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Abstract 

This article describes a general methodology that can be used for financial risk management. 
The approach is based on the model of Heath et al. (1992) of term structure movements but 
deals with the case of incomplete market. Both, domestic and foreign economies are investig- 
ated, Prices of various options are calculated using the forward measure introduced recently by 
El Karoui and Rochet (1989). 
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O. Introduction 

The general aim of the paper is to develop an approach to management of financial 

risks in an international economy. The key issue is then to control interest rate 

risks. This is why we start with a model of the term structure of interest rates and 

volatilities (Section 1.1). We identify conditions under which there are no arbitrage 

opportunities between rates of different maturities. Using the Girsanov transforma- 

tion we construct a model of arbitrage-free economy appropriate to price and hedge 

claims contingent on interest rate-dependent assets. In Section 1.2 we extend our 

model in order to cover other risky assets. This is done using the general methodology 

developed in Section 1.1. Finally, in Sections 2.1 and 2.2 we analyse a model of 

arbitrage-free international economy. The idea is to consider foreign assets as new 

assets in the domestic economy. 

Section 1.4 describes the concept of the forward measure recently introduced by El 

Karoui and Rochet. Let us point out that this idea leads to significant simplifications 
in the derivation of pricing formulas. Sections 1.5 and 2.3 make use of this new 

approach to derive pricing formulas for various options. 
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I. Domest i c  economy 

We present here a general mathematical framework for financial risk management. 

Our approach is based on the model of Heath et al. (1992) (HJM) of term structure 

movements and hence it allows for arbitrary term structure of interest rates and 
volatilities. It can also be seen as a generalisation to the case of incomplete market of 

the model presented in Musiela et al. (1993). 

1.1. Domestic term structure 

We begin with a financial market where investors can trade continuously over the 

time interval [0, r]. The traded assets consist of a continuum of default-free discount 

bonds with maturities time from 0 to r. We do not assume that our market model is 

complete. This allows us subsequently to add additional assets as long as their price 

processes are adapted to the information available to investors at any time over the 
trading interval. 

To be able to analyse mathematically financial risks we introduce a probability 

space (f2, F, Po) equipped with a filtration (Ft), 0 < t _< r satisfying the usual condi- 
tions. The sub-a-algebra Ft represents all information available to the market partici- 

pants at time t. We assume that F = F~. 
The most basic fixed income security is the pure discount bond, a bond that pays 

a certain dollar at maturity with no other payment in the interim. The time t price of 
a T maturity bond is denoted by P(t, T), indicating that the price of the bond is 

a function of the trading date t and the maturity date T. The pure discount bond is 

a theoretical instrument. Financial instruments that closely resemble these hypotheti- 
cal bonds are US Treasury bills. We assume that for each 0 < t < T the price P(t, T) 
depends only on information contained in Ft, that is, the process ~P(t, T); 0 _< t < T I 

is adapted to the filtration (F,). We also require that P(T, T) = 1 for all 0 _< T_< r, 
P(t, T) > 0 for all 0 < t < T < r, and that ~ log P(t, T)/~Texists for all 0 < t _< T _< r. 
The last condition implies that the instantaneous forward rate at time T as seen from 
date t is well defined. This rate, denotedf( t ,  T), corresponds to the rate at which one 

could enter a contract at time t on a riskless loan over the forward period 
[7, T + dT].  Obviously, 

P ( t , T ) = e x p ( - f r f ( t , u ) d u ) .  

Therefore, the process [f(t, T); 0 < t < T~ is also adapted to the filtration (Ft). The 
spot rate at time t, denoted r(t), corresponds to the rate at which one could enter 

a contract at time t on a riskless loan over the period It, t + dt]. Clearly we have 
r(t) = f ( t ,  t) for all 0 < t < r. Given an initial investment of one dollar at time 0, the 
amount  generated at time t by continuously reinvesting in the instantaneous spot rate 
is equal to 

exp( r, ,du) 
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The process IB(t), 0 _%< t _< r I is referred to as the accumulation factor. Note that 

B(t)/B(T) represents the amount  one needs to invest at time t in order to accumulate 

one dollar at time T. Hence it seems we can say that P(t, T) and B(t)/B(T) are equal. 

In fact they would be if we could know at time t the future behaviour of the spot rate 
r over the interval [t, T]. This is exactly where the role of information available to 

investors becomes important. We would not know at time t how much is B(t)/B(T), 
that is B(t)/B(T) is not F~-measurable. On the other hand, the random variable Pit, T) 
is F,-measurable. Therefore, we can interpret P(t, T) as the time t value of a bond that 

pays one dollar at T. Finally, note that under the assumption of known deterministic 

rates we have P(t, T) = B(t)/B(T). In the general situation, as it will become clear later 

on, P(t, T) can be understood as a "'projection" of B(t)/B(T) on the information F, 

available at t. Hence, it seems clear that the amount of information and the way 
information is structured will be essential in any analysis of the interest rate risk. In 

the HJM model the filtration (Ft) is generated by two independent Brownian motions. 

Musiela et al. (1993) consider the case of filtration spanned by n independent 

Brownian motions. It should be noted, however, that these assumptions are rather 

technical. They imply that the corresponding market models are complete and hence 

also that claims contingent on interest rate-dependent assets can be generated by 
dynamic portfolio strategies based on the family of pure discount bonds with maturi- 
ties covering the interval [0, r]. 

In this paper we assume that for fixed, but arbitrary 0 _< T _< r , f ( t ,  T) is given by 

dr(t, T) = ~(t, T)dt + a*(t, T)dWo(t), t l . l)  

where I Wo(t): 0 < t < r] is an n-dimensional F~-Brownian motion while the processes 
l~(t, T); 0 _< t, T < r I and ~tcr(t, T); 0 _< t, T _< r) are bounded on [0, r]2 x Q adapted 

with values in ~ and ~", respectively. Note that, because (Ft) is not necessarily the 

filtration generated by Wo, there may exist contingent claims which cannot be hedged 

with a self-financing portfolio constructed from discount bonds. Therefore, our 
market model is not complete in general. For the vectors (matrices) x, y the symbols 

I x q, x* and x*y stand for the Euclidean norm, the transpose and the Euclidean scalar 
product, respectively. 

