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Orthogonal frequency division multiplexing (OFDM) has been widely adopted for high data rate wireless transmissions. By
deploying multiple receiving antennas, single-input multiple-output- (SIMO-) OFDM can further enhance the performance with
spatial diversity. However, due to the large dynamic range of OFDM signals and the nonlinear nature of analog components,
it is pragmatic to model the transmitter with a peak-power constraint. A natural question to ask is whether SIMO-OFDM
transmissions can still enjoy the antenna diversity in this case. In this paper, the effect of the peak-power limit on the error
performance of uncoded SIMO-OFDM systems is studied. In the case that the receiver has no information about the transmitter
nonlinearity, we show that full antenna diversity can still be collected by carefully designing the transmitters, while the receiver
performs a maximum ratio combining (MRC) method which is implemented the same as that in the average power constrained
case. On the other hand, when the receiver has perfect knowledge of the peak-power-limited transmitter nonlinearity, zero-forcing
(ZF) equalizer is able to collect full antenna diversity. In addition, an iterative method on joint MRC and clipping mitigation is
proposed to achieve high performance with low complexity.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) has
been adopted by various modern communication standards
because of its high spectral efficiency and low complexity in
combating frequency-selective fading effects [1, 2]. Equipped
with multiple antennas, OFDM systems can further enhance
the performance by collecting spatial diversity [3]. Thus,
multiple-input multiple-output (MIMO) OFDM transmis-
sion has been adopted by several communication standards
and becomes a strong candidate for future cellular systems
[4].

However, OFDM experiences certain implementation
challenges due to the large dynamic range of its signal
waveforms, which is usually measured by the peak-to-
average power ratio (PAR) [5]. Large PAR values may lead
to low power efficiency or severe nonlinear distortions which
decrease system performance. It is possible to back-off (i.e.,

scale down) the waveform so that distortions are less likely,
but this comes at the cost of the reduced transmission
power efficiency. Conversely, although the signal power can
be boosted by reducing the amount of back-off, nonlinear
distortions will inevitably be increased. Power efficiency and
nonlinear distortions are thus conflicting metrics that must
be balanced. There has been extensive research on improv-
ing the transmission power efficiency with constraints on
nonlinear distortions in single-input single-output (SISO)
OFDM channels (see e.g., [6]).

In light of the power efficiency and nonlinear distortion
considerations, the error performance of OFDM systems
with peak-power-limited power amplifier (PA) should be
investigated. To quantify the error performance of wireless
transmissions over fading channels, two parameters are
usually used: diversity order and coding gain (see e.g., [7, 8]).
The diversity order describes how fast the error probability
decays with signal-to-noise ratio (SNR), while the coding
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gain measures the error performance gap among different
schemes when they have the same diversity. Thus, diversity-
enabled transceivers have well-appreciated merits. For single-
antenna OFDM systems with clipping at the transmitter, the
approximated symbol error rate (SER) has been derived for
maximum-likelihood sequence detection (MLSD) [9]. The
results show that the clipping nonlinearity leads to a certain
(may not be full) multipath diversity order over frequency-
selective Rayleigh fading channels. However, MLSD requires
near exponential complexity to collect some diversity gain.
When the number of subcarriers is large which is usually
the case in current standards, the complexity of MLSD
is prohibitive. In such a case, the OFDM system loses
its advantage as a simple equalizer which may reduce its
practical applicability.

In this paper, we are interested in low-complexity dive-
rsity-enabled transceiver design over peak-power-limited
channels. Instead of the multipath diversity, we focus on
the antenna diversity from multiple antennas deployed at
the receiver (i.e., single-input multiple-output (SIMO) chan-
nels). When OFDM signals are linearly transmitted, linear
equalizers are sufficient to collect the antenna diversity by
optimally combining the multiple faded replicas of the same
information bearing signal [10, 11]. However, to the best of
our knowledge, the question of whether and how the peak-
power-limited SIMO-OFDM system can still enjoy antenna
diversity with linear equalizers has not been addressed in
the literature. A few iterative methods to reconstruct the
clipped OFDM signals in multiple-antenna systems have
been proposed in [12–14] based on the assumption that the
receiver knows the transmitter nonlinearity. However, the
diversity gain has not been quantitatively analyzed.

This paper focuses on error performance analysis for
SIMO-OFDM systems over peak-power-limited channels.
Several low-complexity transceiver designs are proposed to
collect the antenna diversity and near maximum-likelihood
(ML) SER performance is achieved.

The rest of the paper is organized as follows. The OFDM
system and SIMO channel models are described in Section 2.
In Section 3, the diversity combining methods for linear
SIMO channels are briefly reviewed. The transceiver designs
over the peak-power-limited SIMO channels are mainly
discussed in Sections 4 and 5 based on different a priori
information requirements. Numerical results are shown in
Section 6. Finally, conclusions are drawn in Section 7.

Notation. Throughout this paper, we use lower-case and
upper-case bold face letters for column vectors and matrices,
respectively. Their elements are denoted in italic with
subindices. ∗ denotes conjugate, T transpose, and H Hermi-
tian. Let blackboard bold letters represent number sets, then
Am×n stands for an m× n matrix whose elements belong to a
number set A. In particular, we use C to represent the set of
all complex numbers. ‖x‖� stands for the �th norm of vector
x. 0l is an l-by-1 vector with all zero entries and Il×l is an l-
by-l identity matrix. diag(x) denotes a diagonal matrix with
vector x on its diagonal and tr(·) stands for the trace of a
matrix. Additionally, Ex[·] is used for the expectation over a
random variable x.

