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ABSTRACT

This paper considers the application of genetic and genomic techniques to disease resistance,
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the interpretation of data arising from such studies and the utilisation of the research
outcomes to breed animals for enhanced resistance. Resistance and tolerance are defined
and contrasted, factors affecting the analysis and interpretation of field data presented, and
appropriate experimental designs discussed. These general principles are then applied to
two detailed case studies, infectious pancreatic necrosis in Atlantic salmon and bovine
tuberculosis in dairy cattle, and the lessons learnt are considered in detail. It is concluded
that the rate limiting step in disease genetic studies will generally be provision of adequate

phenotypic data, and its interpretation, rather than the genomic resources. Lastly, the
importance of cross-disciplinary dialogue between the animal health and animal genetics

communities is stressed.

© 2014 Elsevier B.V. Open access under CC_BY license.

1. Introduction

Infectious disease is of major importance to livestock
breeders for many reasons. For example, disease imposes a
large cost on livestock production systems, with essen-
tially all production systems being vulnerable to disease.
Based on the direct costs of individuals diseases (e.g.
Bennett et al., 2005), total disease costs have been esti-
mated to be up to 20% of turnover in developed countries
and as high as 35-50% of turnover within the livestock
sector in the developing world. However, the true costs of
disease are complex (Perry and Grace, 2009), depending
on direct, indirect and intangible costs, which vary accord-
ing to assumptions made about who is affected by
the disease and the disease control measures. For example,
infection may transmit across species. Several animal
infections, such as bovine tuberculosis, pose zoonotic
threats to human health, and diseases in one species
may act as reservoirs for infections in other species.
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Additionally, there are pressures on breeders to address
welfare issues and to reduce the reliance of production
systems on control strategies such as extensive antibiotic
and chemical usage, with regulation increasingly restrict-
ing antibiotic usage. For these reasons, rather than giving
an actual cost, disease impacts are often considered to be a
qualitative function of direct economic impact, industry
and public concern, zoonotic potential and impacts on
animal welfare and international trade (Perry et al., 2002;
Davies et al., 2009).

Endemic infectious diseases pose particular challenges
as these are diseases for which traditional disease control
strategies, by their designation as endemic, are failing.
Examples of worldwide importance include tick and nema-
tode infestations, where there is widespread acaricide and
anthelmintic resistance, respectively. Hence, alternative or
complementary control strategies are required and breeding
for increased host resistance to infection or disease is one
such approach. Host genetic variation in disease resistance
invariably exists, due in large part to the variability in host
immune responses to infection (Bishop, 2010). Therefore, in
principle, it may be possible to improve genetic resistance
to most diseases, although ascertaining resistance pheno-
types under field conditions can be challenging, as
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described below. For a subset of diseases, it may be both
feasible to measure resistance traits on sufficient animals to
determine genotypes for resistance and economically
worthwhile to incorporate such traits into breeding goals.
A detailed appraisal of infectious diseases that may be
amenable to host genetic studies, and potentially selection
for resistance, is presented by Davies et al. (2009). In cattle,
for example, this study identified mastitis as a key disease,
as had been expected, however it also identified tubercu-
losis and paratuberculosis as amenable diseases, and recent
progress on both diseases has been substantial (see below
for tuberculosis).

A rate-limiting step in breeding for disease resistance is
the requirement to measure resistance phenotypes. This
can be costly and logistically difficult, and it is a significant
barrier to selecting for disease resistance. For this reason,
disease resistance traits are an attractive target for geno-
mic studies and are often the subjects of such studies. The
benefit of the genomic approach is the ability to select
animals using DNA-based selection without the need to
expose them to infection in a challenge test, or for them to
have been part of a natural epidemic. This can be achieved
if major genes or QTL for resistance can be identified,
or SNP-chip based genomic predictors (Meuwissen et al.,
2001) of sufficient accuracy developed. Without DNA-
based predictions, selection accuracy will depend on
either routine challenge testing or continuous disease
prevalence in the field, to enable calculation of EBVs based
on expressed resistance phenotypes.

This paper aims to consider some of the issues asso-
ciated with using genomics to understand disease resis-
tance in livestock, and using genomic tools to assist in
breeding for enhanced resistance. We consider basic
concepts necessary to understand the issues encountered
with this topic and, in additional to a broad-level litera-
ture review, we dissect two contrasting case studies,
where resistance may be considered to be either ‘simple’
or ‘complex’.

