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1. Introduction

Backward stochastic differential equations (BSDEs in short) were first introduced in [1] in order to give a probabilistic
interpretation (Feynman-Kac formula) for the solutions of semilinear parabolic PDEs, one can see [2,3]. Moreover, BSDEs
have been considered with great interests in the past decade because for its connections with mathematical finance [4] as
well as stochastic optimal control and stochastic games [5].

On the other hand, backward doubly stochastic differential equations (BDSDEs in short) driven by two Brownian motions
were introduced in [6] in order to give a probabilistic representation for a class of quasilinear stochastic partial differential
equations (SPDEs in short). Following this, Bally and Matoussi [7] gave a probabilistic representation of the solutions to
parabolic semilinear stochastic PDEs in Sobolev spaces by means of BDSDEs. Furthermore, Matoussi and Scheutzow [8]
discussed BDSDEs and applications in SPDEs, where the nonlinear noise term was given by the It6-Kunita stochastic integral.
Recently, Zhu and Shi [16] derived the existence and uniqueness of the solutions to BDSDEs driven by Brownian motions
and a Poisson process.

The main tool in the theory of BSDEs is the martingale representation theorem, which is well known for martingales
which are adapted to the filtration of the Brownian motion, or that of the Poisson point process [1,13] or that of a Poisson
random measure [14]. Recently, Nualart and Schoutens [9] gave a martingale representation theorem associated with the
Lévy process. Furthermore, they showed the existence and uniqueness of solutions to BSDEs driven by Teugels martingales
in [10]. The results were important from a pure mathematical point of view as well as in the world of finance, which could
be used for the purpose of option pricing in a Lévy market and the related partial differential equation which provided
an analogue of the famous Black-Scholes partial differential equation. Following that, Bahlali et al. [15] generalized the
above case to the BSDEs driven by Teugels martingales and an independent Brownian motion and gave the probabilistic
representation for the solutions to a class of PDIEs.
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Then it is natural to extend BDSDEs to the case of Lévy processes. The purpose of the present paper is to consider BDSDEs
driven by Lévy processes of the kind considered in [15]. This allows us to give a probabilistic interpretation for the solutions
to a class of stochastic partial differential integral equations (SPDIEs in short).

The paper is organized as follows. In Section 2, we introduce some preliminaries and notation. Section 3 is devoted to
the proof of the existence and uniqueness of the solutions to BDSDEs driven by Lévy processes. In Section 4, we give a
probabilistic interpretation of solutions to a class of SPDIEs.

2. Preliminaries and notation

Let T > O be a fixed terminal time. Let (£2, ¥, {#:}o<c<1, P) be a filtered probability space, {B; : t € [0, T}, {W, : t € [0, T]}
and {L; : t € [0, T]} be three mutually independent processes. {B; : t € [0,T]}, {W; : t € [0, T]} are two standard
Brownian motions in R and {L; : ¢t € [0, T]} is a R-valued Lévy process corresponding to a standard Lévy measure v such
that [, (1 Ay)v(dy) < oo,

Let & denote the totality of P-null sets of #. For each t € [0, T], we define

Fot FEVFY Y FL

where for any process {1}, ;1 = o{n, —ns:s <r <t} v N, F' = F,.

Note that {F;, t € [0, T]} is neither increasing nor decreasing, so it does not constitute a filtration.

Let #2 denote the space of real-valued, square integrable and #;-progressively measurable processes ¢ = {¢; : t € [0, T]}
such that

T
lpl? = E[o lpi2dt < 0o

and denote by #? the subspace of #2 formed by the predictable processes.
Let 12 be the space of real-valued sequences (x,),=o such that 3"2°; x? is finite. We shall denote by #2(?) and P2 (?) the
corresponding spaces of [>-valued processes equipped with the norm

S T .
lol2 =3 E /0 1o Pdt.
i=0

Finally, set 72 = #? x $% x P2(1?).
Let 42 be the set of real-valued, .%,-measurable processes ¢ = {¢; : t € [0, T]} such that

E(sup |gs]?) < oc.

0<s<T

We denote by & = 42 x 22 x P2(?) the set of R x R x [>-valued processes (Y, U, Z) defined on R, x 2 which are %,—
adapted and such that

T T
1Y, U, 2)2 =E<sup Iv,J2 +/ |us|2ds+/ ||zs||2ds> < to0.
0<t<T 0 0

Then, the couple (&, | - ||) is a Banach space.
We denote by (H?);; the Teugels martingale associated with the Lévy process {L; : t € [0, T]} (see [9,10,15]) which is

given by

Hr(i) = Ci,in(i) + Ci,i71Yt(i71> 4+ 4 Ci,lyt(])s
where Y” = 1’ —E[L"] = 1’ —tE[1{] for alli > 1and L{" are power-jump processes. Thatis, L’ = L, and L” = Yy, (AL)’
for i > 2, where it was shown in [13] that the coefficients c;, correspond to the orthonormalization of the polynomials
1,x, x%, ... with respect to the measure p(dx) = x*v(dx) + 28y (dx):

Qi1 =X GiiX G
We set

pi(x) = xqi1(x) = X' + ¢ X+ .