The differential (1.1) can be written in the following integral form 

f(t, T)=.['(O, T)+ f i  ~(u, T)du + f l  a*(u, T)dWo(u) 

for all 0 < t, r < ~, where [./"(0, T); 0 _< T < r~j is an arbitrary bounded initial forward 
rate curve. The structure of volatilities is also arbitrary bounded because we only 
assume that a ( . ,  T) is bounded and adapted. The spot rate process satisfies 

r(t)=f(O,t)+ f i  ~t(u,t)du + flcY*(u,t)dWo(u) 

for all t > 0. It is interesting to note that the process r is not a semimartingale in 
general. 
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Throughou t  the paper we assume the nonexistence of arbitrage opportunit ies  in 
financial markets. Based on the results of Harrison and Kreps (1979), in the context  of 
our  model the above assumption will be satisfied if there exists a martingale measure 
for discounted price processes of bonds of all maturities. Mathematical ly speaking this 
means that there exists a probabil i ty measure P defined on (f2, F) which is equivalent 
to Po and such that the processes {Z(t, T); 0 < t < T I, where 

Z(t, T )=  P(t, T)/B(t) 

are martingales under P for all 0 < T < ~. 
In order  to construct  the measure P we shall henceforth impose the following 

assumption. 

Assumption I.I.  There exists a bounded predictable process H = {H(t); 0 < t < r I 
with values in ~" such that for all 0 < t, T < z 

(f/ ) ~(t, T) = ~*(t, T) e(t, s)ds - H(t) . (I.2) 

For  all A e F~, we now define a set function P(A) by the formula 

P(A)= fAexp(ff H*(t)dWo(t)-½ f/ [H(t)12dOdPo. (1.3) 

Because H is assumed bounded it is not difficult to show that P is in fact a probabil i ty 
measure on (f2, F) which is equivalent to the measure Po. Also it follows from the 
Girsanov theorem that under the measure P the process { W(t); 0 < t < r}, where 

W(t) = Wo(t) - f l  H(s)ds (1.4) 

is an n-dimensional F, Brownian motion.  This observat ion helps to describe the 
arbitrage free behaviour  of forward rates and bond prices. 

Proposition I.I.  We have 

(i) df(t, T) = cr*(t, 7") ~(t, u)dudt + ~*(t, T)dW(t), 

(ii) d P ( t , T ) = P ( t , T ) I r ( t ) d t - f f ~ * ( t , u ) d u d W ( t )  1, 

(iii) dZ(t, T) = - Z(t, T) ~*(t, u)dudW(t). 

Under the measure P the processes [Z(t, 7"); 0 <_ t < T~ are martingales for all 
0 <_ T <_ r. The spot rate process is square integrable and satisfies 

(iv) r(t) = f ( 0 ,  t) ÷ ¢z*(u, t) a(u, s)dsdu + o'*(u, t)dW(u). 
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P r o o f .  Note that 

d.f(t, u) = ~(t, u)dt + a*(t, u)dWo(t) 

(;u ) = a*(t, u) a(t, s)ds - H(t) dt + a*(t, u)dWo(t) 

= ~*(t, u) ~(t, s)ds dt + cr*(t, u)d W(t). 

Therefore, 

f T df(t, u)du 

= a*(t, u) ~r(t, s)dsdudt + a*(t, u)dudW(t) 

2 ~r(t, u)du + a*(t, u)dudW(t), 

and, because 

df(t, u)du - f ( t ,  t)dt = d f(t ,  u)du = 

it follows that 

- d l o g  P(t, T), 

231 

One of the building blocks of the arbitrage-flee pricing theory is the assumption 
that traded assets can be classified as nonrisky and risky. Geometric Brownian 
motion is frequently assumed as a simple model of the risky asset price dynamics. This 
is justified by the belief that the corresponding return process satisfies the so-called 
random walk hypothesis. However, there is growing practical and statistical evidence 
that this assumption should be seen only as a first approximation. 

For example, hedging over the life of an instrument is often done using forward 
contracts on the underlying asset and requires parameters implied by the market. This 

1.2. Returns on risky assets 

( 1 ) 
dP(t, T) = P(t, T) dlog P(t, T) + 5 d ( l o g P ( . ,  T) )(t) 

t 1 f , r  u)du2dt  f, r = P(t, T) f ( t , t )d t  - 5  a(t, - ~*(t ,u)dudW(t) 

+ ~ f r t r ( t , u ) d u 2 d t ) = P ( t , T ) ( r ( t )  a t -  f t ra*( t ,u )dudW(t ) ) .  

This finishes proofs of (i) and (ii). A straightforward application of the Ito formula plus 
boundness of a(t, T) leads to (iii). Finally, (iv) follows from the integral representation 
of (i). U3 
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may lead to some inconsistencies with the model assumptions particularly if one is 
looking at more exotic products like average rate or compound options. Implied 
volatilities will be in general different for different maturities of the forward contracts 
used for hedging while geometric Brownian motion assumes constant volatility. Here 
dealing room practice appears to be in contradiction with the theory. Statistical 
evidence which contradicts the random walk hypothesis is provided by empirical 
studies of returns on risky assets. For example, daily returns on US stocks indicate 
abnormally small returns (from the model point of view) on Mondays. Corresponding 
analysis of some European markets seems to confirm the existence of an analogous 
phenomenon. Studies of currency exchange rates (Fama and Roll, 1971; McFarland 
et al., 1982; So, 1987) have shown conclusively that they are abnormal. This abnormal- 
ity has been seen for all major currency exchange rates, where the observed distribu- 
tions have been invariably described as very peaked and thick tailed. 

To be able to understand risks related to such anomalies we propose the following 
nonhomogeneous model of the asset price dynamics: 

dR(t) = R(t)(t~(t)dt + q*(t)dWo(t)),  (1.5) 

where R(t) denotes the asset price at time t, {Wo(t); 0 < t <  r I is, as before, the 
n-dimensional Ft-Brownian motion on ((2, F, Po) while the processes [ l+(t); 0 < t < r I 
and {q(t); 0 < t < rl are adapted with values in N and N", respectively, R(0) is 
a constant. The process, q is bounded on [0, r] x (~ while ll satisfies 

P o ( f ~  ,/~(t)ldt < o c ) =  1. 

Note that such a model allows to price options on the asset under stochastic interest 
rates and with an arbitrary structure of market volatilities. It has also a potential to 
explain the "day of the week" effect as well as the abnormality of currency exchange rates. 

Consider now the economy E which consists of the money market account B, the 
family [P( . ,  T); 0 < T < r) of pure discount bonds of all maturities and of the family 
JR(',  i); i t  I} of risky assets which satisfy the hypotheses (1.5), of course with different 
processes /.l(', i) and ~r(-, i) but with the same Brownian motion Wo. The set 
I represents here an index set which could be finite or infinite. Assume that for each 
i e l  and each 0 < t _< r, the variable R(t, i) denotes the price at time t of the stock 
i which pays no dividends. We already know that under the measure P there are no 
arbitrage opportunities between B and the family {P(-, T); 0 _< T < r}. The following 
assumption, valid throughout the paper, will help to eliminate any possible arbitrage 
between B and the family {R(., i); i~l~ as well. 

Assumption 1.2. For all 0 < t ~ r and all i t  I 

ll(t, i) = r(t) -- q*(t, i) H(t). 