2. Theoretical background
2.1. Resistance and tolerance

Terminology still causes confusion in this field. Firstly,
the generic term ‘disease resistance’ is unfortunate as it
implicitly confuses infection (invasion by a pathogen or
parasite) with disease (the negative consequences of being
infected). Resistance is best understood from an ecological
consideration of the interaction between the host and the
pathogen species (Grenfell and Dobson, 1995), may be
defined as the ability of the host to exert some degree of
control over the pathogen life cycle (Bishop and Stear,
2003; Bishop, 2012). This broad definition encompasses
the many ways a host species may be more resistant (e.g.,
less likely to become infected, reduced pathogen prolifera-
tion once infected, reduced shedding or transmission of
infection), and it also inherently recognises that resistance
is usually relative rather than absolute. It also implies that
altered resistance impacts on the population as a whole,
as whilst some attributes benefit the individual host, other

attributes (such as reduced transmission of infection)
benefit other members of the host population.

Tolerance is different from resistance, and is discussed
in depth by Doeschl-Wilson et al. (2012), and other papers
in the Special Topic in Frontiers in Livestock Genomics
(2012) on tolerance. Again using the definitions specified
by Bishop (2012), tolerance may be defined as the net
impact on performance of a given level of infection, i.e. the
regression of performance on (a function of) pathogen
load. A related concept, resilience, may be defined as the
productivity of an animal in the face of infection. Whereas
resistance implies a host exerting a deleterious influence
on the fitness of the pathogen, hosts with a greater
tolerance are those able to maintain a greater fitness
as pathogen load increases. Definitions are presented
diagrammatically in Fig. 1.

As a trait defined at the individual animal level,
tolerance presents a number of difficulties and it also has
a number of inherent assumptions that often seem to be
ignored. Firstly, given that it describes the change in
performance as pathogen load changes, individual animal
performance has to be measured at different levels of
pathogen burden, whilst at the same time keeping
all other husbandry and environmental conditions as
constant as possible. For most diseases this is problematic,
especially as immune responses alter with continuing
exposure to infection. In reality, it can probably only
be measured at the individual animal level for traits
expressed repeatedly through life and for diseases where
the immune memory is weak. Some infections in lactating
animals may fall into this category, for example mastitis in
dairy ruminants or nematode infections during the peri-
parturient period of compromised immunocompetence.

The issue of requiring different infection levels can be
overcome to some extent by considering host genetics at
the family level, so a sire's genetic merit can be observed
as a reaction norm, with offspring with different pathogen
burdens providing the necessary repeated observations.
But even in this case, family size has to be sufficient to

Performance
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Fig. 1. Definitions used in the paper are: Resistance is the ability of the
host animal to exert control over the parasite or pathogen lifecycle;
Tolerance is the net impact on performance of a given level of infection;
Resilience is the productivity of an animal in the face of infection. The
figure (from Bishop, 2012) shows a schematic representation of perfor-
mance and level of infection (or some function that linearises the
relationship between level of infection and performance). The regression
slope represents Tolerance, point A indicates Resistance and point B
represents Resilience.
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overcome issues of between-sib variability. However, a
bigger issue with tolerance as a trait and a breeding goal is
that it is only expressed by infected animals and, to be
useful, requires the disease to be at high prevalence
(Bishop, 2012). Consider the case with a moderate pre-
valence and susceptibility to infection to be a genetically
controlled trait. The animals that are not infected are the
most resistant to infection (in terms of susceptibility to
infection per se) and therefore the most interesting to the
breeder; however they will not have a phenotype useful
for assessing tolerance. It is only the least resistant animals
that provide information on tolerance. Under this scenario,
unless prevalence is high, i.e. approaching 1.0, tolerance
describes attributes of the wrong animals for the breeder,
as by definition it focusses on the least resistant rather
than the most resistant animals.

Some of the measurement issues associated with tol-
erance may be overcome by the novel interpretations of
tolerance suggested by Doeschl-Wilson et al. (2012), as the
outcome of host-pathogen interaction trajectories. These
are trajectories which describe the joint changes in animal
infection level and performance over time, which account
for time-dependent impacts of infection and lend them-
selves to mathematical analyses. However, without the use
of sophisticated approaches such as this, and recording
sufficient to implement it, it is our belief that in most
cases, particularly for diseases where prevalence is sub-
stantially less than one, genomic studies should focus on
resistance traits rather than tolerance. In cases where all
animals are infected, then resilience (performance in an
infected environment) becomes a useful concept.

2.2. Interpreting and analysing field data

In order to obtain sufficient data to quantify genetic
variation in resistance and to perform genomic studies it is
often necessary to use field data. Whilst such data can be
extremely informative, and natural disease outbreaks can
provide data cost-effectively, there are a number of
sources of environmental noise that potentially mask the
genetic signal. These include incomplete exposure to
infection, imperfect diagnostic tests and variable infection
pressures over time and between environments. These
influences will all tend to reduce heritabilities and the
power to detect SNP associations, as outlined by Bishop
and Woolliams (2010a) and Bishop et al. (2012). A broad
summary of the main issues are given here.