2. SystemModel

In an uncoded OFDM system, data are transmitted on
N orthogonal subcarriers. The frequency-domain OFDM
symbols are denoted as s = [s0, . . . , sN−1]T ∈ SN×1 where
sk’s are drawn from an ideal constellation S. For notational
simplicity, equal power allocation among subcarriers is
assumed in this paper, but the proposed methods can
be generalized with minor modifications. Prior to cyclic
extension (which does not impact the signal dynamic range
[5]), the L-times oversampled time-domain waveform can be
obtained from the LN-point inverse fast Fourier transform
(IFFT) operation, that is, (c.f. [5])

x = [x0, . . . , xLN−1]T = FHs ∈ CLN×1, (1)

where F is the N × LN oversampling FFT matrix formed
by retaining only the first N rows of a full FFT matrix
whose (m + 1,n + 1)th entry is (1/

√
LN)e− j2πmn/(LN) . Since

this FFT operation is unitary, we have Es[(1/N)‖s‖2
2] =

Ex[(1/LN)‖x‖2
2] � σ2

s .
To characterize the dynamic range of the OFDM signal,

the peak-to-average power ratio (PAR) for each OFDM
symbol is defined as

PAR(x) = ‖x‖2
∞

(1/LN)‖x‖2
2

. (2)

There is a peak-power-limited PA with output peak-
power limit Ppeak before the signal is transmitted. Here we
assume an ideal linear class-A PA, which implies that the
time-domain output signal yn = g(xn) is characterized by
[5, Chapter 3]

yn = g(xn) =

⎧
⎪⎨

⎪⎩

xn, |xn| ≤
√

Ppeak,
√

Ppeake j∠xn , |xn| >
√

Ppeak,
(3)

where ∠x denotes the phase of a complex variable x. Without
loss of generality, unit gain is assumed for the PA linear
region. The input back-off (IBO) is defined as IBO =
Ppeak/σ2

s . Clipping occurs when PAR(x) > IBO.
The frequency-domain symbol corresponding

to the in-band subcarriers can be obtained from
y = [y0, . . . , yLN−1]T � g(x) as

s = Fy. (4)

Notice that, by digital clipping and filtering methods, out-
of-band spectral regrowth can be constrained according to
certain spectral mask or totally eliminated [15, 16]. In this
case, the following analysis still holds valid and the proposed
methods can be modified accordingly by treating the clipping
and filtering as a deterministic nonlinear process.

The receiver is equipped with Nr uncorrelated receiving
antennas. After removing the cyclic extension and per-
forming the FFT, the received signal in frequency-selective
Rayleigh fading channels is

r =
[

rT1 , . . . , rTNr

]T = Hs + w, (5)
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where ri denotes the OFDM symbol received on the ith
antenna. H = [H1, . . . , HNr ]

T , Hi = diag([Hi,0, . . . ,Hi,N−1]),
and Hi,k (0 ≤ k ≤ N − 1) is the channel frequency response
of the kth in-band subcarrier on the ith receiving antenna.

In addition, w = [wT
1 , . . . , wT

Nr
]
T

and wi = [wi,0, . . . ,wi,N−1]T

where wi,k (0 ≤ k ≤ N − 1) consists of the circularly complex
white Gaussian noise with variance σ2

w.
In this paper, we study the symbol error rate (SER) in

peak-power-limited SIMO fading channels. First, we give
some definitions.

Definition 1 (PSNR). For the peak-power-limited PA, the
peak-signal-to-noise ratio (PSNR) is used to compare the PA
power consumption and the channel noise level, that is,

PSNR = Ppeak

σ2
w
= IBO · σ

2
s

σ2
w

, (6)

which is the product of IBO and the usual average signal-to-
noise ratio (SNR), that is, SNR = σ2

s /σ
2
w.

Definition 2 (Diversity gain). Suppose that Ps(PSNR) is the
average SER for a certain peak-power-limited system as a
function of PSNR. We define the diversity gain Gd as

Gd = lim
PSNR→∞

− logPs(PSNR)
log PSNR

. (7)

Unlike linear channels, the SER and the diversity gain are
defined in terms of PSNR in peak-power-limited channels.
For certain transmitters with a given Ppeak, the diversity gain
describes how fast the SER decays with decreasing channel
noise power.

3. Diversity Combining in Linear
SIMOChannels

For linear SIMO channels, several diversity combining
techniques are available to achieve the antenna diversity [10],
for example, maximal ratio combining (MRC) and selective
combining (SC). Before discussing the peak-power-limited
case, we briefly review the MRC method for the linear SIMO-
OFDM channel.

Suppose that the receiver has perfect channel knowledge.
Without the peak-power limit, the received signal of (5)
becomes r = Hs+w. The MRC method chooses the NrN×N
coefficient matrix C = [c0, . . . , cN−1] to combine the received
signal, where ck ∈ CNrN×1 is the kth column of C. The
estimate of s is thus given as

s̃ = CTHs + CTw. (8)

To maximize the postprocessing (received) SNR for an
uncoded OFDM system, the optimal weights can be shown
as [10]

ck =
h∗k

hH
k hk

, (9)

where hk is the kth column of H, that is, H = [h0, . . . , hN−1].
The corresponding received SNR is hH

k hkSNR. In the end,

the decision ŝ is obtained by hard decoding on s̃, denoted
as ŝ = 〈s̃〉.

