CASE REPORT

Repair of Ruptured Giant Renal Artery Aneurysm with Kidney Salvage

T. L. Forbes∗, C. Z. Abraham and S. Pudupakkam

Division of Vascular Surgery, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada

Introduction

Renal artery aneurysms remain a relatively uncommon problem. The reported incidence has varied with the population described and ranges from 0.3% in patients undergoing angiography1 to 1% in patients being investigated for renal disease.2 Solitary giant renal artery aneurysms (at least 5 cm in diameter) are even more unusual with only eleven reported cases in the literature.3 To our knowledge there is only one previous published report describing treatment of a ruptured giant renal artery aneurysm and this resulted in nephrectomy.4 The following is a report of a male patient with a ruptured giant renal artery aneurysm and a congenital solitary kidney. Successful repair with renal salvage was achieved by aneurysm excision and primary arterial repair.

Case Report

A 75-year-old male presented with a sudden onset of left abdominal and flank discomfort and hypotension. He suffered from a long history of hypertension and an element of chronic renal failure which had been worsening over the last six months. He was known to have a congenital solitary left kidney. A subsequent CT scan revealed a contained rupture of a 6 cm solitary left renal artery aneurysm. The aneurysm appeared saccular with a calcified neck (Fig. 1) and was compressing the ureter resulting in significant hydronephrosis (Fig. 2).

At laparotomy a large left-sided haematoma was encountered extending to the midline. It was possible to explore the infrarenal aorta and to identify and clamp the origin of the left renal artery. The descending colon was reflected medially allowing visualisation of the anterior aspect of the left kidney, the collecting system, ureter, the renal vein and the large saccular aneurysm.

The aneurysm was located at the first branching of the main renal artery. With mobilisation of the renal vein and careful dissection of the hydroureter the proximal renal artery and the common origin of three branches exiting the aneurysm were identified. The

∗Please address all correspondence to: T. L. Forbes, Division of Vascular Surgery, London Health Sciences Centre, University of Western Ontario, 375 South Street, Suite N380, London, Ontario, Canada, N6A 4G5.

Fig. 1. CT scan of ruptured left renal artery aneurysm with large perinephric haematoma. Aorta is small and non-aneurysmal and neck of the aneurysm appears calcified (arrow).
Repair of Renal Artery Aneurysm

279

secondary to compression of the renal artery, an underlying renal artery stenosis or segmental parenchymal ischaemia due to microembolisation. Hydronephrosis from compression, as with this case, may contribute to renal dysfunction. Rupture outside of pregnancy is rare with an incidence as low as 5%.

Ruptured renal artery aneurysms are most often treated with nephrectomy. In the elective situation surgical intervention needs to be individualised for each patient depending on the extent and anatomy of the aneurysm. Endovascular techniques using stent grafts or coil embolisation are now possible. Bypass grafting, patch angioplasty and ex vivo reconstruction have also been used in the elective situation.

With this case all attempts were made to salvage the patient’s solitary kidney. This was achieved with excision of the neck of the saccular aneurysm and primary repair of the main renal artery. If primary repair had not been possible a short interposition of saphenous vein would have been chosen as an alternative. This case illustrates that kidney preservation is possible with a ruptured renal artery aneurysm and nephrectomy is not necessarily inevitable.

Fig. 2. CT reveals large noncalcified ruptured left renal artery aneurysm (large arrow) and hydronephrosis (small arrow) secondary to compression by the aneurysm.

Discussion

Solitary renal artery aneurysms can present with a number of complications. Hypertension may occur secondary to compression of the renal artery, an underlying renal artery stenosis or segmental parenchymal ischaemia due to microembolisation. Hydronephrosis from compression, as with this case, may contribute to renal dysfunction. Rupture outside of pregnancy is rare with an incidence as low as 5%.

Ruptured renal artery aneurysms are most often treated with nephrectomy. In the elective situation surgical intervention needs to be individualised for each patient depending on the extent and anatomy of the aneurysm. Endovascular techniques using stent grafts or coil embolisation are now possible. Bypass grafting, patch angioplasty and ex vivo reconstruction have also been used in the elective situation.

With this case all attempts were made to salvage the patient’s solitary kidney. This was achieved with excision of the neck of the saccular aneurysm and primary repair of the main renal artery. If primary repair had not been possible a short interposition of saphenous vein would have been chosen as an alternative. This case illustrates that kidney preservation is possible with a ruptured renal artery aneurysm and nephrectomy is not necessarily inevitable.

References