Incomplete exposure to infection results in some ani-
mals not having the opportunity to express their resis-
tance genotype. Therefore, uninfected animals will
comprise individuals that may truly be resistant (at the
level of challenge they have encountered) or animals that
have yet to be exposed to an infectious dose of pathogen.
Assuming that it is not possible to distinguish between
these two categories of animals, incomplete exposure
biases both estimated SNP effects and heritabilities down-
wards, with the former reduced by a factor e, where ¢ is
the proportion of the population exposed to the infection,
assuming that exposure is an all or none event (see below).
Furthermore ¢ will change continuously during an epi-
demic, and accounting for epidemic dynamics whilst

estimating quantitative genetic parameters remains com-
putationally challenging (Lipschutz-Powell et al., 2014).

Collection of field data requires diagnosis of the infec-
tion (or disease) state of an animal, with all diagnostic
tests being described by the concepts of specificity and
sensitivity. Specificity (Sp) is the probability that a truly
healthy individual is classified by the diagnostic test as
healthy and sensitivity (S.) is the probability that a truly
diseased individual is classified by the diagnostic test as
diseased. This parameterisation of the 2 x 2 classification of
true status and diagnosed status is universal in epidemio-
logical theory, rather than the alternative classification of
true and false test outcomes. If either S, or S, is less than
one, then observed prevalence (p’) will differ from true
prevalence according to the following regression:
P =(1-Sp)+(Sp+S.—1)p. As with incomplete exposure,
imperfect diagnosis will reduce both heritabilities and
estimated SNP effects, with the SNP effect biased down-
wards by the factor (Sp+S.—1) (Bishop and Woolliams,
2010b; Bishop, 2012).

The consequences of incomplete exposure to infection
and imperfect diagnosis are simply that genetic signals get
diluted and the power to quantify genetic effects is reduced.
These factors probably lie behind the commonly-held belief
that disease resistance traits are lowly heritable, an obser-
vation that flies in the face of the near-ubiquitous variation
seen in immune-related genes and in immune responses
(Bishop, 2010). Therefore, the identification of a genetic
signal for resistance under field conditions most likely
indicates an underlying genetic control that is much stron-
ger. Consequently, the opportunities for studying genetic
resistance to disease, and even selecting for increased
resistance, may be somewhat greater than is apparent from
low observed heritabilities.

The considerations so far have considered only ‘static’
data, i.e. they have ignored the time-dependent changes in
infection pressure. The impacts of variable infection pres-
sures on genetic parameter estimation are complex and
have yet to be fully elucidated. They will vary according to
whether infection pressure is presumed to be ‘constant’
but different in different circumstances/environments, or
whether it varies dynamically during an epidemic. An
example of the former is discussed below, in the salmon
disease case study. The latter case is addressed by
Lipschutz-Powell et al. (2014), with analytical properties
of the estimates of genetic effects presented by Pooley
et al. (2014).

2.3. Appropriate experimental designs

The ideal experimental design for detecting genetic
variation in resistance and for identifying SNP associations
or developing genomic predictors of resistance would
exploit continuously varying phenotypes measured on
animals subjected to identical environmental and chal-
lenge conditions. Such circumstances, where challenge
conditions are deliberate and standardised, are rare and
are most likely to be feasible for studies in fish, where
several examples do exist (Wetten et al., 2007; Moen et al.,
2009; Houston et al., 2010; Gheyas et al., 2010) or chickens
(e.g., Pinard-van der Laan et al, 2009). Under some
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circumstances it has been possible to achieve this situation
for terrestrial mammals, e.g. the PRRSV challenge experi-
ments described by Boddicker et al. (2012), however these
studies generally require large-scale funding coordi-
nated between several partners and hence are relatively
uncommon.

However, even in the context of challenge tests there is
now a recognition that typical studies address genetic
variation in susceptibility to infection but do not address
the possible existence of genetic variation in infectious-
ness (Lipschutz-Powell et al., 2012). Infectiousness has an
indirect genetic effect on the population and, unlike
competition effects among animals (Bijma, 2010), it is
dynamic. Its detection depends primarily upon detecting
variance in the speed of epidemic development among
groups. This is both demanding of data, requiring “repli-
cated” epidemics and computationally demanding. The
novelty of this area means that optimum challenge designs
for detecting such variation have yet to be defined. How-
ever, initial results are given by Pooley et al. (2014) who
present analytical solutions for prediction accuracy in the
case of major gene effects and propose novel Bayesian
inference approaches for estimating such effects. In sum-
mary, unless infectiousness can be measured directly, it is
likely to pose estimation problems.