Therefore, for uncoded SIMO-OFDM, MRC is essen-
tially the zero-forcing (ZF) and also the maximum-
likelihood (ML) equalizer in the linear SIMO channel with
Gaussian noise, that is, CT = H† where H† = (HHH)

−1
HH

is the Moore-Penrose pseudo-inverse of H [17]. When an M-
ary QAM constellation is used, the average SER over SIMO
Rayleigh fading channels is [18]

Ps(SNR) = 4
√
M − 4√
M

(
1− μ

2

)Nr Nr−1∑

i=0

(Nr − 1 + i)!
i!(Nr − 1)!

(
1 + μ

2

)i

,

(10)

where μ = (1 + 2(M − 1)/3SNR)−1/2. It is ready to show that

lim
SNR→∞

− logPs(SNR)
log SNR

= Nr , (11)

that is, MRC collects full antenna diversity. From the existing
literature, however, it is not clear yet whether (and if so, how)
full antenna diversity can be achieved in the presence of the
peak-power constraint. We address this open question in the
following sections.

4. Transparent Receivers: A Statistical Model

By “transparent” we mean that the receivers have no
information about the transmitter nonlinearities. In this
case, no receiver-side cooperation is expected. The nonlinear
distortion noise has to be dealt with in the same way as
the uncorrelated Gaussian channel noise. Therefore, the
following statistical model is introduced at first to quantify
the clipping noise.

Definition 3 (Statistical model). According to Bussgang’s
theorem [19], the clipped waveform yn in (3) can be
decomposed into a linear term αxn plus a statistically
uncorrelated distortion term un, that is,

yn = αxn + un, (12)

where α = E[x∗n yn]/E[|xn|2] is chosen so that the signal xn
and the nonlinear distortion noise un are uncorrelated, that
is, E[x∗n un] = 0. Because clipping causes |yn| ≤ |xn|, we have
|α| ≤ 1 and thus the effective signal power is reduced. The
distortion noise power is σ2

u = E[|yn|2] − |α|2E[|xn|2]. The
received frequency-domain symbol is thus given by

r = H′s + Hv + w, (13)

where H′ = αH is the equivalent channel frequency response.
The frequency-domain nonlinear distortion noise can be
found as v = Fu with power σ2

v � E[(1/N)‖v‖2
2] =

E[(1/LN)‖u‖2
2] = σ2

u .

In the presence of distortion noise, signal-to-noise-and-
distortion ratio (SNDR) should be used to incorporate
both the signal power attenuation and nonlinear distortions,
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and characterize the overall SER performance in the given
channel [20]. Based on the statistical model, the post-
processing SNDR of the kth subcarrier is given as

SNDRk =
|α|2

∣
∣
∣cTk hk

∣
∣
∣

2
σ2
s

∣
∣
∣cTk hk

∣
∣
∣

2
σ2
v + cHk ckσ2

w

, k ∈ {0, . . . ,N − 1}.

(14)

To maximize the SNDR, the MRC weights are given in the
following proposition.

Proposition 1. For transparent receivers that have no infor-
mation about the transmitter nonlinearity, the optimal MRC
weights are given by C whose kth column is ck = h′∗k /h

′H
k h′k,

where h′k = αhk (k ∈ {0, . . . ,N − 1}).

Proof. See Appendix A.

At first, it appears that the transparent receiver has to
know α in order to acquire C, which is inconsistent with
the “transparent” definition. In fact, for OFDM systems with
embedded pilot subcarriers, since the pilot signals are also
attenuated by α, H′ = αH is the effective channel response
which is acquired by channel estimation at the receiver.
Therefore, transparent receivers do not need to know α
aforehand and the SNDR-maximizing combining weights
can be used to achieve the best error performance.

Unlike the linear case, using the optimal MRC weights
at the receiver may not guarantee full antenna diversity. The
necessary and sufficient condition for achieving the antenna
diversity gain with transparent receivers is given as follows.

Proposition 2. For OFDM transmitters with a fixed peak-
power limit, the transparent receiver is able to achieve full
antenna diversity if and only if the distortion noise vanishes as
the PSNR increases.

Proof. See Appendix B.

Proposition 2 demonstrates that the distortions at the
transmitter have to be controlled in order to achieve the
antenna diversity with transparent receivers. The corre-
sponding system diagram is shown in Figure 1(a). In the
following, we give some examples to illustrate the design
of the diversity-enabled peak-power-limited OFDM trans-
mitter. The performance will be verified by simulations in
Section 6.

Example 1 (Constant clipping). When a constant IBO is
maintained, clipping occurs if the PAR of an OFDM symbol
exceeds the IBO. It implies that |α| < 1 and σ2

v > 0 for the
statistical model in (12). Therefore, no antenna diversity can
be achieved with transparent receivers. In fact, as indicated
in Appendix B, error floor should be observed.

Example 2 (Piece-wise linear scaling). The piece-wise linear
scaling (PWLS) method is a simple way to guarantee that no
distortion happens with the soft-limiter PA [21]. It is realized

s ŝOFDM
mod.