It follows from (1.4) and (1.5) that 

dR(t, i) = R(t, i)((/z(t, i) + q*(t, i) H( t ) )d t  + r/*(t, i)dw(t)). 

Hence we can formulate the following proposition. 

(1.6) 
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Proposition 1.2. Under  the measure  P we have 

(i) dR( t ,  i) = R(t ,  i ) ( r ( t )d t  + q*(t, i ) ) d W ( t ) ) ,  

(ii) dZ(t, i) = Z(t ,  i)~/*(t, i ) d W ( t ) ,  

where Z( t ,  i) = R(t ,  i ) /B(t) ,  0 <_ t < r, i ~ l .  

1995~ 227 251 233 

Now let f o r 0 _ < t _ < r  and Te[0 ,  r ] , i e l  

flf; M(t ,  T) = - ~*{s, u ) d u d W ( s ) ,  

M( t ,  i) = f l  q*(s, i ) dW(s ) .  (1.7) 

Since W is a Brownian motion under P and the integrands are bounded adapted 
processes, the process M mapping t into {M( t ,  T), T~[0,  r], M ( t , i ) ,  i ~ l  I, that is 
M : t ~ M( t ,  • ) is a vector valued continuous martingale. Of course, we also have 

;2f; ( M ( ' ,  r),  M ( . ,  i ) ) ( t )  = - a*(s, u)duq(s ,  i )ds ,  (1.8) 

-, i), M(. , j I ) ( t )  = f ]  q*(s, i ) r l ( s , j )ds ,  

which defines the "matrix" ( M )  of the joint quadratic variations of "co-ordinates 'of 
the martingale M. In particular, in terms of ( M )  one can calculate the quadratic 
variation process for any linear combination of a finite number of "co-ordinates" 
of M. 

Also note that using the above compact notation we can write parts (ii) and (iii) of 
Propositions 1.1 and 1.2, respectively, in the following form: 

dZ( t ,  .) = Z ( t , - ) d M ( t ,  .). (1.9) 

This shows that the process Z : t ~ Z( t ,  • ) is a vector valued martingale under P and in 
practical terms it means that under Assumptions 1.1 and 1.2 there are no arbitrage 
opportunities between the money market account B, the family [P( . ,  T); 0 < T _< z~ 
of pure discount bonds and the family ~R(', i); i~ I I of stocks. From the pricing and 
hedging point of view, however, the difficulty is that the measure P is not unique. 

Let then ~ be the set of probability measures Q on (O, F) which are equivalent to 
P (and hence to Po) and such that Z is a martingale under Q 

Remark 1.1. Note that under the measure P the appreciation rate on the stock i is 
equal to the spot rate for every i E I. In this sense the measure P is "risk-neutral". 
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Proposition 1.3. The process M defined in (1.7) is a continuous martingale, with the 
quadratic variation process ( M )  given in (1.8), under any Q ~ ~.  Moreover, (f there exist 
T1 . . . . .  TR and i k + 1 . . . . .  i n such that.for every 0 <_ t <_ r the matrix 

2 ; ( 0 =  a(t,u)du . . . . .  a(t,u)du, tl(t, ik+l) . . . . .  ~l(t, in) 

is nonsingular and Z -1 (0  is locally bounded then the process W defined in (1.4) is an 
n-dimensional FrBrownian motion under any Q e ~ .  

Proof. The quadratic variation under Q is the same as under P because P and Q are 
equivalent. Also, Wis a semimartingale under Qand  for any x belonging to [0, T] or I 

Z(t, x) = Z(O, x)exp(M(t, x) - ½ ( M( ' ,  x) )(t)) 

is a martingale. This implies that 

M(t, x) = f l  Z- l ( s ,  x)dZ(s, x), 

is a continuous local martingale with 

and 

O ~ t ~ z  

( M ( ' ,  T))( t)  = a(s,u)du ds 

( M ( ' ,  i))(t)  = Jo [~/(s, i)12ds 

and hence, E(supo<t<~M(t, x)) 2 < ~ .  Finally, let 

f l  Z* - l(s)dS(s), U(t) 

where 

N(t) = (M(t, 7" 1 ) . . . . .  M(t, Tk), M (t, ik+ 1) . . . . .  M(t, in))* 

= fo  Z* - 1 (s) d W(s). 

It follows from the above that U(t) is a continuous local martingale with the tensor 
quadratic variation (U) ( t )  = tl and hence (cf. Dellacherie and Meyer, 1980, p. 381)it 
is a Brownian motion in R n [] 

Note that if the quadratic variation process ( M )  is deterministic then the martin- 
gale M is Gaussian seen, for example, as a two parameter random field 

{M( t , x ) ;O~  t_<z, x E [ O , z ] u l } .  

Consequently in this case the distribution of M, defined on the appropriate a-algebra 
on C[O, z] × R t°'']u~ does not depend on the choice of Q ~ .  This allows to formulate 
the following proposition. 
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Proposition 1.4. I f  the quadratic variation process (M> given in (1.8) is deterministic 
then the distribution of the process Z defined in (1.9) does not depend on the choice of the 
arbitrage.free measure Q ~ ~.  

Remark 1.2. Last two propositions are important from the point of view of pricing 
and hedging contingent claims. Proposition 1.3 will find first applications already in 
the next section where we will analyse some simple attainable claims. Proposition 1.4 
in some sense solves the problem of incompleteness (under the assumption that (M> 
is deterministic). It implies that the joint distribution of the collection of processes 

E =  IB('), P( ' ,  T), R(-, i); TEl0, r], i~I )  (1.10} 

does not depend on the choice of Q ~ .  Consequently, calculations of expected 
values, under Q, of functions depending on these processes can be carried out under 
the measure P. In other words, the market model- is not complete but different 
measures Q e ~  produce its identical copies. 

1.3. Contingent claims 

The T-maturity contingent claim is an Fr-measurable random variable C(T) which 
represents a contract equivalent to a stochastic cash flow C(T) at time T. The claim 
C(T) is called integrable if for every arbitrage free measure Q e ~,  

Ee(IC(T)I/B(T)) < ~ .  

We have the following examples. 

Example 1.1. Constant contingent claims are integrable. Clearly it is sufficient to 
show that for every O < T < r  and every Q ~  Eo(I/B(T))< 3c. But 
1/B(T) = Z(T, T) and the process Z(-, T) is a martingale under any Q for any T. 
Consequently, 

Eo(I/B(T) ) = EoZ(T, T) = EoZ(O, T) = P(O, T) < ~ .  

