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a b s t r a c t

We consider viscosity approximations by using the shrinking projection method
established by Takahashi, Takeuchi, and Kubota, and the modified shrinking projection
method proposed by Qin, Cho, Kang, and Zhou, for finding a common fixed point of
countably many nonlinear mappings, and we prove strong convergence theorems which
extend some known results. We also consider semigroups of nonlinear mappings and
obtain strong convergence of iterative schemes which approximate a common fixed point
of the semigroup under certain conditions.
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1. Introduction

Let us consider the problem of finding a fixed point of a nonlinear mapping defined on a nonempty closed convex subset
C of a real Hilbert space H . The setting of this problem is so general that it includes a number of important problems such
as convex minimization problems, variational inequalities, saddle point problems, and others. In particular, approximating
the solutions of this problem by iterative schemes has been studied by many researchers, and various types of mappings
have been considered.

Let T be a nonexpansive mapping of C into itself, that is, ∥Tx − Ty∥ ≤ ∥x − y∥ for every x, y ∈ C . Suppose that the set
F = F(T ) of all fixed points of T is nonempty. Halpern [1] introduced the following iteration scheme: x1 = x ∈ C and

xn+1 = αnx + (1 − αn)Txn
for all n ∈ N, where {αn} ⊂ [0, 1). Wittmann [2] proved the strong convergence of this sequence {xn} to PFx under the
assumptions limn→∞ αn = 0,


∞

n=1 αn = ∞, and


∞

n=1 |αn − αn+1| < ∞, where PF is the metric projection of H onto F .
Moudafi [3] extended it to the following process, which is called Moudafi’s viscosity approximations: x1 = x ∈ C and

xn+1 = αnf (xn) + (1 − αn)Txn
for all n ∈ N, where {αn} ⊂ [0, 1) and f : C → C is a contraction. See also [4]. It was proved that this sequence
converges strongly to a unique fixed point of PF f under similar conditions to those in [2]. Suzuki [5] considered the
Meir–Keeler contractions, which is an extended notion of contractions, and studied the equivalency of convergence of these
approximation schemes.
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On the other hand, Haugazeau [6] considered the hybrid method and proved the strong convergence of the generated
iterative sequence. See also [7–10] and references therein. Recently, Takahashi et al. [11] proposed a modified hybrid
method, the so-called shrinking projection method, as follows:

x1 = x ∈ C,
C1 = C,
yn = Txn,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x

for each n ∈ N. They proved the strong convergence of this sequence to PFx. See also [12,13].
Motivated by these results, we consider viscosity approximations by using the shrinking projection method and prove

strong convergence theorems which extend the results in [11,12]. We also consider semigroups of nonlinear mappings
which extend one-parameter nonexpansive semigroups and obtain iterative methods which approximate a common fixed
point of the semigroup under certain conditions.

2. Preliminaries

Throughout this paper, we denote by H a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥. The set of all positive
integers and the set of all real numbers are denoted by N and R, respectively. We write xn → x to indicate that a sequence
{xn} converges strongly to x as n → ∞.

Let C be a nonempty closed convex subset of H . We know that, for every x ∈ H , there exists a unique element y ∈ C
such that ∥x − y∥ = infz∈C ∥x − z∥. We denote y by PCx, and PC is said to be the metric projection of H onto C . It is known
that, for x ∈ H and y ∈ C , y = PCx is equivalent to ⟨x − y, y − z⟩ ≥ 0 for all z ∈ C . We also know that PC is nonexpansive.
See [14,15] for more details.

Amapping f of a completemetric space (X, d) into itself is called a contractionwith coefficient r ∈ (0, 1) if ∥f (x) − f (y)∥
≤ r ∥x − y∥ for all x, y ∈ C . It is known that f has a unique fixed point [16].

On the other hand, Meir and Keeler [17] defined the following mapping, called the Meir–Keeler contraction. A mapping
f : X → X is called a Meir–Keeler contraction if, for every ϵ > 0, there exists δ > 0 such that d(x, y) < ϵ + δ implies that
d(f (x), f (y)) < ϵ for all x, y ∈ X . We know thatMeir–Keeler contraction is a generalization of contraction, and the following
result, which extends the Banach contraction principle, is proved in [17].

Theorem 2.1 (Meir–Keeler [17]). A Meir–Keeler contraction defined on a complete metric space has a unique fixed point.

