMDAR into dendritic spines. The syn-

aptic increase in AMPAR number at synapses is likely to be a

multistep process including their exocytosis from endosomes

to extrasynaptic membranes (Kennedy et al., 2010; Yudowski
698 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
et al., 2006), lateral diffusion of receptors into the synapse, and

their subsequent trapping. The relative timing of AMPAR exocy-

tosis during LTP is still ambiguous, and we and others (Makino

and Malinow, 2009; Opazo and Choquet, 2011; Opazo et al.,

2010; Tomita et al., 2005) have proposed that synaptic trapping

of pre-existing surface receptors through rapid (sub-second)

CaMKII induced phosphorylation of TARPs is the first event of

potentiation. Regulated exocytosis of AMPARs occurs on a

slower (tens of seconds) time scale and recruits other signaling

pathways that may involve the ras-ERK pathway (Patterson

et al., 2010) and Band 4.1 (Lin et al., 2009).

Similarly, plasticity of inhibitory synapses involves regulation

of the traffic of GABA(A)Rs or GlyRs (reviewed in Luscher

et al., 2011; Ribrault et al., 2011b) by activity-dependent and
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cell-type-specific changes in exocytosis, endocytic recycling,

diffusion dynamics, and degradation of receptors. As for the

glutamate receptors, these regulatory mechanisms involve re-

ceptor-interacting proteins, scaffold proteins, synaptic adhe-

sion proteins, and enzymes (Figure 3A). For example, neuronal

activity modifies diffusion properties of GABA(A)Rs in cultured

hippocampal neurons (Bannai et al., 2009). Enhanced excitatory

synaptic activity induces a loss of GABA(A)Rs from synapses

and concomitant reduction in GABAergic mIPSC through

increased surface mobility depending on Ca2+ influx and calci-

neurin activity. Gephyrin dispersal is not essential for this

GABA(A)R declustering (Niwa et al., 2012). Altogether, this indi-

cates that GABA(A)Rs diffusion dynamics are directly linked to

rapid and plastic modifications of inhibitory synaptic transmis-

sion in response to changes in intracellular Ca2+ concentration

triggered during high-frequency excitatory stimulation (Bannai

et al., 2009; Muir et al., 2010). Thus, long-term depression

(LTD) of unitary IPSCs is tightly linked to stimulation-induced

LTP of excitatory synapses through regulation of GABA(A)R

diffusion trapping, i.e., GABA(A)R-gephyrin interaction.

Finally, long-term homeostatic regulation of neuronal activity

through the process of scaling that bidirectionally and propor-

tionally adjusts postsynaptic AMPAR abundance to compensate

for chronic perturbations in activity has also been recently shown

to involve changes in diffusion-reaction rates (Tatavarty et al.,

2013). Scaling down synaptic transmission decreases the

steady-state accumulation of synaptic AMPARs by increasing

the rate at which they unbind from and exit the postsynaptic

density.

Modulatory Mechanisms of Diffusion at Synapses and
Potential Relevance to Disease
Synaptic dysfunction has recently appeared to be at the basis

of several severe brain pathologies. This has led to define the

term ‘‘synaptopathies,’’ diseases relating to the dysfunction of

the synapse. Examples include autism spectrum disorder,

schizophrenia (Ting et al., 2012), and Alzheimer’s (Selkoe,

2002). As detailed above, diffusion and/or trapping of many syn-

aptic molecules such as receptors, scaffolds, adhesion proteins,

etc., are intimately linked to their role in synaptic transmission.

For example, receptors are only functionally relevant to synaptic

transmission when located in front of transmitter release sites,

whereas scaffold numbers and location set receptor stabilization

at given sites at the surface or inside the neuron. Hence, it is

tempting to speculate that on the one hand, anomalies in synap-

tic molecule diffusion trapping are at the origin of some synaptic

dysfunction and consequently some brain diseases; on the other

hand, finding ways to pharmacologically regulate diffusion or

trapping may provide new targets for drugs to tune receptor

accumulation at synapses or to prevent the deleterious action

of pathological proteins (e.g., misfolded proteins).