Example 1.2. The time T price of the risky asset i is a T-maturity integrable claim, 

Indeed EQ(R(T, i)/B(T)) = EcCZ(T, i) : R(O, i) < c~. 
The question now is how to price (and hedge) contingent claims. When the market 

model is complete it is well known that the unique time t price of the T-maturity 
integrable claim C(T) is equal to 

E(C(T) B(t)/B(T)I F,), 

where the expectation is calculated with respect to the unique arbitrage-free measure. 
When the market model is not complete as in our case the same statement remains 
valid but only for attainable integrable claims (cf. Harrison and Pliska, 1981) and the 
expectation is then calculated with respect to an arbitrary Q ~ .  It turns out that 
C(T) is attainable in our model if and only if C(T)/B(T) can be represented as 
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a stochastic integral with respect to the martingale Z or, due to Proposition 1.3, with 
respect to the martingales M or W. Note that for the claim C(T)  = l of a T-maturity 
pure discount bond we can write 

C(T)/B(T) = Z(T, T) = Z(t, T) + dZ(s, T), 
t 

which shows that this claim is attainable. Clearly, we also have 

R(K i ) /B(r )  = Z(T ,  i) = Z(t,  i) + dZ(s,  i) 

and hence, the claim C(T) = R(T, i) is attainable as well. The prices of claims are listed 
in the proposition below where the expectation is calculated with respect to the 
arbitrage-free measure P c  ~.  

Proposition 1.5. The unique time t prices associated with the contingent claims: 15 at 

time T and R(T)  (t <_ T) are given by 

E(B( t ) /B(T) IFt )  = P(t, T), E ( B ( t ) R ( T ) / B ( T ) I F , )  = g(t) .  

Remark 1.3. It seems that so far tw0 general approaches were developed to analyse 
the term structure of interest rates. The first one (cf. Hull and White, 1990; Jamshidian, 
1990: Artzner and Delbean, 1989) is based on a probabilistic model of the spot rate 
from which forward rates and bond prices are calculated using the arbitrage argu- 
ments. The second approach (cf. Heath et al., 1987; Musiela et al. 1993) assumes 

a model for the instantaneous forward rates of all maturities from which one needs to 
eliminate first any arbitrage possible. Then the spot rate as well as the forward rates 
and bond prices can be analysed. Continuing discussions and comparisons exhibit 
relative advantages and disadvantages of both methodologies and it remains an open 
question which approach is more natural, better adapted to give answers to many 
theoretical and practical problems or simply easier for the market to accept. Let us 
point out here that Proposition 1.5 and namely the formula 

establishes a one-to-one correspondence between the spot rate and the forward rates 
under a relatively general set of assumptions concerning exclusively boundness of 
volatilities. (These assumptions could be weakened even more and replaced by some 
integrability conditions, we decided not to do it here for expositional clarity.) This 
implies that both methods are equivalent in the above sense. It also shows that the spot 
rate is the only parameter which "drives" the entire term structure of interest rates. 

1.4. Forward contracts and./brward measures 

A forward contract with maturity Ton  a risky asset obligates its owner to purchase 
the asset at time T for a fixed price, called the forward price. By convention, the 
forward price is set to make the forward contract's value at initiation equal to zero. 
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The forward contract we consider here is written on the asset R which represents 

either a stock from the family JR(-, i); iE I] or a zero coupon from the family {P(., T); 

Tc [0, q ] .  
Hence, under the measure P, 

dR(t) = R(t)(r(tJdt + q*(t)dW(t)), 
T 

where q(t) equals q(t, i) or - ~, a(t, u) du for some i e I, T~ [0, ~]. As before we define 
the martingale Z(t, R) = R(t)/B(t). 

Now assume that the contract is initiated at time t < T and that F(t) denotes the 
forward price. It is clear that the contract corresponds to an attainable integrable 
claim with a cash flow of C(T) = R(T) - F(t) and hence from the above definition it 
follows (cf. Jarrow, 1988) that 

E((R(T) - F(t))B(t)/B(T)IFt) = O. 

This and Proposition 1.5 give 

F(t) = R(t)/P(t, T). (1.11) 

Example 1.3. The forward price at time t in a T-maturity forward contract on 
a discount bond with maturity ~ is equal to P(t, ~)/P(t, T). 

From (1.11) it follows that F is a semimartingale. 

Proposition 1.6. The semimartingale decomposition ofF under P is given by 

dF(t) = F(t)(  ftT ~(t, u)du + q(t))* ( frr ~(t, u)dudt + dW(t)). 

Proof. The Ito formula and Propositions 1.1 and 1.2 allow to write 

F( t )  = R(t)(P(t, T)) -1  

= (R(t)/B(t))(P(t, T)/B(t)) ' = Z(t, R)(Z(t, T)) ~, (1.12) 

d(Z(t, T)) -~ = - (Z(t, T)) 2dZ(/, T) + (Z(t, T)) -3d<Z( . ,  T))(t) 

~T ~T 2dr =(Z(t,T)) 1 ~*(t ,u)dudW(t)+(Z(t ,T)) I ~(t,u)du 

and hence, 

dF(t) = (dZ(t, R))(Z(t, T))-~ + Z(t, R)d(Z(t, T))- 

+ d<Z(. ,  R),(Z(., T)) 1)(t) = F(t)~l*(t)dW(t) 

+F( t ) ( f tTa* ( t , u )dudW( t )+ l fTa ( t , u )du  2dt) 

+ F(t)q*(t) cr(t, u)dudt  

(y/ )*(// ) = F(t) a(t, u)du + rl(t) er(t, u)dudt + dW(t) . F5 
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Remark 1.4. Note that if 

q(t) = - a(t, u)du, 

then F( t )=  F(0 )=  R(0). In particular the forward price at time t in a T-maturity 
forward contract on a T-maturity pure discount bond is equal to 15. This simple 
observation seems to support an intuitively clear more general belief that by looking 
into forward contracts we in some sense eliminate, or rather control through the 
volatility, risks related to fluctuations of interest rates. From this point there is only 
a small step to another Girsanov transformation developed by E1 Karoui and Rochet 
(1989) to price options on coupon bonds and then successfully used by E1 Karoui et al. 
(1991) to value other claims that are contingent on interest rate dependent assets. The 

idea is given below. 
Let for all A e FT 

Pr(A) = fA (P(O, T ) B ( T ) ) - '  dP. (1.13) 

It was shown in Proposition 1.5 that E ( B ( T ) ) - I =  P(0, T). Hence (1.13) defines 
a probability measure on (f2, FT). We call it here the forward measure. Note that the 
local density E((P(0, T)B(T)) -  1 IF t) can be represented as follows: 

E((P(O, T)B(T)) -  11 F,) = (P(O, T)B(t))-  ~E(B(t)/B(T)I Ft) 

= (P(O, T)B(t))-1P(t ,  T) = (Z(0, T) ) - 'Z ( t ,  T). 

This together with Proposition 1.1 (iii) implies that 

(P(O, T ) B ( T ) ) - '  = exp(M(T, T) - ½(M(. ,  T))(T)),  

where the martingale M(-,  T) is defined in (1.7). Consequently, the Girsanov theorem 

asserts that the process { W(t, T); 0 _< t _< T}, where 

IV(t, T) = W(t) + a(u, s)dsdu (1.14) 

is an Ft-Brownian motion under Pr- This together with Proposition 1.6 lead to the 

following proposition. 