Disease resistance studies more commonly use oppor-
tunistic ‘harvesting’ of data either from epidemics, such as
bovine tuberculosis (bTB) outbreaks (e.g., Bermingham
et al,, 2013) or from endemic diseases such as mastitis or
nematode infections. Even in this situation distinct differ-
ences are seen between endemic and epidemic diseases.
For the two endemic diseases mentioned, phenotypes can
be captured by measurements which show continuous
variation, whereas for the epidemic diseases the pheno-
type is more often a binary variable, i.e. infected/diseased
or not.

One of the issues faced when using data from an
epidemic, particularly when the outcome is a binary variable
(affected or not), is the choice of animals to include in the
dataset, and hence to genotype. Ideally, one would sample all
animals from a cohort, or take a random sample with
affected and unaffected animals sampled in proportion to
the disease prevalence. However, there are several factors to
consider when making such decisions. Firstly, if prevalence is
low, then sampling many unaffected or control animals can
be perceived as wasteful of resources when compared to
standard case-control designs which maximise the power of
a contrast. However, case-control designs make estimation
of, or correction for, non-genetic factors difficult as the
sampling has been non-random and, hence, the effects of
both genetic and non-genetic factors will be incorrectly
estimated. Secondly, definition of control animals may be
problematic, especially if exposure to infection is unknown
or if diagnostic test sensitivity is low. In either case animals
will be misclassified and, combining the two concepts, the
downward bias in estimated SNP effects will be &(Sp +Se — 1).

The problem of control definition has often been
avoided in human genetics studies using the so-called
Wellcome Trust design (e.g. Browning and Browning,
2008), in which cases are compared against a reference
population average sample. In cases where disease

prevalence is low, or diagnostic test sensitivity (or ascer-
tainment of cases) poor or exposure probabilities low, then
true controls are unlikely to differ greatly from a random
sample from the population, and the two experimental
designs converge. The Wellcome Trust design may also be
advantageous in situations where large numbers of ‘popu-
lation average’ animals (for the trait of interest) have
already been genotyped, an obvious example being the
large numbers of Holstein dairy animals genotyped as part
of genomic selection programs. But it is appreciated that
apart from the case of Holstein cattle, the sub-population
structure often seen in livestock will make it difficult to
define appropriate ‘population average’ animals. However,
in cases where true controls (i.e., uninfected animals that
have been exposed to an infectious dose of pathogen) can
be defined with some accuracy, then alternative experi-
mental designs have been proposed which may have
greater power (Bishop et al., 2012). Quite simply, animals
could be sampled to maximise their expected genetic
differences in resistance to the disease. Therefore, cases
could be preferentially sampled from cohorts with a low
force of infection (therefore more susceptible) and controls
preferentially sampled from cohorts with a high force of
infection (therefore more resistant). However, the proper-
ties of this design are unknown, and potentially it creates
risks in terms of unobserved risk factors and hidden
genetic structure, and research is required to quantify
the balance between extra power and greater risk of
unknown factors biasing the results.

3. Overview of disease genomic studies

The purpose of this paper is not to tediously review all
genomic studies looking at disease resistance in livestock.
Rather, we wish to draw attention to a few salient points.
Firstly, genetic variation in disease resistance has been
observed for many diseases (Bishop, 2010), and most likely
variation would be seen for all diseases, given appropriate
experimental designs. Published examples exist for every
class of infectious agent, ranging from TSE agents, through
viruses, bacteria, protozoa to worms, flies and ticks, and
also for all major livestock species, including several
aquacultural species.

Predictably, genome scans by LD are now increasingly
popular, although these studies tend to require a larger
sample sizes than conventional heritability or within-
family QTL studies. A major focus has been on major
endemic diseases, notably bovine tuberculosis (see below)
and paratuberculosis (e.g., Kirkpatrick et al., 2011; Minozzi
et al., 2012), PRRS in pigs (Boddicker et al., 2012), and
nematode infections in sheep (Kemper et al., 2011; Sallé
et al., 2012; Riggio et al., 2013). These are diseases that the
respective livestock industries tend to live with, accepting
the ongoing costs, and for which control measures, includ-
ing vaccination, have been unable to eliminate the disease.
The disease that is notably missing from this list is bovine
mastitis. In this case, industry-wide recording of somatic
cell count and clinical mastitis, combined with widespread
SNP-chip genotyping of dairy bulls, has led to the rapid
implementation of genomic selection over the last six
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years with relatively few genome-wide association studies
(albeit with notable exceptions, e.g. Sahana et al., 2013).

We now illustrate issues and success with genomic
disease resistance studies by considering two case studies
that we have been involved with. These two examples
highlight most of the issue discussed above.