We have the following result, given by Suzuki [5], for Meir–Keeler contractions defined on a Banach space.

Lemma 2.2 (Suzuki [5]). Let f be a Meir–Keeler contraction on a convex subset C of a Banach space E. Then, for every ϵ > 0,
there exists r ∈ (0, 1) such that ∥x − y∥ ≥ ϵ implies that ∥f (x) − f (y)∥ ≤ r ∥x − y∥ for x, y ∈ C.

Let {Cn} be a sequence of nonempty closed convex subsets of H . We define a subset s-LinCn of H as follows: x ∈ s-LinCn if
and only if there exists {xn} ⊂ H such that {xn} converges strongly to x and such that xn ∈ Cn for all n ∈ N. Similarly, a subset
w-LsnCn of H is defined by the following: y ∈ w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and a sequence
{yi} ⊂ H such that {yi} converges weakly to y and such that yi ∈ Cni for all i ∈ N. If C0 ⊂ H satisfies

C0 = s-Li
n

Cn = w-Ls
n

Cn,

it is said that {Cn} converges to C0 in the sense of Mosco [18], and we write C0 = M-limnCn. One of the simplest examples of
Mosco convergence is a decreasing sequence {Cn} with respect to inclusion. The Mosco limit of such a sequence is


∞

n=1 Cn.
For more details, see [19].

Tsukada [20] proved the following theorem for the metric projection.

Theorem 2.3 (Tsukada [20]). Let {Cn} be a sequence of nonempty closed convex subsets of H. If C0 = M-limnCn exists and is
nonempty, then, for each x ∈ H, {PCnx} converges strongly to PC0x.

3. A condition for a sequence of mappings

Let C be a nonempty closed convex subset of H , and let T : C → C be a mapping satisfying F(T ) ≠ ∅ and

∥Tx − z∥2
≤ ∥x − z∥2

− a ∥(I − T )x∥2 , (1)

for all x ∈ C and z ∈ F(T ), where I is the identity mapping on C and a ∈ R is a fixed coefficient. The class of mappings
satisfying this condition includes a large number of important nonlinear mappings. In fact, letting a = 1, we can show that
all firmly nonexpansive mappings such as the resolvents of a maximal monotone operator, metric projections, the convex
combination of the identity mapping and a nonexpansive mapping, and others, belong to this class if it has a fixed point.
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Further, we have that it is a wider class than that of quasi-nonexpansive mappings by letting a = 0. For more details,
see [9,12].

If a > −1, then we know that F(T ) is closed and convex; see [9,12]. Moreover, we can see that there exists a mapping
satisfying the inequality (1) with a = −1, and that its set of fixed points is neither closed nor convex.

Example 3.1. Let u ∈ H be such that ∥u∥ = 1, and let B = {x ∈ H : ∥x∥ ≤ 1, ⟨u, x⟩ = 0}. Let PB the metric projection of H
onto B, and define a mapping T : H → H by

Tx =


PBx (x ≠ 0)
u (x = 0)

for x ∈ H . It is obvious that F(T ) = B \ {0}. For every x ∈ H \ {0} and z ∈ F(T ), we have that

∥Tx − z∥2
≤ ∥x − z∥2

− ∥(I − T )x∥2
≤ ∥x − z∥2

+ ∥(I − T )x∥2 ,

since PBx = Tx and z ∈ F(T ) ⊂ F(PB). Let us consider the case x = 0. We have that

∥T0 − z∥2
= ∥u − z∥2

= ∥z∥2
+ ∥u∥2

= ∥0 − z∥2
+ ∥(I − T )0∥2

for z ∈ F(T ). Hence, for all x ∈ H and z ∈ F(T ), we have that

∥Tx − z∥2
≤ ∥x − z∥2

+ ∥(I − T )x∥2
= ∥x − z∥2

− a ∥(I − T )x∥2 ,

with a = −1. In this case, F(T ) is neither closed nor convex. We note that this coefficient is the greatest possible.

If a1 < a2, then condition (1) with coefficient a2 automatically implies the same condition with a1. Therefore, this
example shows that we can always find a mapping satisfying condition (1) with coefficient a ≤ −1, whose set of fixed
points is neither closed nor convex.