Although direct causative links are still missing, variations in

receptor diffusion have already been linked to various patholog-

ical states. Thrombospondin-1 (TSP-1), a large extracellular

matrix protein secreted by astrocytes during development,

inflammation, or following brain injury (e.g., DeFreitas et al.,

1995; Lin et al., 2003), that has been involved in functional recov-

ery after stroke (Liauw et al., 2008) reduces the lateral diffusion-
dependent accumulation of excitatory AMPARs, increases that

of inhibitory GlyRs in synapses, and counteracts the increased

neuronal excitability and neuronal death induced by TNFa

released after brain injury (Hennekinne et al., 2013). Another

example is that of fibrinogen, a ligand for b1 integrin, which is

released following the rupture of the blood-brain-barrier and

which increases the escape of inhibitory receptors from synap-

ses (Charrier et al., 2010), thus favoring excitotoxicity. Along

the same line, the stress hormone corticosterone, which inhibits

synaptic plasticity, increases the GluA2 containing AMPAR sur-

face mobility and synaptic GluA2 content in a time-dependent

manner (Groc et al., 2008). Furthermore, some pharmacological

agents such as the cognitive enhancer and antidepressant Tia-

neptine favor synaptic plasticity and reduce the lateral diffusion

of AMPARs (Zhang et al., 2013). This effect involves a CaMKII-

dependent enhancement of the PSD-95-stargazin interaction

and prevents increases of AMPAR diffusion by corticosterone.

Thus, the mechanisms related to the diffusion trapping of recep-

tors are targets for pharmacological actions aimed at controlling

the excitation-inhibition balance.

In another domain, although still controversial, a large body of

evidence suggests a toxicity of soluble amyloid b (Ab) oligomers

in the memory impairment characteristic of Alzheimer’s disease.

The effect of Ab extracellular oligomers could be related to their

interaction with the neuronal plasma membrane. For example,

AMPAR removal underlies Ab-induced synaptic depression and

dendritic spine loss (Hsieh et al., 2006). This could originate

from the observation that Aß oligomers diffuse together with

mGluR5 receptors to which they are bound, leading to the forma-

tion of aberrant clusters at the origin of the removal of NMDA

receptors from synapses (Renner et al., 2010). Ab oligomer-

and mGluR5-dependent ATP release by astrocytes may further

contribute to the overall deleterious effect of mGluR5 receptors

in Alzheimer’s disease (Shrivastava et al., 2013). The extracellular

Ab oligomers also bind to PrPc to generatemGluR5-mediated in-

creases of intracellular calcium that finally disrupt neuronal func-

tion (Um et al., 2013). Altogether, these observations implicate

diffusive processes in the physiopathology of diseases.

Conclusion
The concept of the dynamic synapse emerged nearly 40 years

ago (Heuser and Reese, 1973), and already 30 years ago, Lynch

and Baudry postulated that ‘‘the postsynaptic face of the

neuronal connections is quite plastic and can be substantially

changed by physiological activity’’ (Lynch and Baudry, 1984).

Despite enormous progress, much remains to be discovered

about the interplay between synapse dynamics and function in

both normal and pathological conditions. Future aims will focus

on integrating synapse dynamics within the framework of brain

function, neuronal network, and network dynamics. New tech-

nologies give access to the ability to analyze simultaneously

the dynamics of a large number of molecules while the physi-

ology is monitored. High-density data and new analytical

methods already provide real time 3D recording of molecular

movements at the single synapse level. Soon, smaller and

brighter intelligent probes will advance these measurements in

3D to integrated systems ex vivo in brain slices and even in vivo.

This will generate large amount of data, urging the need for the
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 699
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development of new analytical methods and a theoretical frame-

work derived from statistical thermodynamic. Finally, integrating

synapse dynamics with signaling pathways and function opens

the door to our understanding of synapse-dysfunction-related

diseases.
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Mulle, C. (2013). CaMKII-dependent phosphorylation of GluK5 mediates plas-
ticity of kainate receptors. EMBO J. 32, 496–510.
700 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
Changeux, J.P. (2012). Allostery and the Monod-Wyman-Changeux model af-
ter 50 years. Annu Rev Biophys 41, 103–133.

Charrier, C., Machado, P., Tweedie-Cullen, R.Y., Rutishauser, D., Mansuy,
I.M., and Triller, A. (2010). A crosstalk between b1 and b3 integrins controls
glycine receptor and gephyrin trafficking at synapses. Nat. Neurosci. 13,
1388–1395.

Chen, X., Vinade, L., Leapman, R.D., Petersen, J.D., Nakagawa, T., Phillips,
T.M., Sheng, M., and Reese, T.S. (2005). Mass of the postsynaptic density
and enumeration of three key molecules. Proc. Natl. Acad. Sci. USA 102,
11551–11556.

Choquet, D. (2010). Fast AMPAR trafficking for a high-frequency synaptic
transmission. Eur. J. Neurosci. 32, 250–260.

Cingolani, L.A., Thalhammer, A., Yu, L.M., Catalano, M., Ramos, T., Colicos,
M.A., and Goda, Y. (2008). Activity-dependent regulation of synaptic AMPA
receptor composition and abundance by beta3 integrins. Neuron 58, 749–762.

Collingridge, G.L., Isaac, J.T., and Wang, Y.T. (2004). Receptor trafficking and
synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962.

Craven, S.E., and Bredt, D.S. (1998). PDZ proteins organize synaptic signaling
pathways. Cell 93, 495–498.
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