Remark 1. If v = 0, we are in the classic Brownian case and all non-zero-degree polynomials g;(x) will vanish, giving
H? = 0,i = 2,3,....If u only has mass at 1, we are in the Poisson case; here also H” = 0,i = 2, 3,.... Those two
cases are degenerate in this Lévy framework.

Definition 2. By definition, a solution to a BDSDE (&, f, g) is a triple (Y, U, Z) € & such thatforany0 <t <T

T T T o T
Vo= [ 6 U zads+ [ g Yo U Z0dB — [ udw =Y [ 20dH. (1)
t t t i=1 7t

Here the integral with respect to {B.} is the classical backward It0 integral (see [11]) and the integral with respect to {W;}
and {Hf')} are two standard forward It6 integrals (see [12]).
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In order to attain the solution of Eq. (1), we propose the following conditions:

(H1) The terminal value & € [2(R2, 7, P);

(H2) The coefficientsf : [0, T] x 2 x Rx R x > > Randg:[0,T] x 2 x R x R x > — R are progressively measurable,
such that

f(-,0,0,0),g(-,0,0,0) € #*;

(H3) There exists some constants C > 0 and 0 < « < 1 such that for every (w, t) € 2 x [0, T], (y1, U1, 21), (y2, Uz, 22) €
RxRxE,

IF (€, y1, 1, z1) — F(&, Y2, Uz, 22) 1 < Clyr — y2I* + lur — w2l + llz1 — 2211?),
lg(t, y1, u1, z1) — g(t, y2, U2, 22)1* < Clyr — y2I* + a(lus — uz* + 21 — z2[1%).

The result depends on the following extension of the well-known It6 formula. Its proof follows the same program as
Lemma 1.3 of [6].

Lemma 3. Let o € 8%, B8, y, nand ¢ e #? be such that
t t ¢ © oot )
o = o +/ ﬂsds-i-f v.dB, +/ nedW, + Z;@/ dH®, 0<t<T.
0 0 0 P 0
Then

t t t
o2 = Jarol? +2 / s fods + 2 f s y,dB, + 2 f oW,
0 0 0

20 t . - t t O X t . - - ;
+2Z]:/0 ot P dHY —fo |ys|2ds—|—/0 |n5|2ds+22f0 ¢ dHY, HOY;.
i=

i=1 j=1

Note that (H?, HY), = §;t; we have

t t t ) t
Eloee|? = Elog)? +2E/0 as,Bsds—EfO |)/s|2ds—|—E/0 |n5|2ds+ZE/0 (;i’))zds.
i=1

3. Existence and uniqueness of the solutions
Our goal in this section is to prove the following result.
Theorem 4. Assume (H1)-(H3) hold. Then, there exists a unique triple (Y, U, Z) € & satisfying Eq. (1).
Proof. Forf, g € #2, &€ € [*(2, Fr, P), we set the filtration {#, t € [0, T]}
@ = ?«tL v fftw v f}s
and the ¥,-square integrable martingale
T T
mo=£[e+ [ rods+ [Ceodnia|. o<e<t
0 0
The predictable representation property (see [15] Proposition 2.1) yields that there exist U € 2 and Z € £2(1?) such that
t 0t )
M, = Mo + / Udw, + 3 / ZOdHO.
0 i1 /0
Hence
t © T .
My = M, + f UsdW, + ) / ZOdHY,
0 = Jt
Let

Y

v~ [ r6)ds— [ g,

t t T 0 AT )

My — / fs)ds — / g(s)dB; — / Udw, - / Z0dH®
0 0 t i—1 7/t

from which we deduce that

T T T o0 T
Y, =£& +/ f(s)ds —|—/ g(s)dB; — / U dw, — Z/ Z§i)dHS(i).
t t t = Jt
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So for each (Y, U;, Z,) € #?, there exists (Y;, U, Z,) satisfying
_ _ T oo )
~dY, = (6, Voo, Ui Z)de + 86 Voo, Ui Z0dB — [ 0w — Y- 20dHY,
t i=1
YT = S.
First, we give a mapping defined by
& A4 —> A2, o) =U,

where U; = (Y, Uy, Z), QS(U;) = (Y, Uy, Zy).
Next, we prove that & is a strict contraction on %> with the norm

1

T 00 i 2

I¢2 U,Z)n,e:(E[/o e‘*‘(m|2+|US|Z+Z|z§'>|2)dsD .
i=1

for a suitable 8 > 0.
Let (K, G, V) and (K, G, V') be two elements of s#? and set #(K, G, V) = (Y, U,Z) and &(K', G, V') = (Y', U', Z'). Denote