3.1. Case study for simple inheritance: infectious pancreatic
necrosis

3.1.1. Background

The salmon viral disease infectious pancreatic necrosis
(IPN) is one of the best case studies of the application of
genomic technologies to an infectious livestock disease
and one of the first implementations of DNA-based
selected. Parallel and simultaneous research programs in
Norway and Scotland came up with almost the same
findings, as described below, and each served as an
independent validation of the other study. Outcomes from
the research are now routinely incorporated into the
breeding programs of the two associated breeding com-
panies, AquaGen in Norway and Landcatch Natural Selec-
tion Ltd in Scotland, with the result that IPN is no longer a
disease of major concern for these two companies.

The IPN virus is a double stranded RNA virus (i.e.,
a birnavirus) which has been endemic in the European
salmon aquaculture industry, affecting both juvenile fry
and seawater stages of the salmon lifecycle. In freshwater,
juveniles are most susceptible before the immune system
is fully developed, and hatchery mortality losses in fry
around first-feeding can reach 70% or more (Roberts and
Pearson, 2005). In seawater, a clearly defined window of
susceptibility coincides with the stress of smolting and
seawater transfer, at approximately 15 months post-hatch-
ing, with mortality ranging widely, i.e. anywhere from zero
to >90% (Moen, 2010).

3.1.2. Establishing genomic control of resistance

Salmon reproductive biology allows creation of many
large full-sib families, which can then be monitored in
either field studies or deliberate challenge studies. This
allows for robust genetic and genomic studies, and it
allows secondary questions to be addressed as described
below. These large-scale studies established heritable
variation in IPN survival at the smolt stage under field
conditions (Guy et al., 2006, 2009; mean h*=0.43), and at
the fry stage under challenge conditions (Wetten et al.,
2007; mean h®>=0.31). Microsatellite-based QTL studies
performed on salmon smolts under either natural chal-
lenge (Houston et al., 2008) or deliberate challenge con-
ditions (Moen et al., 2009) demonstrated that nearly all
the observable genetic variation (in IPN survival) could be
attributable to a single QTL on linkage group 21. Follow-up
studies on fry, using deliberate challenge techniques on
large numbers of fish from a wider range of families,
confirmed that the same QTL also largely controlled IPN
survival in the fry (Moen et al., 2009; Houston et al., 2010;
Gheyas et al., 2010). Further, these later studies reduced
the confidence interval for the mapped QTL from ca. 10 cM
to much smaller intervals, ca. 3 cM.

The cross validation of results and the finding of similar
effects in two disparate lifecycle stages was critically impor-
tant for promoting confidence in the results, increasing
precision, and also for allowing both windows of suscept-
ibility to be addressed simultaneously. Host-pathogen inter-
actions may be postulated to be quite different in lifecycle
stages where the immune responses to infection differ.
Furthermore, the fact that the same QTL affected both
lifecycle stages enabled subsequent experimentation and
phenotype scoring to be performed in the logistically
simpler fresh-water fry stage, rather than in sea-water
cages. Both the Scottish and Norwegian studies showed a
frequency of the putative resistance allele to be ca. 0.25 in
unselected fish (Houston pers. comm., Moen, 2010). The
results from the studies allowed marker-assisted selection
(MAS) to be implemented by the breeding companies
involved with the research, with a single round of selection
in the Norwegian population increasing the frequency from
0.27 to 0.44 (Moen, 2010). Initially this was linkage-based
MAS with the requirement for reassessment of linkage
phase between markers and the putative underlying poly-
morphism every generation. A more effective and sustain-
able MAS strategy would ideally utilise population-wide LD
between marker and causative mutation.

3.1.3. Fine mapping resistance markers

As pointed out by Moen et al. (2009), implementation
of MAS based on LD would require a greater density of
markers than was available at the time of the studies. The
absence (in 2010) of a reference genome or a dense SNP
chip made progress difficult. This problem was initially
solved through the use of RAD sequencing (Baird et al.,
2008) applied to families previously used for confirming
the IPN resistance QTL in fry (Houston et al., 2010). Using
SNP discovery by sequencing in families and individuals
with well-defined QTL genotypes, it was possible to
identify SNP markers in complete linkage with the puta-
tive QTL genotype, in the previously-genotyped families
(Houston et al., 2012). After filtering, 11 SNPs were geno-
typed across 10 families used in the QTL study, and the two
most significant SNPs were then genotyped on ca. 4000
fish from 200 related families from the same (discovery)
cohort, and ca. 5000 fish from 200 families from a different
(distantly related, i.e. validation) cohort. Results were
consistent across both cohorts, with mortalities close to
10% for homozygous resistant fish, 20-25% for heterozy-
gous and > 50% for homozygous susceptible fish (Houston
et al.,, 2012).