Distortion
cotroller

PA ...
MRC

OFDM
demod.

(a) The system structure with transparent receivers

ŝs OFDM
mod. PA ...

OFDM
demod.

Receiver-side
cooperation

(b) The system structure with receiver-side cooperations

Figure 1: Transceiver block diagrams.

by multiplying a symbol-wise gain to each OFDM symbol
before passing it to the PA, namely,

x =
√

Ppeak

‖x‖∞
x. (15)

Because |xn|2 ≤ Ppeak so that clipping never occurs, we have

g(x) = x and s = (
√

Ppeak/‖x‖∞)s in (3) and (4). The
symbol-wise gain will not affect the demodulation because
it is essentially a part of the channel and can be recovered by
receivers with pilot-aided channel estimation.

Proposition 2 indicates that full antenna diversity can be
achieved with PWLS. Owing to the linear transmission, the
postprocessing SNDR becomes

SNDRk = hH
k hk

E
[(

Ppeak/‖x‖2
∞
)

|sk|2
]

σ2
w

= hH
k hk

PpeakE
[

‖x‖2
2/LN‖x‖2

∞
]

σ2
w

= hH
k hk · PSNR · E

[

PAR(x)−1
]

,

(16)

which is inversely proportional to the harmonic mean of
the PAR. Still, low power efficiency and small coding gain
may result due to the large PAR of OFDM signals. A
number of distortionless methods have been proposed to
reduce the PAR of OFDM signals, for example, coding [22],
selected mapping [23], and tone reservation [5]. They can
be combined with PWLS and improve the coding gain at the
cost of implementation complexity, spectral efficiency and/or
receiver-side cooperation.

Example 3 (Optimal clipping). When the PSNR is known
at the transmitter, an optimal amount of clipping distortion
can be methodically introduced to improve the error perfor-
mance for transparent receivers [20, 24].
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Instead of the original OFDM waveform, the following
signal is input to the PA:

xn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√

Ppeak

ησs
xn,

|xn|
σs

< η,
√

Ppeake j∠xn ,
|xn|
σs

≥ η,

(17)

where η ≥ 0 is called the clipping threshold [24]. Because
|xn|2 ≤ Ppeak, the PA output has y = x. Accordingly, the
Bussgang parameters α and σ2

v in (12) can be numerically
determined for different η’s. Then, the postprocessing SNDR
for the optimal clipping can be found as

SNDRk =
hH
k hk|α|2Ppeak

η2hH
k hkσ2

v + η2σ2
w

. (18)

If the channel noise level σ2
w (or PSNR) is known

at the transmitter, the optimal clipping threshold can be
determined to minimize the average SER, that is,

η◦ = arg min
η

N−1∑

k=0

Ehk

[
p(SNDRk)

]
, (19)

where p(SNDRk) ≈ ((4
√
M−4)/

√
M)Q(

√
3SNDRk/(M−1))

is the SER for M-ary QAM constellations and Q(x) =
erfc(x/

√
2)/2 [7, page 278]. When the OFDM waveform is

approximated as a complex Gaussian random variable, a
numerical method to solve for η◦ can be found in [24].

Unlike PWLS which is trying to avoid any clipping, the
optimum clipping method maximizes the SNDR in (18)
for a given PSNR. In the high PSNR region, a large η◦ is
yielded in which case |α| → 1 and σ2

v → 0 [24]. Thus,
full antenna diversity is sustained according to Proposition 2.
On the other hand, in the low PSNR region, some distortion
is introduced to achieve a more desired tradeoff with the
increase in signal power so that the error performance
is optimized. Therefore, the optimal clipping method can
achieve a better coding gain while maintaining the full
antenna diversity for transparent receivers.

5. Transmitter Nonlinearity Known at the
Receiver: A Deterministic Model

Instead of a random process, the clipping distortion, based
on the PA model in (3), is a deterministic function of
the data. When the receiver knows or estimates a priori
the transmitter nonlinearity, it can exploit the deterministic
nature of the clipping process for better performance [25]. In
this case, receiver-side cooperation can be adopted to achieve
antenna diversity with nondiminishing distortion noise at
the transmitter. The corresponding system diagram is given
in Figure 1(b).

In order to design the receiver-side cooperation, we first
establish a deterministic model to characterize the clipping
process.

Definition 4 (Deterministic model). After clipping, the
frequency-domain OFDM symbol in (4) can be represented
by the following deterministic matrix operation [25, 26]

s = FΛFHs = s + d, (20)

where

Λ = diag

⎛

⎝

⎡

⎣min

⎛

⎝

√

Ppeak

|x0|
, 1

⎞

⎠, . . . , min

⎛

⎝

√

Ppeak

|xLN−1|
, 1

⎞

⎠

⎤

⎦

⎞

⎠

(21)

is the function of s and d = F(g(x) − x) is the frequency-
domain representation of the deterministic clipping noise.