Proposition 1.7. The process F is a martingale under Pr. 

Remark 1.5. Concept of the forward measure is relatively new and therefore probably 
not very well known to a wider audience. Let us try to explain it in a more intuitive 
way. An "ordinary" arbitrage-free measure makes discounted (hence interest rate 
influence) prices look like martingales. Speaking in general terms we place ourselves at 
time 0 and looking into the future we construct a distribution under which present 
values of securities, in terms of the dollar value at time O, behave like random walks. 
The forward measure Pr produces the same effect but in terms of the dollar value at 
time T. From the point of view of pricing T-maturity cash flows the measure 
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Pr  integrates (in the mathematical and ordinary sense) risks related to interest rate 
movements inside of the corresponding volatility parameter. Finally, note that 

P0 = P, of course, and that PT = P for all 0 < T < r if the spot rate is deterministic, 
because in this case 

P(O, T ) =  E(B(T)  -1) = B(T)  1 

and hence, the density between PT and P equals I. 

1.5, Options involving finite number o f  assets 

Throughout  this section we assume that the vectors a(t, T), q(t,i), t~[0,  r], 
T~ [0, r], i ~ I which describe the structure of volatilities in our economy are determin- 
istic. Let us remind (cf. Remark 1.2) that under this assumption the distribution of the 
collection of process E does not depend on the choice of the arbitrage-free measure 
Q ~ .  Now select a finite number of pure discount bonds with maturities say 
T1 . . . . .  Tte [0, z] and a finite number of stocks say it + 1 . . . . .  i,, ~ I from (1. I 0) and form 
the model 

E(m) = {B(.), P(" T~),j = 1 . . . .  , I, R ( ' ,  i j) , j  = I + 1 . . . . .  m I, 

which consists only of a finite number of risky assets. We will be interested here in the 
problem of pricing and hedging contingent claims concerning exclusively assets of the 
economy E(m). Note that the distribution of E(m) also does not depend on the choice 
of Q ~ ~ ,  i.e. for each P, Q ~ ~,  

PE(m) -  l = QE(m)-  1. 

This implies that on the canonical probability space of E(m) i.e. 

(C([0, r] "+ 1), B(C([-O, r] "+ ~)), PE(m)-1)  

with the filtration Ft = F (  ~"~ generated by the co-ordinate process the set of arbitr- 
age-free measures PE(m)-~ is a singleton. Consequently (cf. Harrison and Pliska, 
1983) the market model is complete and hence any integrable T-maturity claim C(T) 
defined on the above probability space is attainable. Moreover, the time t price of 
C(T) is equal to 

V(t) = E(C(T)B( t ) /B(T)[  F,). (1.15) 

Let us now consider several examples of claims C(T),  which correspond to standard 
or more exotic options, and show how to use previously developed ideas to price 
them. 

1.5.1. Options on coupon bonds 

Consider a European call option with maturity T and exercise price K on the cash 
flows C1 . . . . .  Ct occurring at times T1 . . . . .  Tt. One could think here of an option on 
a coupon bond where the nonzero Cj's are the coupon payments except for the last 
one which represents the coupon plus the face value. One could also think of 
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a portfolio of bonds or in general of any cash flows, positive or negative. It is clear that 
the time Tvalue of this cash flows, expressed in terms of the Tfmaturi ty pure discount 
bonds, is equal to 

l 

~" CjP(T, Tj) 
j - 1  

and hence the European call option corresponds to the claim 

C(T) = (Y.J=, CjP(T, T i ) -  K) +. 

Now let for j = l . . . . .  l 

r(t,j)  = P(t, Tj)/P(t, T) 

denote the time t price of a T-maturity forward contract on the Tj-maturity pure 
discount bond (cf. Example 1.3). From the Propositions 1.6 and 1.7 it follows that 

;) df( t , j )  = - F(t,j) a*(t, u)dudW(t, r),  

where the process W(', T) defined in (1.14) is a Brownian motion under the forward 

measure P r  and consequently, 

P(T, Ts)= F(T,j) 

= F(t,j)exp - a*(s, u)dudW(s, T) 

12fr ffJa(s,u)du Zds). 
But we also have 

Er(C(T)[F,)E(B(t)/B(T)IF,) = E(C(T)B(t)/B(T)IF,), 

where E T stands for the expectation under the m e a s u r e  PT. Using Proposition 1.5, 
(l.15) and the above it follows that 

V(t) = P(t, T)ET((EJ=, C~F(T,j) - K)+ I F,) 

= P(t, T ) E r ( ( Z ~ : , C j F ( t , j ) e x p ( -  f f  f fJa*(s ,u)dudW(s ,  T) 

Now define for j = 1 ... / 

X i = ~*(s, u)dudW(s, T) 
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and note that the Pr -condi t iona l  distribution of the vector X = (X1 . . . . .  Xt)* given 

F, is N(0, F ' F )  where F = [71 . . . . .  7t] is a k × l matrix such that 

((St; )) F * F  = E X X *  = a*(s, u)du a(s, u ) d u d s  . 

This implies that we can write the following representation of the price 

= f~k El V(t) P(t, T) ( j = , C j F ( t , j ) e x p (  - 7*x  - ~l'/jI z) - K)+ ~p(x)dx, 

where q~(x) = (2rr)-~/2 exp( - ½lxl 2) or equivalently that 

V(t) f~k X t = ( j= ~ C~P(t, Tj)~p(x + 7~) - KP( t ,  T)q~(x))+dx. 

Note  that if in addition a(s, u) dose not depend on s i.e. a(s, u) = a(u) then we can write 

((f: f )) F * F  = ( T -  t) a*(u)du a(u)du  = ( T -  t )B*B,  

where B = [bl . . . . .  bt] is a k × I matrix. In particular one could take bj = ~r rj a(u)du. 

Using this notat ion we can finally write 

V(t) = ( ~=tCjP( t ,  Tj)<p(x + (T  f)l/2bj) KP( t ,  T)~o(x)) + dx.  (1.16) 

It is perhaps interesting to note that the function 

~(t, p~ . . . . .  Pt) = f ~  (Y~= t pj~o(x + ( T  - t)L'z hj) - K~o(x)) + dx  

is the unique solution to the Cauchy problem 

+ ½Z[~, Z~=t b*bjp~p~p~?.pj = 0 on [0, T]  x ~t, 

~9(T, Pl . . . . .  Pl) = (Y~- 1 P2 - K)+ P2 e ~ 

and that 

V(t) = P(t, T)8(t ,  C~F(t,  1) . . . . .  CIF( t ,  1)). 