Next, let us consider a sequence of mappings {Tn} satisfying F =


∞

n=1 F(Tn) ≠ ∅ and

∥Tnx − z∥2
≤ ∥x − z∥2

− an ∥(I − Tn)x∥2

for all n ∈ N, x ∈ C , and z ∈ F , where {an} is a sequence of real numbers such that lim infn an > −1. From the above
example, some F(Tn) may be neither closed nor convex, since it may hold that an ≤ −1 for finitely many n ∈ N. Therefore,
F is not guaranteed to be a closed convex set in general. However, we can prove that it is closed and convex if {Tn} satisfies
the following condition, which is considered in [12]: for every sequence {zn} in C and z ∈ C , zn → z and Tnzn → z imply
that z ∈ F . Indeed, let {zn} be a sequence in F converging strongly to z0 ∈ H . Then, since {Tnzn} is identical to {zn}, they have
the same strong limit z0. Thus, by assumption, z0 ∈ F , and hence F is closed. On the other hand, let z1, z2 ∈ F , t ∈ (0, 1),
and w = tz1 + (1 − t)z2. Then, we have that

∥Tnw − zi∥2
≤ ∥w − zi∥2

− an ∥(I − Tn)w∥
2

for i = 1, 2. Since these are equivalent to

(1 + an) ∥Tnw − w∥
2

≤ 2 ⟨w − Tnw, w − zi⟩ ,

we get that

(1 + an) ∥Tnw − w∥
2

≤ 2 ⟨w − Tnw, w − (tz1 + (1 − t)z2)⟩ = 0.

Since 1 + an > 0 for sufficiently large n ∈ N, we have that {Tnw} converges strongly to w, which implies that w ∈ F .
Therefore F is convex.

There are many examples of {Tn} which satisfy the conditions above; see [9,12]. Another example which satisfies these
conditions will be discussed in Section 6.

4. Convergence theorems

Wedealwith a sequence ofmappings satisfying the conditionsweobserved in the previous section.We consider viscosity
approximation methods converging strongly to their common fixed point.

Theorem 4.1. Let C be a nonempty closed convex subset of H, and let {Tn} be a sequence of mappings of C into itself with
F =


∞

n=1 F(Tn) ≠ ∅ which satisfies the following condition: there exists {an} ⊂ R with lim infn→∞ an > −1 such that
∥Tnx − z∥2

≤ ∥x − z∥2
− an ∥(I − Tn)x∥2 for every n ∈ N, x ∈ C, and z ∈ F . Let f be a Meir–Keeler contraction of C into itself,

and let {xn} be a sequence generated by
x1 = x ∈ C,
C1 = C,
yn = Tnxn,
Cn+1 = {z ∈ Cn : ∥yn − z∥2

≤ ∥xn − z∥2
− an ∥xn − yn∥2

},
xn+1 = PCn+1 f (xn)
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for each n ∈ N. Assume that, for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z imply that z ∈ F . Then, {xn} converges
strongly to z0 ∈ F , which satisfies PF f (z0) = z0.

Proof. As we mentioned in the previous section, F is a closed convex subset of C . Since PF is nonexpansive, the composed
mapping PF f of C into itself is a Meir–Keeler contraction on C; see [5, Proposition 3]. By Theorem 2.1, there exists a unique
fixed point z ∈ F of PF f . We have that Cn is a closed convex subset of H and ∅ ≠ F ⊂ Cn+1 ⊂ Cn for all n ∈ N. Thus,
{xn} is well defined. Since the composed mapping P

∞
n=1 Cn f is a Meir–Keeler contraction on C , there exists a unique fixed

point u ∈


∞

n=1 Cn of P
∞
n=1 Cn f from Theorem 2.1. Let zn = PCn f (u) for each n ∈ N. We get


∞

n=1 Cn = M-limnCn, since
F ⊂ Cn+1 ⊂ Cn for every n ∈ N. Thus, by Theorem 2.3,

zn → P ∞
n=1

Cn
f (u) = u. (2)

Next, we prove that xn → u. If this were not so, it would hold that lim supn→∞ ∥xn − u∥ > 0. Let ϵ > 0, such that ϵ <
lim supn→∞ ∥xn − u∥. By the definition of Meir–Keeler contraction, there exists δ > 0 with ϵ + δ < lim supn→∞ ∥xn − u∥
such that ∥x − y∥ < ϵ + δ implies that ∥f (x) − f (y)∥ < ϵ for all x, y ∈ C . From Lemma 2.2, there exists r ∈ (0, 1) such that
∥x − y∥ ≥ ϵ+δ implies that ∥f (x) − f (y)∥ ≤ r ∥x − y∥ for every x, y ∈ C . By (2), there exists n0 ∈ N such that ∥zn − u∥ < δ
for each n ≥ n0. As in the proof of [5, Theorem 8], we consider the following two cases.