As proven in [9, 27], when IBO ≥ 3π(
√
M − 3)

2
/8(M −

1) for M-ary QAM (M ≥ 16) and when the MLSD
receiver is used, clipping the Nyquist-sampling OFDM signal
only causes a constant SNR loss on the SER performance.
Therefore, with constant clipping, the effective transmit SNR
becomes SNR ≈ Δ(IBO)PSNR/IBO, where Δ(IBO) ≈ 1 −
e−IBO + (1/2)IBO

∫∞
IBO e−t/t dt ≤ 1 . Plugging this effective

SNR into (10), the average SER of MLSD in flat Rayleigh
fading SIMO channels is given by

PMLSD(PSNR, IBO) ≈ Ps

(
Δ(IBO) · PSNR

IBO

)

. (22)

Although clipping was also shown to enable certain mul-
tipath diversity in frequency-selective fading channels [9],
we focus on antenna diversity in this paper. In addition,
the SER performance for clipping and filtering oversampled
OFDM signals was shown to be well approximated by
that of the Nyquist sampling in SISO fading channels [9].
This approximation remains for the SIMO channel case.
Therefore, the average SER for general SIMO fading channels
can be approximated by (22), which is referred as the MLSD
bound in accordance with [9]. Again, full antenna diversity
can be verified similar to (B.4) in Appendix B.

However, MLSD receivers have exponential complexity,
which is not practical for implementations especially for
a large number of subcarriers. Instead, linear equalizers
are usually used as low-complexity solutions, but do not
necessarily offer the same diversity gains as MLSD [17]. For
the received signal in (5), if Λ is known at the receiver, the ZF
equalizer is given as

s̃zf =H†r = s + H†w, (23)

where H = HFΛFH . In the following, we first quantify
the diversity order collected by the ZF equalizer when Λ is
known. Then, an iterative method will be proposed to jointly
estimate both Λ and s and realize the ZF equalizer in the
absence of a priori knowledge about Λ.

Proposition 3. For clipped OFDM signals transmitted
through SIMO fading channels with Nr receiving antennas, if
the receiver has perfect knowledge of the Λ given in (21), the
diversity order collected by the ZF equalizer is Nr .
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Proof. See Appendix C.

Proposition 3 states that ZF equalizers can achieve full
antenna diversity if the clipping-based matrix Λ is known
or can be estimated at the receiver. It also indicates that
in frequency-selective fading channels, ZF equalizers are not
able to collect any multipath diversity. It is the compromise
that low-complexity solutions have to make. The same fact
was previously observed in [9] without proof. It is also worth
mentioning that, unlike the linear case in Section 3, MRC is
no longer the same as the ZF equalizer in the presence of
clipping.

Although Λ is a function of the data s and cannot be
known a priori at the receiver, the following recursive method
can jointly estimate Λ and s. The transmitter peak-power
limit Ppeak is assumed available at the receiver. Based on
decision feedback, the proposed iterative method can be
summarized in three steps:

ŝ(q) =
〈(

HFΛ̂
(q−1)

FH
)†

r

〉

, (24)

x̂(q) = FH ŝ(q), (25)

Λ̂
(q) = diag

⎛

⎝

⎡

⎣min

⎛

⎝

√

Ppeak
∣
∣
∣x̂

(q)
0

∣
∣
∣

, 1

⎞

⎠, . . . , min

⎛

⎝

√

Ppeak
∣
∣
∣x̂

(q)
LN−1

∣
∣
∣

, 1

⎞

⎠

⎤

⎦

⎞

⎠,

(26)

where ̂ denotes the estimate for the corresponding variable
and the superscript (·)(q) stands for the iteration index. As

the initialization, Λ̂
(0) = ILN×LN .

Calculating the pseudoinverse in (24) may require high
computational complexity, but it can be further simplified as

(HFΛFH)
† = (FΛFH)

−1
H†, where H† = CT (i.e., the MRC

weights), because of the full column ranks of FΛFH and H
[28]. Moreover, the inverse of FΛFH can be avoided because

(

FΛFH
)−1 = I− F(Λ− I)FH

(

FΛFH
)−1

. (27)

In each iteration, the estimate of s can be recursively updated
as

ŝ(q) =
〈

H†r− F
(

Λ̂
(q−1) − I

)

FH ŝ(q−1)
 

. (28)

Further, because F(Λ − I)FHs = d, the clipping noise can

be estimated (i.e., d̂ = F(g(x̂) − x̂)) to avoid the FFT, IFFT,

and matrix inverse operations for (FΛFH)
−1

. Therefore, the
iterative method in (31) is equivalent to the following low-

complexity method, starting with q = 1 and d̂(0) = 0N :

ŝ(q) =
〈

CTr− d̂(q−1)
〉

, (29)

x̂(q) = FH ŝ(q), (30)

d̂(q) = F
(

g
(

x̂(q)
)

− x̂(q)
)

. (31)

We refer to it as the joint MRC and clipping mitiga-
tion method. Its complexity is dominated by one pair of

FFT/IFFT operations per iteration and on the order of
O(N logN).

The mean square error (MSE) of the estimate of d̂(q) can
be defined as

MSE
(q)
d = E

[∥
∥
∥d− d̂(q)

∥
∥
∥

2

2

]

. (32)

MSE
(q)
d is decreasing quickly, especially in the high PSNR

region, which will be shown in Section 6. As a result, the
joint estimation method can empirically approach the ideal
case of ZF equalizers. Acting as the receiver-side cooperation
as plotted in Figure 1(b), it can collect full antenna diversity
with constant clipping at the transmitter.

Two more remarks about the use of the joint MRC and
clipping mitigation method are now in order.