K,GV)=K-K,G-G,V—V)and (Y,U,2) =(Y =Y, U-U,Z-27).
Applying Itd formula to e (Y, — Y/)?, froms = t to s = T, it follows that

T T
A [ e’ (Y, =Y )*ds +2 / e (Yo — Y, )If(s, Ko, Gs, Vi) — f(s, K., G, V))1ds
t t
T
42 / e (Y, — Y, )lg(s. K, Gs, Vi) — g(5, K._, G, V/)1dB
t
T T 0 i . .
+2 / eP (Yo — Y, )(Z — Z))dw, — 2 / eP (v — v ) > (2" — ZP)dH?
t t i=1

T T
+ f e®lg(s, K—, Gy, V;) — g(s, K._, G, V))[*ds — f e (U, — U))2ds
t

t

_ / #3320 — 20) @0 — ZD)d[HO, HO),.
t

i=1 j=1

Taking mathematical expectation on both sides, we obtain
E[eP (Y, — Y))?1 + [ ef (Us — U)?ds + ZE/ eP (z) — Z)2ds
t i=1 t

T T
= —,BE/ eP (Y, — Y/ )%ds+ 25/ e’ (Y. — Y. )If(s, Ks—, G, Vi) — f(s,K._, G., V))]ds
t t

T
+E / e |g(s. K, Go, Vo) — g(s. K._, G, V!)2ds.
t

Furthermore, we have

T T o0 T ) )
E[e” (Y, — Y)?] + fE / e (Y, — Y )2ds+ / eF (U, — U)2ds + > F / ez — 710)2ds
t t = Jt

2C Tﬂs 7 \2 1-o Tﬂs 72 /12 /012
< E[| e®(Yoo =Y, )ds+ ——E | e” (K- —K_|"+ |G — G|~ + ||Vs — V{||*)ds
1—-« t 2 t
T
+E/ eP (CIK_ — K> + a|Gs — G.|* + a||Vs — V/||P)ds
t

20 (T 1- T
——E| ef(yv, — Y. )ds+ <c+ T“) E/ eIk, —K_|*ds
t t

- 11—«
1+« T 1+« T
+ LE/ |G, — G,2ds + iE/ e v, — V| 2ds.
2 t 2 t
Thus, we obtain

2C T T T
E[e” (Y, — Y))?] + (ﬂ - ﬁ) E[ eP(v,. — ¥, )%ds +f e (U, — U)?ds + E/ e |1z, — Z/|1*ds
- t t t

1- r 1+a [T 1+a [T
5<c+ T“)Ef ePIK,_ — K_|*ds + er E/[ eﬁsle—Gglzds—l—TE/t e |V, — v/ %ds.
t



Y. Ren et al. / Journal of Computational and Applied Mathematics 223 (2009) 901-907 905

Lety =2, C=2(C+ 5%)/1+aand B =y + C, we get
B T T T
E[e|Y, — Y/|’1+ CE/ eP (Y. — Y/ )%ds +Ef ef*|u; — Ul |%ds + E/ e’ )z, — Z/|*ds
t t t
1 + o T = / /
< TE/ eP (CIK- — K> 4 |Gs — GL|* + [IVs — V/||*)ds.
t
Note that E[e? (Y, — Y;)?] > 0, we finally obtain
Tﬂs‘ 72 avi /112 1+a Tﬂs‘ 712 /(2 112

E ) eP(ClYse — Y,_|“ds + |Us — Ug|* + ||1Z; — Z;||*)ds < TE ) e (ClKs— — K,_|* + |G — G,|* + ||Vs — V,||*)ds.

That is
1+«

1Y, U, 25 = == (K, G, V)15

From this it follows that & is a strict contraction on .%”ﬁ with the norm || - ||z where f is defined as above. Then, ¢ has a

unique fixed point (Y, U, Z) € 7. From the Burkholder-Davis-Gundy inequality, it follows that (Y, U, Z) € & which is the
unique solution of Eq. (1). O

4. Application to SPDIEs

In this section, we study the link between BDSDEs driven by Lévy processes and the solution of a class of SPDIEs. Suppose
that our Lévy process has the form of L, = [; o'(L)dW; + X, where X, is a Lévy process with Lévy measure v(dx), which takes
the form X; = at + I, where [, is a pure jump process.

In order to attain our main result, we give a Lemma that appeared in [10].