The outcome of the research undertaken by both
groups of researchers is that markers now exist that are
in close population-wide LD with the causative mutation.
Hence, these markers can be used directly and reliably in
breeding programs. It is important to note that whilst the
QTL studies of Houston et al. (2010) appeared to show zero
mortality in homozygous resistant fish, some mortality is
observed in fish of this genotype in the wider population.
One interpretation of this result is that the markers are not
in complete LD with the causative mutation, although
other interpretations are explored below. At the time of
writing, neither the actual causative mutation nor the
mechanism of resistance is known, despite considerable
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research effort. However, selection for resistance has been
successful even without knowledge of the causative
mutation.

3.1.4. Inferences on the nature of resistance

Whilst the genetic control of IPN resistance is strong
and consistent, there are still unexplained nuances which
may be explicable when the disease epidemiology is
considered. For example, estimated heritabilities for IPN-
related survival of salmon in seven independent seawater
localities containing the IPN virus (Guy et al, 2009)
showed a strong pattern of increasing as prevalence of
mortality increased, even after correcting for the binary
nature of the data by transforming to the underlying
liability scale. However, when the assumption was made
that prevalence is a proxy for relative exposure probability
(i.e., £), and the heritabilities were corrected for exposure
as described by Bishop and Woolliams (2010a), then the
relationship between prevalence and heritability of resis-
tance disappeared. Notably, the heritability of exposure-
corrected heritability resistance coalesced around a value
in excess of 0.9, which is consistent with the QTL control-
ling most of the variation in IPN-dependent mortality.
Hence, the assumption of prevalence being a proxy for
relative exposure probability appears valid.

Secondly, comparing the different experiments within
which QTL have been (fine) mapped (i.e.,, Moen et al,
2009; Houston et al., 2010; Gheyas et al., 2010) it may be
observed that in some populations the resistance locus is
additive; whereas in others it is apparently dominant.
Further, this apparent mode of inheritance seems to vary
with prevalence of mortality, with lower mortality trials
leading to apparent dominance and trials with intermedi-
ate mortality leading to additive effects. A rationale for this
outcome was provided by Bishop and Woolliams (2010b),
in which the consequences of dose-dependent expression
of resistance were explored. This is intrinsically related to
the concept of exposure, in which resistance may be re-
defined as the dosage level at which an individual
becomes infected. When dose-response curves tend
asymptotically towards zero mortality for negligible infec-
tious doses and towards a high mortality for overwhel-
mingly high infectious doses, the apparent mode of action
of resistance is a function of the infectious challenge level.
Under field conditions, the infectious dose corresponds to
the extent of the epidemic, sometimes termed the force of
infection. Thus, ignoring possible impacts of other QTL
with smaller effects, one may expect to observe dominant,
additive or recessive effects depending upon the disease
epidemiology even when the underlying liability is com-
pletely additive.

3.2. Case study for complex inheritance: bovine tuberculosis

3.2.1. Background

Whilst IPN provides an elegant case study for under-
standing the inheritance of resistance largely controlled by
a single locus, the full complexities of understanding and
dissecting resistance, when resistance is seemingly com-
plex, are well illustrated for bovine tuberculosis (bTB). bTB
is a bacterial disease caused by the bacterium

Mycobacterium bovis, and it is an endemic disease with
zoonotic potential in many parts of the word, notably in
the United Kingdom (UK) and the Republic of Ireland (RI).
Here, the zoonotic threat can be controlled by pasteurisa-
tion, but despite five decades of efforts to control bTB, the
disease remains an ongoing challenge. The primary means
of control is by means of compulsory testing of cattle
followed by slaughter of test-positive animals, with total
costs exceeding £275 million in 2010/11, alone (Abernethy
et al,, 2013). The impact of the disease is much larger
globally, and Perry et al. (2002) ranked bTB as the fourth
most important disease in developing countries, where
M. bovis causes an estimated 10-15% of human TB cases
(Michel et al., 2010). Because of its importance, its endemic
nature and the continued failure of mainstream control
strategies, bTB emerges as a strong target disease for
genomic studies of host resistance.

Research into bTB resistance in the UK and RI has
benefitted from parallel research programs in the same
way as seen for research into IPN resistance in salmon,
with expertise and concepts shared, with the two sets of
results essentially serving as cross validations and, poten-
tially, with data sharing.

3.2.2. Capturing data from the field

Unlike salmon, it is not possible to do large-scale
challenge studies for bTB resistance. Therefore it is neces-
sary to capture data from the field, specifically to harvest
(with permission) data arising from statutory surveillance
activities. Separately in England and Wales, in Northern
Ireland (NI) and in RI all cattle herds are tested regularly
(e.g., annually) for the presence of bTB in the herd.
Typically, cattle are tested using a skin test, the single
intradermal comparative cervical tuberculin (SICCT) test,
with positive animals slaughtered and examined for clin-
ical evidence of disease or infection. The presence of skin
test positive animals then triggers more intensive testing
which continues until the herd is deemed bTB free.
However, data arising from this approach has inherent
challenges, because both the skin-test and the abattoir
inspection diagnoses are imperfect, and variable exposure
to infection creates difficulties for phenotype definition
and genetic studies.