(i) There exists n1 ≥ n0 such that
xn1 − u

 < ϵ + δ.
(ii) ∥xn − u∥ ≥ ϵ + δ for every n ≥ n0.

In case (i), it holds that
xn1+1 − zn1+1

 ≤
f (xn1) − f (u)

 < ϵ since
xn1 − u

 < ϵ + δ. Thus we getxn1+1 − u
 ≤

xn1+1 − zn1+1
 +

zn1+1 − u
 < ϵ + δ.

This means that

lim sup
n→∞

∥xn − u∥ ≤ ϵ + δ < lim sup
n→∞

∥xn − u∥ .

This is a contradiction. In case (ii), we have ∥f (xn) − f (u)∥ ≤ r ∥xn − u∥ for all n ≥ n0. Thus we get

∥xn+1 − zn+1∥ ≤ ∥f (xn) − f (u)∥ ≤ r ∥xn − u∥ ≤ r(∥xn − zn∥ + ∥zn − u∥)

for every n ≥ n0. By (2),

lim sup
n→∞

∥xn − zn∥ = lim sup
n→∞

∥xn+1 − zn+1∥

≤ r lim sup
n→∞

∥xn − zn∥

< lim sup
n→∞

∥xn − zn∥ .

This is a contradiction. Therefore, we get

lim
n→∞

xn = u. (3)

Since xn+1 = PCn+1 f (xn), we have ⟨f (xn) − xn+1, xn+1 − y⟩ ≥ 0 for each y ∈ Cn+1. Using F ⊂ Cn+1, we get
⟨f (xn) − xn+1, xn+1 − y⟩ ≥ 0 for every n ∈ N and y ∈ F , which implies that

⟨f (u) − u, u − y⟩ ≥ 0 (4)

for all y ∈ F . On the other hand, since xn+1 ∈ Cn+1, we have

∥yn − xn+1∥
2

≤ ∥xn − xn+1∥
2
− an ∥xn − yn∥2

;

that is,

(1 + an) ∥yn − xn∥2
≤ 2 ⟨yn − xn, xn+1 − xn⟩ ≤ 2 ∥yn − xn∥ ∥xn+1 − xn∥

for every n ∈ N. Hence, we get

(1 + an) ∥yn − xn∥ ≤ 2 ∥xn+1 − xn∥ ,

which implies that

lim
n→∞

yn = lim
n→∞

Tnxn = u (5)

by (3) and lim infn→∞ an > −1. From (3), (5), and the assumption, we have that u ∈ F . Therefore, u = z0 by (4). The proof
is complete. �
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We also get the following result by using the modified shrinking projection method proposed by Qin et al. [21].

Theorem 4.2. Let C be a nonempty closed convex subset of H, and let {Tn} be a sequence of mappings of C into itself with
F =


∞

n=1 F(Tn) ≠ ∅ which satisfies the following condition: there exists {an} ⊂ R with lim infn→∞ an > −1 such that
∥Tnx − z∥2

≤ ∥x − z∥2
− an ∥(I − Tn)x∥2 for every n ∈ N, x ∈ C, and z ∈ F . Let f be a Meir–Keeler contraction of C into itself,

and let {xn} be a sequence generated by

x1 = x ∈ C,
yn = Tnxn,
Cn = {z ∈ C : ∥yn − z∥2

≤ ∥xn − z∥2
− an ∥xn − yn∥2

},

Qn =


C (n = 1)
{z ∈ Qn−1 : ⟨f (xn−1) − xn, xn − z⟩ ≥ 0} (n ≥ 2),

xn+1 = PCn∩Qn f (xn)

for each n ∈ N. Assume that, for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z imply that z ∈ F . Then, {xn} converges
strongly to z0 ∈ F , which satisfies PF f (z0) = z0.
Proof. We have that Cn and Qn are closed convex subsets of H and F ⊂ Cn for every n ∈ N. We prove that F ⊂ Qn for every
n ∈ N and that a sequence {xn} is well defined. We have x1 = x ∈ C and F ⊂ Q1 = C . Assume that xk ∈ C and F ⊂ Qk for
some k ∈ N. Since F ⊂ Ck ∩ Qk, there exists a unique element xk+1 = PCk∩Qk f (xk), and hence ⟨f (xk) − xk+1, xk+1 − z⟩ ≥ 0
for all z ∈ Ck ∩ Qk, which implies that ⟨f (xk) − xk+1, xk+1 − z⟩ ≥ 0 for all z ∈ F . Thus we get F ⊂ Qk+1. Since P