Remark 1. The smaller the IBO, the larger the ratio
PSNR/IBO for a fixed PSNR. Meanwhile, however, Δ(IBO)
in (22) decreases along with the decrease of IBO. Therefore,
an optimal IBO exists with respect to the SER performance,
which can be found as

IBO◦|PSNR = arg min
IBO

Psim(PSNR | IBO,Nr), (33)

where Psim(·) denotes the simulated average SER perfor-
mance for the joint MRC and clipping mitigation method.

Remark 2. The proposed method can be regarded as an
extension to the iterative quasi-ML clipping estimation
method [29], which was designed for SISO-OFDM systems.
However, the quasi-ML clipping estimation method provides
poor error performance in fading channels, which will be
shown in Section 6. The main reason is that the subcarriers
with deep fadings will have low received SNR and large error
probabilities. The clipping estimation then propagates the
errors and yields degraded estimation for both clipping noise
and data. In SIMO fading channels, multiple receptions over
independently faded channels not only provide the diversity
gain for the data error performance, but also achieve better
estimation for the clipping noise. The proposed joint MRC
and clipping mitigation method thus exploits this benefit. In
Section 6, we will show that the SER performance gets close
to the MLSD bound within five iterations even for very small
IBOs.

In summary, the proposed joint MRC and clipping
mitigation method can provide the near-MLSD error per-
formance. It requires the knowledge about the transmitter
nonlinearity as well as receiver-side modifications. Com-
pared with the transparent receiver, the extra complexity
is on the order of O(N logN), which is far less than the
complexity of MLSD. From the transmitter perspective,
the joint MRC and clipping mitigation method has lower
complexity than PWLS and optimal clipping schemes. In
addition, it can achieve better coding gain, which will be
shown in the following section.
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Figure 2: The SER versus PSNR curves for the constant clipping
(IBO = 1.3 dB), PWLS, optimal clipping, joint MRC and clipping
mitigation (with the optimal IBO◦ = 1.3 dB and five iterations)
schemes, as well as the assumed ideal case with IBO = 0 dB but
no clipping. Nr = 2.

6. Simulation Results

For all simulations in this section, the uncoded OFDM
system has N = 512 subcarriers and uses 16-QAM modu-
lation. Unless otherwise specified, frequency-selective Ray-
leigh fading channel with two taps and Nr = 2 receiving
antennas are assumed. Since the antenna diversity is focused
in this paper, the results are independent with the number
of channel taps as long as the total average gain of these
taps stays the same. In addition, ideal channel estimation is
assumed so that H is known at the receivers.

In Figure 2, the SER versus PSNR curves are plotted for
the proposed transceivers in the peak-power-limited SIMO-
OFDM channel.

First, the ideal case with IBO = 0 dB but linear PA
(i.e., no clipping, thus E[|yn|2] = Ppeak and Δ(IBO) =
1) is plotted as a benchmark in Figure 2. Although only
constant-envelope modulations (rather than OFDM) may
actually achieve this error performance in practice, it gives
an SER lower bound for this channel. For OFDM, by setting
σ2
s = Ppeak and assuming no clipping happens, Monte Carlo

simulation gives the SER curve for this ideal case. The curve
agrees well with the theoretical MLSD bound in (22) with
IBO = 0 dB and Δ(IBO) = 1.

Using the transparent receivers with the MRC weights
given in Proposition 1, three transmitter schemes are also
compared in Figure 2, namely, the constant clipping, the
PWLS, and the optimal clipping approaches. As expected
in Section 4, no antenna diversity can be obtained with
the constant clipping method. In fact, the SER reaches an

10−4

10−3

10−2

10−1

100

101

M
SE

(q
)

d

0 1 2 3 4

Number of iterations (q)

Joint MRC and ClipMiti
Separate ClipMiti and MRC
L = 1, PSNR = 30 dB
L = 4, PSNR = 30 dB
L = 1, PSNR = 40 dB
L = 4, PSNR = 40 dB

Figure 3: MSE
(q)
d versus the number of iterations (q) for the

joint MRC and clipping mitigation methods. The corresponding
MSE curves of separately using clipping mitigation [29] and MRC
methods are also plotted for comparison. IBO = 1 dB, Nr = 2, the
oversampling ratio L = 1 or 4, and PSNR = 30 dB or 40 dB.

error floor that is determined by the clipping threshold. The
PWLS-based transceiver can provide full antenna diversity
but poor coding gain. Compared to the case with ideal

linear PA, the PSNR degradation (E[PAR−1])
−1

is more than
9 dB in the simulated system, as shown in Figure 2. On the
other hand, the optimal clipping method achieves about 3 dB
coding gain better than PWLS.

For the iterative method of (31), the MSE curves for
the estimate of d (i.e., (32)) are plotted in Figure 3. The
cases with PSNR = 30 dB and 40 dB as well as two
oversampling ratios (L = 1 and 4) are examined. The
results illustrate that the MSE decreases quickly along with
iterations, especially at high PSNR. For comparison, the
corresponding MSE curves are plotted when the SISO
iterative clipping mitigation method [29] is adopted on
one of the antennas and the combining technique is used
subsequently. It demonstrates that the benefit of multiple
receiving antennas can be exploited to improve the clipping
noise estimation performance. In Figure 4, the joint MRC
and clipping mitigation method is illustrated to achieve near-
MLSD SER performance within five iterations for both the
Nyquist-rate and oversampled (L = 4) OFDM signals. It also
works well for more than 2 receiving antennas as shown in
Figure 5. In contrast, if the SISO iterative clipping mitigation
method [29] and MRC are used separately, the antenna
diversity cannot be collected even after 100 iterations.