Consider the diagnostic properties of the skin test and
abattoir diagnoses of visible lesions. Both are effective at
diagnosing affected herds, but they are poor at diagnosing
the state of individual animals. Inevitably there has to be a
trade-off between Se (a function of false negatives) and Sp
(a function of false positives), and the test cut-off levels
can be calibrated to alter this balance. Under field condi-
tions, whilst the skin test has a high Sp (i.e., >99%), its Se
is somewhat lower, being in the vicinity of 0.7 (De la Rua-
Domenech et al., 2006), and possibly as low as 0.55 (Neill
et al,, 1994; Bermingham et al., 2011). In other words, close
to 50% of truly infected animals may be missed with a
single skin test per animal. Efficiency of diagnosis in
the abattoir is of equal concern; whilst there are many
reasons why infected animals may be missed when scan-
ning for visible signs of infection, Se may be below 30%
(Bermingham et al., 2011). Therefore, although one may
have confidence that animals diagnosed as infected most
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probably are infected, many true cases will be misclassified
unless multiple observations are available, and this incor-
rect classification will bias both heritability and SNP effect
estimates, as described above in Section 2.3.

Exposure to infection is equally problematic, however
steps can be taken in both trait definition and experi-
mental design to address this challenge. Firstly, whilst bTB
is an endemic disease in the UK and RI, not all herds are
affected at any point in time. Therefore, data should be
restricted to herd cohorts within which cases occur and,
ideally, there should be two or more cases to increase the
probability that it is a true bTB outbreak being observed.
Single cases within a herd risk being either a rare false
positive or an animal imported into the herd whilst
infected. Secondly, the problem of time-dependent expo-
sure can be reduced by classifying a case as an animal that
is ever diagnosed as positive, whereas controls (unaf-
fected) are those from outbreak herds that are never
diagnosed as positive. The principles of this ‘ultimate fate’
model were employed by Bermingham et al. (2009) and
Brotherstone et al. (2010) in their successful studies of the
heritability of bTB resistance. This approach may lose
information on susceptibility that may be related to the
order in which animals become infected, but it reduces the
impact of the imperfect testing.

3.2.3. Genetic and genomic control of resistance

Heritable variation for bTB resistance within the RI
and UK Holstein dairy herds has been established by
Bermingham et al. (2009) and Brotherstone et al. (2010),
respectively. Heritabilities for ultimate fate, based on skin
test results, were 0.14 and 0.15, and for presence/absence
of visible abattoir lesions heritabilities were 0.18, in both
datasets. When corrected for imperfect diagnostic sensi-
tivities, these values rose to ca. 0.20-0.25. Similarly, a case-
control study from NI, in which cases were both skin test
and abattoir lesion positive and controls were ‘never-
positive’ cows from affected herds, yielded a heritability
of 0.21 (Bermingham et al., 2014).

Genome wide association studies have now been com-
pleted on the RI and NI datasets described above (Finlay
et al, 2012; Bermingham et al, 2014), using the 50k
and high density SNP chips, respectively. In both cases
some evidence of loci affecting liability to infection was
reported, however the strong impression gained from
these data was that resistance was a polygenic phenom-
enon, controlled by many loci. Hence, the genetic control
of bTB resistance may be considered to be truly complex.

In circumstances where genetic control of a trait is
complex, genomic selection may be preferred to conven-
tional MAS based on individual loci. Following this reasoning,
Tsairidou et al. (2014) demonstrated using the case-control
data from NI that genomic prediction of bTB resistance is
possible in principle, with prediction accuracies closely
reflecting expected values (Daetwyler et al., 2008) given
the dataset size, numbers of markers genotyped and
presumed effective population size of the Holstein breed.
Indeed in situations such as bTB, where the disease is
endemic but not present in all herds/flocks, genomic
selection is advantageous. Whilst conventional pedigree-
based EBV estimation is possible, it relies on continual data

collection from affected cohorts of animals, which is
logistically difficult, and EBV accuracies for animals only
distantly related to those in affected cohorts will be poor.
Once calibrated with sufficient data from the reference
population, genomic selection overcomes many of these
problems, as it allows EBV estimation for animals distantly
related to those with phenotypes and it facilitates data
capture from herds without pedigree recording. However,
in the short term, genomic selection is likely to be only
feasible within the Holstein breed, as it will take more
time to create suitable reference populations for other
breeds.

3.2.4. Lessons learnt and next steps

bTB has served as an interesting case study for situa-
tions where the data is noisy and where genetic control of
trait variability is complex. Much of the thinking behind
the papers of (Bishop and Woolliams, 2010a, 2010b) came
in response to challenges interpreting bTB data and the
need to frame quantitative genetic concepts in a language
more familiar to disease control experts. Even given many
vagaries in the data, coherent genetic messages can still be
obtained and routes to implementation (i.e., breeding for
increased resistance) can be devised.