∞
n=1 Qn f is a

Meir–Keeler contraction on C , there exists a unique element u ∈


∞

n=1 Qn such that P
∞
n=1 Qn f (u) = u. Let zn = PQn(f (u)).

Since F ⊂ Qn+1 ⊂ Qn, it follows from Theorem 2.3 that zn → u = P
∞
n=1 Qn f (u). We also have xn = PQn(f (xn−1)) by the

definition of Qn. Therefore, as in the proof of Theorem 4.1, we get xn → u, and we obtain that (4) holds for all y ∈ F , since
F ⊂ Qn for n ∈ N, and (5) from lim infn→∞ an > −1. It follows that u ∈ F , and therefore we have u = z0. �

5. Deduced results

Wewill now present some convergence theorems deduced from the results in the previous section. By Theorem 4.1, we
get the following result [12], which extends that in [11]. Notice that finitely many coefficients in {an} can be less than or
equal to −1.

Theorem 5.1 (Kimura–Nakajo–Takahashi [12]). Let C be a nonempty closed convex subset of H, and let {Tn} be a sequence
of mappings of C into itself with F =


∞

n=1 F(Tn) ≠ ∅ which satisfies the following condition: there exists {an} ⊂ R with
lim infn→∞ an > −1 such that ∥Tnx − z∥2

≤ ∥x − z∥2
− an ∥(I − Tn)x∥2 for every n ∈ N, x ∈ C, and z ∈ F . Let {xn} be a

sequence generated by
x1 = x ∈ C,
C1 = C,
yn = Tnxn,
Cn+1 = {z ∈ Cn : ∥yn − z∥2

≤ ∥xn − z∥2
− an ∥xn − yn∥2

},
xn+1 = PCn+1x

for each n ∈ N. Assume that, for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z imply that z ∈ F . Then, {xn} converges
strongly to z0 = PFx.

By Theorem 4.2, we have the following result for the modified shrinking projection method.

Theorem 5.2. Let C be a nonempty closed convex subset of H, and let {Tn} be a sequence of mappings of C into itself with
F =


∞

n=1 F(Tn) ≠ ∅ which satisfies the following condition: there exists {an} ⊂ R with lim infn→∞ an > −1 such that
∥Tnx − z∥2

≤ ∥x − z∥2
− an ∥(I − Tn)x∥2 for every n ∈ N, x ∈ C, and z ∈ F . Let {xn} be a sequence generated by

x1 = x ∈ C,
yn = Tnxn,
Cn = {z ∈ C : ∥yn − z∥2

≤ ∥xn − z∥2
− an ∥xn − yn∥2

},

Qn =


C (n = 1)
{z ∈ Qn−1 : ⟨x − xn, xn − z⟩ ≥ 0} (n ≥ 2),

xn+1 = PCn∩Qnx

for each n ∈ N. Assume that, for every sequence {zn} in C and z ∈ C, zn → z and Tnzn → z imply that z ∈ F . Then, {xn} converges
strongly to z0 = PFx.

Using the idea of [12, Theorem 4.6], we have the following results for a countable family of nonexpansive mappings.

Theorem 5.3. Let C be a nonempty closed convex subset of H. Let J be a countable index set and {Ti : i ∈ J} a family of
nonexpansive mappings of C into itself such that F =


i∈J F(Ti) ≠ ∅. Let f be a Meir–Keeler contraction of C into itself, and let
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{xn} be a sequence generated by
x1 = x ∈ C,
C1 = C,
yn = Ti(n)xn,
Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1 f (xn)

for each n ∈ N, where an index mapping i : N → J satisfies that, for every j ∈ J , there are infinitely many k ∈ N such that
i(k) = j. Then, {xn} converges strongly to z0 ∈ F , which satisfies PF f (z0) = z0.