As mentioned in (33), the optimal IBO◦ can be deter-
mined to achieve the best SER for the joint MRC and
clipping mitigation method. Some numerical results of the
SER versus IBO curves are given for different PSNR values
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Figure 4: SER performance of the joint MRC and clipping mitigation method for both the Nyquist-rate and oversampling OFDM system.
The SER curves of the ideal linear PA and the MLSD bound in (22) with IBO = 1 dB are also shown for comparison. Nr = 2.
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Figure 5: The SER versus PSNR curves for different numbers of receiving antennas Nr = 2, 3, or 4. The proposed joint MRC and clipping
mitigation method achieves a near-MLSD SER within five iterations. But separately using clipping mitigation [29] and MRC cannot collect
full antenna diversity even after 100 iterations. IBO = 1 dB.

and numbers of antennas in Figure 6. The optimal IBO is
found to remain about the same for different numbers of
antennas. In addition, since diversity gain is achieved, IBO◦ is
generally independent with the PSNR. For example, IBO◦ ≈
1.3 dB can be found for Nr = 2, 3, and 4 receiving antennas.
With IBO◦ = 1.3 dB and five iterations, the SER curve for the
joint MRC and clipping mitigation method is plotted back
into Figure 2 and shown to outperform the other approaches.

7. Conclusion

In this paper, we have examined the antenna diversity gain
in the peak-power-limited SIMO-OFDM system. The main
conclusion is that full antenna diversity can be achieved
for the transparent receiver by intelligently choosing the
transmission method: PWLS and optimal clipping achieve
diversity, while a constant back-off clipping does not. To
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Figure 6: For PSNR = 20 dB or 30 dB, the SER versus IBO curves
for the joint MRC and clipping mitigation method with Nr =2, 3,
or 4 receiving antennas and 5 iterations.

achieve full antenna diversity, the MRC coefficients are
derived for the peak-power-limited channel and can be
obtained in the same way with those in the average-power-
constrained linear channel. Additionally, we showed that for
systems where the receiver has perfect knowledge of the
transmitter nonlinearity, antenna diversity can be achieved
with low-complexity linear equalizers. The joint MRC and
clipping mitigation method is also proposed to employ the
multiple antennas to better estimate both the clipping noise
and the data. To extend the results to coded multiantenna
OFDM systems is a part of our future work.

Appendices

A. Proof of Proposition 1

The optimal MRC weights suffice to maximize the SNDR in
(14). Taking the first-order derivative of SNDRk with respect
to ck and setting it to zero, we obtain

∂

∂ck
SNDRk =

(

cTk h′k
)∗

σ2
s h′k

∣
∣
∣cTk hk

∣
∣
∣

2
σ2
v + cHk ckσ2

w

−

∣
∣
∣cTk h′k

∣
∣
∣

2
σ2
s

((

cTk hk

)∗
σ2
v hk + c∗k σ

2
w

)

(∣
∣
∣cTk hk

∣
∣
∣

2
σ2
v + cHk ckσ2

w

)2 = 0.

(A.1)

Recall that h′k = αhk. After some basic algebraic manipula-
tions, (A.1) leads to

cTk h′kc∗k = cHk ckh′k. (A.2)

Obviously, ck = h′∗k /h
′H
k h′k = h∗k /αhH

k hk satisfies (A.2). In
addition, these weights are channel-normalizing (i.e., cTk h′k =
1) as well as orthogonal to the channels of other subcarriers
(i.e., cTk h′l = 0, for all k /= l). Therefore, C = [c0, . . . , cN−1]
with ck = h∗k /αhH

k hk gives the optimal MRC weights and the
transparent receiver can decode according to ŝ = 〈CTr〉.

B. Proof of Proposition 2

For transparent receivers, the SER performance is a
function of the SNDR. Therefore, a necessary condition to
achieve the diversity gain is that the postprocessing SNDR
goes to infinity along with the PSNR. With the optimal MRC
weights given in Proposition 1, the postprocessing SNDR
becomes

SNDRk =
hH
k hk|α|2σ2

s

hH
k hkσ2

v + σ2
w

. (B.1)

For a given peak-power limit Ppeak, increasing PSNR is
equivalent to decreasing the noise power σ2

w. From (B.1), we
have

lim
σ2
w→ 0

SNDRk = lim
σ2
w→ 0

|α|2σ2
s

σ2
v

. (B.2)

As mentioned in Section 4, |α| ≤ 1. In addition, σ2
s ≤ Ppeak.

Therefore, limσ2
w→ 0σ2

v = 0 is the necessary condition for the
limit of SNDR in (B.2) to go to infinity, as well as for the
transparent receiver to collect antenna diversity.