Interpretat ion of the parameters is also obvious. One can show that B*B represents 
the matrix of volatilities of returns on forward prices of pure discount bonds with 
maturities Tj, / = 1 . . . . .  I. 

Let us now consider some particular cases. Assume first C~ = 1, 

C2 = C3 . . . . .  Ct = 0. Then formula (1.16) reduces to 

V(t) = J'~ (P(t,  Tj)~p(x + ( T - -  t)l:zhl) -- KP( t ,  Tj~p(x)) + dx  
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and it is easy to see that  the integral is positive if and only if 

b'~x/I b, I <- (log(P(t, T1)/KP(t,  T)) - ½ ( T -  t)lb212)/(T - t)l/2lb, [. 

This allows to write that  

V(t) = P(t, T 1 )N(h) - KP(t ,  T )N(h  - ( T -  t)i/2[b ~ I), (1.17) 

where 

h = (log(P(t, T1)/KP(t,  T)) + ½(T - t)Ibl  [2)/(T - t)I/2[bl I 

and one can recognize the Biack-Scholes  formula  applied to the forward price as 

obta ined in (Heath et al. 1992). 
Assume next k -- 1 and C s >_ 0, j -- 1 . . . . .  I. Then it is not difficult to see that  the 

equat ion 

Z~: 1CsP(t, Ts)q~(x + (T  - t)l/Zbj) = KP(t ,  T)cp(x) 

has a unique solution in x which we call s. In terms of s we can write 

V(t) = YJ= ~CsP(t, Ts)N(s + ( T -  t)I/2bs) - KP(t ,  T)N(s)  

and hence (1.16) reduces to the formula  derived by E1 Karoui  and Rochet  (1989) and 

Jamshidian  (1990). 
Finally assume k = 2, C~ > 0 and Cz < 0. Then (1.16) can be expressed in terms of 

the bivariate normal  distr ibution and applied to price opt ions on spreads between 

forward rates. 

1.5.2. Options on baskets q f  stocks 
Consider  now a European  call opt ion with matur i ty  T and exercise price K on the 

basket  {Cs, j = l + 1 . . . . .  m} of stocks R ( ' ,  is). Clearly this opt ion corresponds  to the 

claim 

C(T) = (Zs"_-~ + ~ CsR(T, i s) - K) +. 

Repeat ing a rguments  used in Section 1.5.1 one can verify that  

dF( t , j )  = F(t , j )  a(t, u)du + q(t, i s) dW(t ,  T), 

where f o r j = l +  1 . . . . .  m 

F(t , j )  = R(t, is)/P(t, T). 

Let f o r j = l +  1 . . . . .  m 

£(t , j )  = a(t, u) du + q(t, is), 

then we have 

R(t, is) = F(T , j )  = F( t , j ) exp  2*(s , j )dW(s,  T) - -~ ])~(s,j)12 ds . 
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The Pr -condi t iona l  distribution of the vector Y = (Xt+l . . . . .  X")* given F,, where 

X~ = 2 * ( s , j ) d W ( s ,  T), j = I + 1 . . . . .  m 

is N(0, A ' A )  with a k x I matrix A = [6~ . . . . .  61] such that 

A*A = E Y Y *  = 2(s, i )2 ( s , j )d s .  

Consequently,  we can write the following representation of the price 

Vit)  = E I C ( T ) B ( t ) / B (  r )  l F,) 

f~ 2 "  - KP( t ,  T)~o(x)) + dx.  ( j = / + l  CiR(t ,  ij) q~(x 6i) 
k 

Again if 2(t , j)  does not depend on t i.e. )dt, j )  = 2(j) then we can write 

A*A = E Y Y *  = ( T -  t ) (2* ( i )2 ( j ) )  = ( T -  t ) A * A ,  

where A = [bl+ ~ . . . . .  bin] is a k × l  matrix. In particular one could take bj = 2(j) .  
Finally, we can represent the opt ion price as follows 

; ~ k  x "  - - - V(t) = ( j=t+lCjR(t ,  ij)q~(x (T  t)l/2bj) KP( t ,  T )qqx) )  + dx.  

Interpretat ion of the parameters remains intuitive. The B *B  matrix represents volatil- 

ities of returns on forward prices of  stocks. Moreover ,  the t ransformation x ~ - x 

leads to 

fRk X"  -- -- 
V(t) = ( ~=1+ 1CjR(t, i~)tp(x + (T  t)l/2bj) KP( t ,  T)to(x))  + dx.  (1.18) 

and allows to compare  formulae (1.16) and (1.18). As a consequence all particular 

cases discussed in Section 1.5.1 can be restated here with R(t,  i j) substituting P(t, Tj). 
For  example if C1+ ~ = 1 and C1+ 2 . . . . .  C,, = 0 we obtain the formula derived in 
Jar row (1988). 

1.5.3. Mult iple  options 

Consider a basket of European call options with maturi ty T and exercise prices 

Kj on stocks R ( . ,  i j ) , j  = I + 1 . . . . .  m. A multiple opt ion is the option which gives the 

right to exercise in exactly one of the stocks of the buyers choice. Clearly, the holder 

will exercise in the stock which gives the maximal profit and consequently the multiple 
opt ion corresponds to the claim 

C(T)  = max(R(T, it+ 1) - Kl+ 1 . . . . .  R (T ,  i,,) -- K " ,  O) 

= max lR(T ,  it) -- K~)+; I + 1 <_j <_ m I. 
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Using methods and notation of Section 1.5.2 it is not difficult to see that the price V(t) 
is given by 

V(t) = f~k max(R(t, ij)cp(x + ( T -  t)l/Zbj) -- KiP(t, T)~p(x)) + dx. 

For l + 1 = m we get the Black Scholes formula of course. 

Remark 1.6. One could think that Eqs. (1.16)-(1.19) which in principle involve 
integration over the space [~k will be very difficult to implement. In fact this is not true. 
The common denominator in examples of options analysed in Sections 1.5.1-1.5.3. is 
that in practice k will always be less than or equal to 2. This statement is based on 
a statistical analysis of the matrix of volatilities of forward prices. It is remarkable that 
in almost all cases analysed by us we found consistently only two significant eigen- 
values. 

2. Foreign economy 

In this part of the paper we show how to expand our model into a larger economy 
in which the foreign money market account, foreign bonds and other foreign securities 
can be viewed as "domestic" assets. Our approach is based on the Amin and Jarrow 
(1989) model of an arbitrage-free international economy. We use the same notation 
and write the subscript f on the quantities defined in the first part of the paper to 
indicate that they represent the corresponding quantities in the foreign economy. 

2.1. Foreign term structure 

We assume that the foreign instantaneous forward rate fi(t, T) is given by 

dfi(t, T) = zcf(t, T)dt + a*(t, T)dWo(t), (2.1) 

where Wo is the same as before while the processes {~f(t, T); 0 < t < T < r} and 
l~rr(t, T); 0 < t < T < r I are bounded on [0, r ]  2 x ~2 adapted with values in I~ and I~", 
respectively. 