Theorem 5.4. Let C be a nonempty closed convex subset of H. Let J be a countable index set and {Ti : i ∈ J} a family of
nonexpansive mappings of C into itself such that F =


i∈J F(Ti) ≠ ∅. Let f be a Meir–Keeler contraction of C into itself, and let

{xn} be a sequence generated by

x1 = x ∈ C,
yn = Ti(n)xn,
Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},

Qn =


C (n = 1)
{z ∈ Qn−1 : ⟨f (xn−1) − xn, xn − z⟩ ≥ 0} (n ≥ 2),

xn+1 = PCn∩Qn f (xn)

for each n ∈ N, where an index mapping i : N → J satisfies that, for every j ∈ J , there are infinitely many k ∈ N such that
i(k) = j. Then, {xn} converges strongly to z0 ∈ F , which satisfies PF f (z0) = z0.

6. Semigroups of quasi-pseudocontractive mappings

In this section, we discuss one-parameter Lipschitz semigroups of quasi-pseudocontractive mappings and a sequence of
mappings generated by the semigroup and prove strong convergence theorems to a common fixed point of a semigroup.

Let C be a nonempty closed convex subset of H . A family S = {T (t) : 0 ≤ t < ∞} of mappings of C into itself is called a
one-parameter Lipschitz semigroup of quasi-pseudocontractive mappings with Lipschitz constants {L(t) : 0 ≤ t < ∞} if it
satisfies the following conditions.

(a) T (s + t) = T (s)T (t) for every s, t ≥ 0.
(b) ∥T (t)x − T (t)y∥ ≤ L(t) ∥x − y∥ for all x, y ∈ C and t ≥ 0.
(c) sup0≤t≤t0 L(t) < ∞ for some t0 > 0.
(d) ∥T (t)x − T (t)z∥2

≤ ∥x − z∥2
+ ∥(I − T (t))x∥2 for every x ∈ C, z ∈ F(T (t)), and t ≥ 0.

(e) For each x ∈ C , the mapping t → T (t)x of [0, ∞) into C is strongly continuous.

From (a), we may assume that L(s + t) ≤ L(s)L(t) for all s, t ≥ 0. Thus (c) is equivalent to sup0≤t≤t0 L(t) < ∞ for every
t0 > 0. We denote by F(S) the set of all common fixed points of S; that is, F(S) =


t≥0 F(T (t)).

Obviously, a one-parameter Lipschitz semigroup of quasi-pseudocontractive mappings is a generalization of a one-
parameter nonexpansive semigroup. Moreover, the following example shows that the family of all the one-parameter
nonexpansive semigroups on C is a proper subclass of the family of mappings satisfying the conditions above.

Example 6.1. Let p0 : [0, 2π ] → [0, 2π ] satisfy the following conditions.

(i) p0 is a strictly increasing and belongs to C1([0, 2π ]).
(ii) p0(0) = 0 and p0(2π) = 2π .
(iii) p′

0(0) = p′

0(2π).
(iv) 0 < infθ∈[0,2π ] p′

0(θ) < supθ∈[0,2π ] p′

0(θ) < ∞.

For example, a function p0 : [0, 2π ] → [0, 2π ] defined by

p0(θ) =
−θ3

+ 3πθ2
+ 3θ

2π2 + 3
for θ ∈ [0, 2π ] satisfies these conditions.

Let p : [0, ∞) → R be an extension of p0 satisfying that p(θ + 2πn) = p0(θ) + 2πn for every θ ∈ [0, 2π) and n ∈ N.
Then it follows that p is strictly increasing and p ∈ C1([0, ∞)). Define a family of mappings S = {T (t) : 0 ≤ t < ∞} on
H = R2 as follows. For t ≥ 0, using polar coordinates, we define a mapping T (t) : H → H by

T (t)(r, θ) = (r, qt(θ))

and T (t)(0) = 0, where qt(θ) = p(p−1(θ) + t). Since qt satisfies that qt(θ + 2πn) = qt(θ) + 2πn for every θ ∈ [0, 2π)
and n ∈ N, we see that T (t) is well defined for every θ ≥ 0 by identifying (r, θ + 2πn) = (r, θ) in H for every n ∈ N.
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For (r, θ) ∈ H and t, s ≥ 0, we have T (t)T (s)(r, θ) = T (t)(r, qs(θ)) = (r, qt(qs(θ))) and

qt(qs(θ)) = qt(p(p−1(θ) + s))
= p(p−1(p(p−1(θ) + s)) + t)
= p(p−1(θ) + s + t)
= qt+s(θ).