On the other hand, when limσ2
w→ 0σ2

v = 0, the limit of
SNDR becomes

lim
σ2
w→ 0

SNDRk = lim
σ2
w→ 0

hH
k hkSNR, (B.3)

which is the same as the postprocessing SNR of the linear
channel case in Section 3. Plugging the SER of Pe(PSNR) =
Ps(PSNR/IBO) into the diversity gain definition of (7), full
antenna diversity can be easily proved. For given Ppeak and
IBO, by referring to (11), we have

Gd = lim
PSNR→∞

− logPs(PSNR/IBO)
log PSNR

= lim
PSNR′ →∞

− logPs
(
PSNR′

)

log PSNR′ + log IBO
= Nr ,

(B.4)

where PSNR′ = PSNR/IBO.
Therefore, for a fixed Ppeak, the necessary and sufficient

condition for the transparent receiver to collect full antenna
diversity is that the distortion noise power vanishes as the
PSNR increases.
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C. Proof of Proposition 3

Suppose that the symbol transmitted on the kth subcar-
rier is sk, but at the receiver it is erroneously decoded as
s′k /= sk. The pairwise error probability is given as [30]

Pr
(

sk −→ s′k |H
)

= Q

⎛

⎜
⎝

√
√
√
√ |ek|2

2σ2
wΩkk

⎞

⎟
⎠, (C.1)

where ek = sk − s′k and Ωkk is the (k, k)th element of

Ω =
(

HHH
)−1 =

(

FΛFHHHHFΛFH
)−1

. (C.2)

Because the channel matrix H has full column rank with
probability 1 and Λ is a diagonal matrix with positive real
diagonal entries, we have Ω = Γ(HHH)

−1
ΓH , where Γ =

(FΛFH)
−1

is a nonsingular Hermitian and Toeplitz matrix.
Since HHH = diag([

∑Nr
i=1 |Hi,0|2, . . . ,

∑Nr
i=1 |Hi,N−1|2]), Ωkk

can be expressed as

Ωkk =
N−1∑

l=0

∣
∣Γk,l

∣
∣2

∑Nr
i=1

∣
∣Hi,l

∣
∣2 . (C.3)

Since Γ has full rank, {l | |Γk,l| /= 0} /=∅ for all k. Let p ∈
{l | |Γk,l| /= 0} and q = arg minl

∑Nr
i=1 |Hi,l|2. We have the

following inequalities

a

⎛

⎝

Nr∑

i=1

∣
∣
∣Hi,p

∣
∣
∣

2

⎞

⎠

−1

≤ Ωkk ≤ b

⎛

⎝

Nr∑

i=1

∣
∣
∣Hi,q

∣
∣
∣

2

⎞

⎠

−1

, (C.4)

where a � |Γk,p|2 and b � ∑N−1
l=0 |Γk,l|2. Therefore, the

bounds for the error probability are

Q

⎛

⎜
⎜
⎝

√
√
√
√
√
|ek|2

∑Nr
i=1

∣
∣
∣Hi,p

∣
∣
∣

2

2aσ2
w

⎞

⎟
⎟
⎠ ≤ Pr

(

sk −→ s′k |H
)

≤ Q

⎛

⎜
⎜
⎝

√
√
√
√
√
|ek|2

∑Nr
i=1

∣
∣
∣Hi,q

∣
∣
∣

2

2bσ2
w

⎞

⎟
⎟
⎠.

(C.5)

Because the channel responses are complex Gaussian
distributed,

∑Nr
i=1 |Hi,p|2 is a chi-squared random variable

with 2Nr degrees of freedom. Therefore, by averaging over
this random variable, the quantity on the left-hand side of
(C.5) obeys

EH

⎡

⎢
⎢
⎣Q

⎛

⎜
⎜
⎝

√
√
√
√
√
|ek|2

∑Nr
i=1

∣
∣
∣Hi,p

∣
∣
∣

2

2aσ2
w

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ ≥ β1(SNR)−Nr , (C.6)

where SNR = σ2
s /σ

2
w = ((M − 1)/6σ2

w)d2
min for M-ary QAM

constellations (dmin is the minimum Euclidean distance of

the constellation) and β1 is a constant that is independent
of the SNR. For the right-hand side (RHS) of (C.5), we have
[30, Lemma 1]

Pr

⎛

⎝

Nr∑

i=1

∣
∣
∣Hi,q

∣
∣
∣

2
< ξ

⎞

⎠ ≤ N
(
ξ

2

)Nr

, ∀ξ ≥ 0. (C.7)

Integrating the RHS of (C.5) over the channel response gives

EH

⎡

⎢
⎢
⎣Q

⎛

⎜
⎜
⎝

√
√
√
√
√
|ek|2

∑Nr
i=1

∣
∣
∣Hi,q

∣
∣
∣

2

2bσ2
w

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= EH

⎡

⎣
1
2

Pr

⎛

⎝

Nr∑

i=1

∣
∣
∣Hi,q

∣
∣
∣

2
<

2bσ2
wε2

|ek|2

⎞

⎠

⎤

⎦

≤ Eε

⎡

⎣
N

2

(
bσ2

wε2

d2
min

)Nr
⎤

⎦ = β2(SNR)−Nr ,

(C.8)

where ε is a Gaussian random variable with zero mean and
unit variance and β2 is a constant independent of the SNR.
Therefore, combining (C.5), (C.6), and (C.8), we infer

β1(SNR)−Nr ≤ Ps = EH

[

Pr
(

sk −→ s′k |H
)]

≤ β2(SNR)−Nr ,

(C.9)

which means the diversity order collected by the ZF equalizer
with known Λ is Nr .
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