Denominated in foreign currency are the time t price Pf(t, T) of a T-maturity 
foreign pure discount bond and the foreign accumulation factor Bf(t). Of course, we 
have 

P f ( t , T ) = e x p ( -  ~r.ff(t,u)du) 

and 

of,,, exp( rf,u, du) 
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where rf(t) =ff(t ,  t) stands for the foreign instantaneous riskless rate of interest at 

time t. 
The exchange rate S(t )  of the foreign currency, denominated in the domestic 

currency per unit of the foreign currency, establishes the link between the two 

economies. We assume that for 0 < t _< 

dS(t) : S ( t ) ( f l ( t ) d t  + v * ( t ) d W o ( t ) ) ,  (2.2) 

where Wo is still the same while the processes {fl(t); 0 < t _< r~j and Iv(t); 0 < t <_ rl 
are adapted with values in N and N", respectively, S(0) is a constant, the process v is 

bounded on [0, r] x f2 and the process fl satisfies the condition 

P o ( f ] l f l ( t ) [ d t <  ,m)  = 1. 

Note that for each 0 _< 
discount bond. In this 

T < ~, Pr(t, T)S( t )  represents the dollar value of a foreign pure 

sense the family of processes 

[Pf( ' ,  T)S ( ' ) ;  0 ~ T <  ~) (2.3) 

can be viewed as a new family of assets in the domestic economy. Also the dollar value 

of the foreign money market account B d t ) S ( t )  can be interpreted as a new asset. 
However, by bringing new assets into our economy we create new possibilities for 

arbitrage. To eliminate them we proceed as before. That is, first we identify a condi- 

tion under which the process 

Zf ( t )  = Br ( t )S ( t ) /B( t )  (2.4) 

is a P-martingale (the measure P is the one defined in (1.3)). A straightforward 

application of the Ito formula to Zf(t) leads to the following differential representation 

dZdt )  = Zf( t ) ( ( r f ( t )  - r(t) + fl(t) + , 9* ( t )H( t ) )d t  + ~q*(t)dW(t)) ,  

where the process W defined in Eq. 1.4 is Brownian motion under P. This invites to 
formulate the following assumption. 

Assumption 2.1. For all 0 _< T _< T 

fl(t) = r(t) - rd t )  - ~9*(t)H(t). (2.5) 

The case of the family (2.3) is more involved but it can be analysed in exactly the same 
way. We have, as in Proposition 1.1, 

dPr(t,  T) = Pd t ,  T ) ( d l o g P d t ,  T) + ½d(logPr( ", T ) ) ( t ) )  

and 

( iT)  dlog Pr(t, T) = - d .l~(t, u )du  = r d t ) d t  - dfi(t, u)du. 
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But using (2.1) it follows that 

ftr (dff(t, u)du) = ( ~tr ~tf(t, u)du)dt + ( f r tr'(t, u)du)dW(t) 

and hence that 

i r u)du 2 d ( l o g P f ( ' ,  T))(t)= trf(t, dt. 

Consequently,  we have 

(( dPf(t, T) = Pf(t, 7") rr(t) - ~f(t, u)du 

+~ ftr~rf(t,u)du 2)dt-(ftrG*(t,u)du)dWo(t)) 

and therefore, together with (2.2) also 

d£Pf( . ,  7"), S('))(t) = - Pf(t, 7")S(t) a~(t, u)du~9(t)dt. 

All this leads to 

d(Pf(t,  T)S(t)) = Pf(t, T)S(t) rf(t) - o~f(t, u)du 

1 r 2 g(t))dt +2If ,  ~rf(t,u)du +fl(t)- ftrtr*(t,u)du 
/ 

Now it is sufficient to analyse the process 

Zf(t, T)= Pf(t, T)S(t)/B(t). 

Clearly, we have 

dZf(t, T) = (dPf(t, T)S(t))/B(t) - (Pf(t, T)S(t)r(t)/B(t)) dt 

= Zf(t, T) rf(t) - r(t) - el(t, u)du 

1 2 + 5l ftra,(t,u)du + fl(t)- ftra*(t,u)dm9(t) 

+ (~9*(t) - f f  a*(t,u)du)H(t))dt 

+(8*(t)-- ftra*(t,u)du)(dWo(t)-H(t)dt)) 

(2.6) 
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= Z f ( t , T ) ( ( -  f f  ~f(t,u)du+~ f f  tTf(t,u)du 2 

- f f  ~,(t,u)du~(t)- ftr~*(t,u)duH(t)]dt 

+ (~9*(t) - ftra~'(t,u)du)dW(t)) 

247 

and 

Mf(t, T)= f i  (~q*(s)- f f  tr*(s,u)du)dW(s), (2.9) 

w h e r e 0 _ < t < z a n d 0 <  T_<z. 

2.2. Foreign risk)' assets 

Assume now that we are interested in the family [ Rr( ' ,  i); i e If} of foreign stocks or 
other  foreign assets prices of which are given by 

dRf{t, i) = Rf(t, i)(pAt, i)dt + qf(t, i)dWo(t)). 

As usual assume that the processes { ~q(t, i); 0 _< t < z] and {qf(t, i); 0 < t < ~, Jell, 
are adapted with values in ~ and ~", respectively. For  every ie  If qf(. ,  i) is bounded 

and hence we need the following assumption. 

Assumption 2.2. For  all 0 < t, T < z 

:q(t, T) = o*(t, T) ~rf(t, s)ds - H(t) - ~(t) . (2.7) 

Note  that assumptions (2.5) and (2.7) are consistent with assumptions (1.6) and (1.2), 

respectively. It seems intuitively clear that one would need to adjust the model only for 
the exchange rate risk. 

Let us summarize the above observations. 

Proposition 2.1. Under the measure P the processes Zf(') and Zf( ' ,  T), 0 < T <_ z, 
defined in (2.4) and (2.6) are martingales. Moreover, we have 

(i) dZd t )  -- Zf(t)~9*(t)d W(t), 

(ii) dZdt, T ) = Z f ( t , T ) ( 9 * ( t ) - f f t r * ( t , u ) d u ) d W ( t ) .  

We finish this section with the definitions of martingales 

Mf(t) = f '  9*(s)dW(s) ~2.8) 
Jo 
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on [0, ~] x f2 while t lf( ' ,  i) satisfies 

l'o(ffll,~{t,i)ldt< ~c) = 1. 

Of  course for each i6 It, Rdt, i)S(t)  is the dollar  value of a foreign asset and again all 

we need to do is to find condit ions under which the processes 

Zr(t, i) = Rr(t, i )S( t ) /B( t )  (2.10) 

are mart ingales  under P. This leads to the following assumption.  