Thus we have T (t)T (s) = T (t + s) for t, s ≥ 0.
It is easy to see that F(T (t)) = H if t = 2πn for some n ∈ N and F(T (t)) = {0} otherwise. We have

∥T (t)x − 0∥2
= ∥T (t)x∥2

= ∥x∥2
≤ ∥x − 0∥2

+ ∥(I − T (t))x∥2

for t ≥ 0 and x ∈ H . On the other hand, since the function t → qt(θ) is continuous for fixed θ ≥ 0, we have that t → T (t)x
is strongly continuous.

For fixed t ≥ 0, let us show that T (t) is Lipschitz continuous. Using orthogonal coordinates with variables (u, v), we
obtain

∂T (t)
∂u

=


cos θ cos qt(θ) + q′

t(θ) sin θ sin qt(θ)
cos θ sin qt(θ) − q′

t(θ) sin θ cos qt(θ)


,

∂T (t)
∂v

=


sin θ cos qt(θ) − q′

t(θ) cos θ sin qt(θ)
sin θ sin qt(θ) + q′

t(θ) cos θ cos qt(θ)


.

Since q′
t is bounded, so are ∂T (t)/∂u and ∂T (t)/∂v for x, y ∈ H . By the mean value theorem, we obtain that T (t) is Lipschitz

continuous.
We also have that {T (t) : 0 ≤ t < ∞} is not a nonexpansive semigroup. Indeed, let t0 ∈ [0, ∞) and θ0 ∈ [0, 2π) satisfy

that 0 < p′(θ0) < p′(θ0 + t0), and let θ1 = p(θ0). Then we have

q′

t0(θ1) = p′(p−1(θ1) + t0)(p−1)′(θ1) =
p′(p−1(θ1) + t0)

p′(p−1(θ1))
=

p′(θ0 + t0)
p′(θ0)

> 1.

Thus we can find d0 satisfying 1 < d0 < q′
t0(θ1). Letting θ2 ∈ (θ1, ∞) be sufficiently close to θ1, we get

qt0(θ2) − qt0(θ1)
θ2 − θ1

> d0 and
qt0(θ2) − qt0(θ1)

∥T (t0)(1, θ2) − T (t0)(1, θ1)∥
< d0.

Then we have

∥T (t0)(1, θ2) − T (t0)(1, θ1)∥ >
1
d0

(qt0(θ2) − qt0(θ1))

> θ2 − θ1

> ∥(1, θ2) − (1, θ1)∥ .

Therefore T (t0) is not nonexpansive.

We generate a sequence of mappings satisfying the assumptions in the main results by using a one-parameter Lipschitz
semigroup of quasi-pseudocontractive mappings. For this semigroup, we need the following lemma, given by Suzuki [22],
concerning real numbers.

Lemma 6.2 (Suzuki [22]). Let {tn} and τ be a real sequence and a real number, respectively, satisfying lim infn→∞ tn ≤ τ ≤

lim supn→∞ tn. Suppose that either lim supn→∞(tn+1 − tn) ≤ 0 or lim infn→∞(tn+1 − tn) ≥ 0 holds. Then, τ is a cluster point
of {tn}. Moreover, for ϵ > 0 and k,m ∈ N, there exists m0 ≥ m such that

tj − τ
 < ϵ for j ∈ N with m0 ≤ j ≤ m0 + k.

By this lemma and the method of [22, Theorem 4], we get the following result for one-parameter Lipschitz quasi-
pseudocontractive semigroups.

Lemma 6.3. Let C be a nonempty closed convex subset of H, and let S = {T (t) : 0 ≤ t < ∞} be a one-parameter Lipschitz
semigroup of quasi-pseudocontractive mappings on C with Lipschitz constants {L(t)} ⊂ [1, ∞) such that F = F(S) ≠ ∅. Let
{tn} ⊂ [0, ∞) be such that 0 = lim infn→∞ tn < s0 = lim supn→∞ tn ≤ ∞ and limn→∞(tn+1 − tn) = 0. Define a sequence
{Tn} of mappings on C by

Tnx = T (tn)(αnx + (1 − αn)T (tn)x)

for all n ∈ N and x ∈ C, where

1 + L(tn)2/(


1 + L(tn)2 + 1) ≤ αn ≤ 1 for all n ∈ N. Then, the following hold.