Challenges remain in the interpretation and analyses of
bTB data. Firstly, whilst a framework for interpreting bTB
resistance traits has been laid out, the true impact of subtle
differences in trait definition on genomic predictions have
yet to be fully explored. Secondly, many concerns exist
within the animal health community related to selection
of animals on the basis of a diagnostic test which is a
response to infection; these concerns have previously been
encountered with selection for mastitis resistance based
on somatic cell count. The issue is that selection on a
response to infection may potentially alter the actual
response to infection as opposed to resistance to infection,
and hence simply alter the properties of the test without
necessarily changing resistance. This concern can be
addressed through analyses of actual test values in existing
datasets, interpretation of the magnitude of heritabilities
for different trait definitions, and prediction of likely
selection intensities and responses to selection. These
issues are a focus of current research using bTB test data.

Lastly, and importantly, the impact of genomic selec-
tion for bTB resistance on prevalence of disease has yet to
be ascertained. This will depend largely on the basic
reproductive value (Rg) for the disease; if Ry values are
close to the threshold value of 1.0, then small changes in
resistance could have large impacts on realised disease
prevalence, whereas for higher Ry values selection may
have little effect on prevalence. This issue is made more
complex in the case of bTB due to the presence of wildlife
hosts that serve as a reservoir transmitting infection,
notably the badger in the UK and RI. Addressing this issue
will require disease modelling combining host genetics
and epidemiology, possibly including transmission of
infection to and from the reservoir hosts. In summary, it
can be seen that the rate limiting steps for pushing
forward our understanding of the genomic control of bTB
resistance would appear to lie more with phenotype
availability and interpretation, than with availability of
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suitable genomic data. In fact, this final conclusion can
probably be applied to most infectious diseases of interest
to animal geneticists.

4. Conclusions

Genetic and genomic studies of disease resistance are
becoming ever more widespread, with many published
examples of genetic variation in resistance. This has
translated into some notable examples of success in terms
of describing and understanding the genetic control of
between-animal differences in resistance, and also in the
utilisation of these results to breed animals for increased
resistance. However, use of genetic or genomic informa-
tion must be considered in the broader context of both the
breeding goal and the conventional strategies used to
control the disease. If the disease is of little importance
to the breeder or producer, or if it is satisfactorily con-
trolled by other means, then there may be little point in
attempting to breed for increased resistance. Conse-
quently, most effort should be placed on costly endemic
diseases, for which control by other strategies is proving
difficult. The two example diseases considered here, IPN
and bTB, fall into this category. Both represent cases where
considerable progress has been made, but challenges still
remain in terms of full understanding of the obtained
results and optimal utilisation strategies.

Feasible data collection methods will depend largely on
the reproductive capacity and net value of the individual
host animal. Where the reproductive capacity is high (e.g.,
fish or chickens), it may be possible to perform deliberate
challenge experiments on sufficient animals for genomic
studies, but for the most part it will be necessary to
capture field data from naturally infected populations. In
this case, factors such as challenge levels, exposure prob-
abilities and diagnostic test sensitivities and specificities
will influence the estimated heritabilities, genetic marker
effects and genomic predictions. The influences of these
factors are discussed above and, in general, they will tend
to add noise to the data and hence mask true genetic
signals. There remain issues to be fully understood regard-
ing optimal experimental designs and optimal data analy-
sis procedures. Mostly, the knowledge gaps relate to
handling and interpretation of phenotypic rather than
genetic information. This conclusion stresses the impor-
tance of health data collection, as well as access to and
sharing of existing data. Such data are a pre-requisite for
powerful genetic studies.

Efficient implementation routes, i.e. effective breeding
for enhanced resistance, will depend on the disease
epidemiology. For example, if the disease is widespread
with a high prevalence then selection based on phenotypic
information is feasible, as has been seen for nematode
infections and mastitis in ruminants. However, if disease
outbreaks are sporadic or if prevalence is low, then DNA-
based selection will be preferable. For example, for the
case of bTB discussed above, data collected from national
surveillance programs can be used to estimate breeding
values for resistance; however the reliability of these EBVs
will be poor for animals distantly related to those in an
outbreak. In such cases, genomic predictions of resistance

will greatly assist the implementation of breeding for
resistance.

Lastly, breeding for disease resistance is a multi-
disciplinary activity. Our own experiences strongly reinforce
the need for widespread dialogue between geneticists and
animal health experts, and the need to incorporate concepts
from disease biology and epidemiology into animal genet-
ics, and vice versa. Both communities must understand the
goals and techniques used by the other community.
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