Assumption 2.3. For  all 0 _< t _< z and all i s  It, 

pr(t, i) = rf(t) -- rl*(t, i )H(t)  - q~'{t, i)o(t). (2.1 1) 

It is a simple exercise to show the following proposit ion.  

Proposition 2.2. Under the measure P.]br all i e If the process Zr( ", i) is a martin#ale and 

dZf(t, i) = Zf(t, i )dMf( t ,  i), (2.12) 

where 

Mr(t, i) = f~ (r/*(s, i) + ~9*(s))dW(s). (2.13) 

Remark 2.1. It may  be interesting to note at this stage that  from Proposi t ions  2.1 (i) 

and 2.2 we can deduce the following intuitively obvious  statement;  portfolios consist- 
ing of cont inuously  rebalanced equivalent  short  and long posit ions in two foreign 

assets do not carry any currency exchange risk. This is because for all 0 < t < ~, 

f o Z r t ( s , i ) d Z f ( s , i ) -  ~ Z ( ' ( s ,  T)dZf(s ,  T) 

fo( ) = q~(s, i) + a~'(s, u)du dW(s) 

does not depend on O. As it is seen from the formula  above  we think here of 
discounted prices. 

Let us r emember  that  we treat foreign assets as new assets in the domest ic  economy.  
Therefore,  we can also define new "larger" vectors M and Z. For  example,  the new 
vector  M is the family of mart ingales  formed from all mart ingales  defined in 1.7, 2.8, 
2.9 and 2.13. The new vector Z consists of  mart ingales  defined in 1.9, 2.4, 2.6 and 2.10. 
This allows us to restate Proposi t ions  1.3 and 1.4 with the matr ix  Z(t)  build from 
vectors of"volat i l i t ies" of  domest ic  and foreign assets. In part icular  if the process ( M )  
is deterministic then the joint  distr ibution of the family of  processes 

E = {B(-), P ( . ,  T). R( . ,  i), B r ( ' ) S ( ' ) ,  Pr{ ' ,  T)S( ' ) ,  R(', .]),  

S( ') ;  T s  [-0, r], i 6 l , . j 6 l f }  (2.14) 
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representing our larger economy does not depend on the choice of the arbitrage free 

measure Q~@. 
All results concerning forward contracts and forward measures remain valid as well. 

We simply need to remember to change names of vectors of volatilities. 

Example 2.1. The time t price of a T-maturity forward contract on a foreign discount 

bond with maturity T1 is equal to 

F(t) = Pdt, T1)S(t)/P(t, T). (2.15) 

In particular if T = T~ then 

F(t) = Pf(t, T)S(t)/P(t, T) 

is the value of a forward contract on foreign currency. In general when T :~ T~ we can 
write, using Propositions 1.6 and 2.1 the following decomposition of F under P 

dF(t) = F(t) or(t, u)du + ~9(t) 

f/ )'(f/ ) 
- ~f(t, u)du ~tt, u)dudt + dWtt)  12.16) 

which again can be interpreted intuitively (take T = T~, and ¢r = err). 

2.3. Options on.[breign assets 

As in Section 1.5 we assume here throughout that the vectors a(t, T), ~l(t, i), af(t, T), 
rh(t,j), O(t), T~ [0, ~], i6 l , , je If which define the term structure of volatilities in our 
economy are deterministic. This implies that finite families containing B( ' )  and other 

processes from (2.14) can be viewed as complete models of economies spanned by 

finite number of assets. We consider here several examples of such models in the 

context of option pricing. 

2.3.1. Options on.[breign discount bonds 

To price a European call option with maturity T and exercise price K on a foreign 
discount bond with maturity T1 we consider a finite dimensional "'projection" of 
economy (2.14t which contains B(.), P(. ,  T), Bd ' )S( ' ) ,  P( ' ,  T~ )S(.). The T-maturity 

forward contract on the asset P(.,  T1)S( ' t  is priced at time t by Eq. (2.15). The 
semimartingale decomposition of its value F(t) is given in (2.16). It allows us to 
identify the new volatility parameter 

;/' f) a(t, utdu + O{t) - 6f(t, u)du 

and the new 7~ vector as any vector such that 

] ; ' 1 ]  2 ~--- o(s,u)du + O ( s ) -  ar(s,u)du ds. 
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If in addit ion the integrand in the above formula  is constant  in s and equal to 0.2 then 

17112 = ( T  - t ) a  2 and we can derive from (1.16) or (1.17) the following pricing formula.  

V(t) = Pf(t, T1)S(t)N(h) - KP(t, T)N(h - ( T -  t)1/2o'), (2.17) 

where 

h = (log(Pt(t, T1 )S(t)/KP(t, T)) + ½ ( T -  t )a2) / (T-  t)1/26. 

In terpre ta t ion  of the pa ramete r  0 .2 is the same as before i.e. 0.2 represents here 

volatility of the T-matur i ty  forward contract  on the T l -matur i ty  foreign discount 

bond. 

Finally let us analyse some part icular  cases. If for all t, T e  [0, z], 0.(t, T) = 0.f(t, T), 
~9(t) = 0 and S(0) = 1 then Eq. (2.17) reduces to (1.17) and hence can be used to price 

opt ions on "domest ic"  discount bonds. If T = T1 then (2.17) reduces to the formula  for 
pricing opt ions on foreign currency under  stochastic interest rates as derived by Amin 

and Ja r row (1989). 

2.3.2. Options on spread~ between the domestic and foreign discount functions 
One way of thinking of a European  call opt ion with matur i ty  T on the spread at 

t ime T~ between the domest ic  and foreign discount functions is to think of an opt ion 

which corresponds  to the contingent  claim 

C(T) = (Pf(T, T, )S(T) - CP(T, TI) - K) +, 

where C and K are constants.  To  price such a claim we can follow arguments  
presented in Section 1.5.1. The time t value V(t) of the opt ion is given by 

V(t) = [ "  (Pr(t, Tt)S(t)cp(x + ( T -  t)l/Zbl) 
da k 

- CP(t, Tl)cp(x + ( T -  t)l/Zb2) - KP(t, T)~p(x)) + dx, 

where ¢p(x)= (2 r t ) -k /Zexp( -  ½lxl2), k _< 2, and the matrix (b* bj) represents the 

matrix of returns on prices of  the corresponding forward contracts  i.e. 

P(' ,  TOS(" )/P(', T) and P(. ,  TO~P(', T). 

2.3.3. Options on .&reign stocks 
It is a simple exercise to show that  the price of  a European  call opt ion with matur i ty  

T and exercise price K on the basket  {Cj; j = 1 . . . . .  m I of foreign stocks Rf( . ,  ij) can 
be obta ined from Eq. (1.18) by substi tuting R(- ,  ij) with Rf( ", it)S('). 
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