Lemma 5. Let c: 2 x [0, T] x R — R be a measurable function such that

le(s, )| < a;(y* A ly]) as.,
where {as, s € [0, T]} is a non-negative predictable process such that EfOT afds < oo. Then, for each 0 < t < T, we have

00 T T
(7ALS): <(7')9 i)zvng(i)+ (5 ) (d )d .
ZCS ;‘/‘: c(s p,_() /;ACSYU y)ds

t<s<T

Consider the following BDSDEs:
T T T © .
Yo = h(ly) + / F(s, Yoo, Ug, Z)ds + / g(s, Ys_, Us, Z)dB; — / Udw, — > z0dHY, 0<t<T, (2)
t t t i1

where E|h(Lp)|? < oo.
Define

0
ul(t,x,y) = u(t,x +y) —u(t,x) — sz(t, X)y,
where u is the solution of the following SPDIEs:

u 1, 4 ,Ou 1

T+ 5P €0 +a €0+ [0 ryvdy)
ou .
- () 0

+f (t, u(t, x), o(x) (£, %), {u(t, X)},:l) (3)

ou D oo \ i ar
+g <t, u(t, x), G(X)a(t, x), {u®(, x)}i:]> B:dt =0,
u(T, x) = h(x),

where @’ = a + [, .., yv(dy), B is a white noise and

W0 = [ a6 x o) + X e ([ ).
and fori > 2

U (t, %) = / ul(t, %, y)pi () v(dy).
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In order to give the meaning to B,dt, we write the above SPDIEs in the following integral form:

2
u(t,x) = h(x) +/[T BUZ(X)?);(S’ X) +/Ru1(s, X, y)v(dy) +a’%(s, X) +f(s, u(s, X),G(X)%Z(s, X),
. T ou .
w® s, x)}?flﬂ ds + / g(s, u(s, x), a(x)&(s, x), (u? (s, 0}, )dB;. (4)

?u is bounded by a polynomial function of x, uniformly in t. Then we have

Suppose that u is @12 function such that % and 73
the following:

Theorem 6. The unique adapted solution of (2) is given by
Y, =u(t, L),
du
Uy = o(Ly) ™ (t, L),
X

20 = [t ypovd, iz2
R

9 3
20 = [ W L p V() + 5 (6 L) ( / yzv(dy)) .

Proof. Applying Ito formula to u(s, Ls), we obtain
T 9 1 (T 92
u(r i) —u 1) = [ S Lods+ 5 [ w26 Lds
¢ 0s 2 J; ox?
T 0 T 9
+ [ oy aaw+ [ S Lo
t ox t ox

du
L) — , L) — — (s, L;_)AL].
+[<ZL<:T[U(S, ) —u(s, L) o (s, Li-) AL]
Lemma 5 applied to u(s, Ls_ +y) — u(s, Ls_) — g—;‘(s, L;_)y shows

ou
t;T[u(s, L) —u(s, L) — a(s, L)AL
(6)

= i/{r (/R u'(s, Ls—vY)Pi(y)V(dy)) dH? + /{T/Rul(s, L, y)v(dy)ds.

i=1

Note that

1
2
L=Y" +EL, = (/ y2v(dy)> HY + tELy, (7)
R

where ELy = a + [;,=1, yv(dy).
Hence, substituting (6) and (7) into (5) yields

Tl o 1 hZ d
W) —u(e, 1) = [ | S, L0) + 502 W s 6.1 +ag (L) + [ yv(dy)
¢ s 2 ox ox {yl=1}

+[ue Ls_,y>v<dy)} s+ | Tt 2 s L)aw, + | ' [Lﬂ(s, L, y)Pr()V(dy)

From which we get the desired result of the theorem. O

Next, we give a example of SPDIEs.

Example 7. Assume that v(dx) = > °; a;é4 (dx), where 8,(dx) denotes the positive mass measure at §; € R of size 1.
Furthermore, we assume that °; a;|8;|> < occ. Then, the process L can be written as L, = [y o/(L;)dW; +at+ ¥, (Nf’) —ajt),
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where {N?}%, is a sequence of independent Poisson processes with parameters {«;}>°;. Recall that H“) > ’Bfl (N(” 1t)
and Hg') =0, i > 2(see[9]). Let (Y, U, Z) be the unique solution of the following BDSDEs:
T T T 0 AT )
Yo = h(Ly) + / £(5, Yoo, Uy, Z)ds + / g(s, Yo, Uy, Z,)dB, — f Udw, — Y. / 204N — ).
t t t i=1 7t
Then
Y, = u(t, Lr)
U = O'(Lt) (t L),
& du
zV = aqu' (¢, L, B)p1(B1) + (Za B ) 2 (G L),
i=1
Z = o (6, L, BOPIB), 122,
where u is the solution of the following SPDIEs:
(t X) + a(x) (t x)—}—Za,u (txﬂ)+a (t,x)
+f (v ute0, 000 2 6., X(r, 0) (8)
+g<t u(t, %), a(x) (r %), Z(t, x)) Bdt =0
u(T, x) = h(x).
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