(i) ∥Tnx − z∥2
≤ ∥x − z∥2

+ αn ∥(I − Tn)x∥2 for all n ∈ N, x ∈ C, and z ∈ F(T (tn)).
(ii) If (L − 1)/L < lim infn→∞ αn, where L = sup0≤t≤s0 L(t), then


∞

n=1 F(Tn) = F and, for a sequence {zn} in C and z ∈ C,
zn → z and Tnzn → z imply that z ∈ F .
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Proof. First let us show (i). As in the proof of [23, Theorem 3.1], we have

∥Tnx − z∥2
≤ ∥x − z∥2

+ βn ∥(I − T (tn))x∥2
+ αn ∥(I − Tn)x∥2

for every n ∈ N, x ∈ C , and z ∈ F(T (tn)), where βn = (1 − αn)(L(tn)2α2
n − 2(1 + L(tn)2)αn + (1 + L(tn)2)) for n ∈ N. Since

1 + L(tn)2/(

1 + L(tn)2 + 1) ≤ αn ≤ 1, we have βn ≤ 0, and hence ∥Tnx − z∥2

≤ ∥x − z∥2
+ αn ∥(I − Tn)x∥2.

For (ii), let {zn} be a sequence in C and z ∈ C such that zn → z and Tnzn → z. Let 0 < t0 < s0 and 0 ≤ τ ≤ t0. By
Lemma 6.2, there exists a subsequence {tni} of {tn} such that tni ≥ τ for all i ∈ N and limi→∞ tni = τ ; see also [22, Theorem
4]. It follows thatT (tni)zni − zni

 ≤
Tnizni − zni

 +
Tnizni − T (tni)zni


≤

Tnizni − zni
 + L(tni)(1 − αni)

zni − T (tni)zni


≤
Tnizni − zni

 + L(1 − αni)
zni − T (tni)zni

 ,

which implies that (1 − L(1 − αni))
zni − T (tni)zni

 ≤
Tnizni − zni

 for all i ∈ N. Since (L − 1)/L < lim infn→∞ αn, we get
limi→∞

zni − T (tni)zni
 = 0. We also havezni − T (τ )zni

 ≤
zni − T (tni)zni

 +
T (tni)zni − T (tni)z

 +
T (tni)z − T (τ )z

 +
T (τ )z − T (τ )zni


≤

zni − T (tni)zni
 + 2L

zni − z
 +

T (tni)z − T (τ )z
 ,

and hence z = T (τ )z for every τ ∈ [0, t0]. Let t > 0. Then, letting m be a maximum integer not exceeding t/t0, we have
t = mt0 + t − mt0 and T (t − mt0)z = T (mt0)z = z. Thus we get

T (t)z = T (mt0 + t − mt0)z = T (mt0)T (t − mt0)z = z.

Therefore, z ∈ F . From this argument, we get


∞

n=1 F(Tn) = F . �

Using this result, we get the following theorems for a one-parameter Lipschitz semigroup of quasi-pseudocontractive
mappings.

Theorem 6.4. Let C be a nonempty closed convex subset of H, and let S = {T (t) : 0 ≤ t < ∞} be a one-parameter Lipschitz
semigroup of quasi-pseudocontractive mappings on C with Lipschitz constants {L(t)} ⊂ [1, ∞) such that F = F(S) ≠ ∅. Let
{tn} ⊂ [0, ∞) be such that 0 = lim infn→∞ tn < s0 = lim supn→∞ tn ≤ ∞ and limn→∞(tn+1 − tn) = 0. Let {αn} ⊂ R be such
that


1 + L(tn)2/(


1 + L(tn)2 + 1) ≤ αn ≤ 1 for all n ∈ N, (L − 1)/L < lim infn→∞ αn, and lim supn→∞ αn < 1, where

L = sup0≤t≤s0 L(t). Let f be a Meir–Keeler contraction of C into itself, and let {xn} be a sequence generated by
x1 = x ∈ C,
C1 = C,
yn = T (tn)(αnxn + (1 − αn)T (tn)xn),
Cn+1 = {z ∈ Cn : ∥yn − z∥2

≤ ∥xn − z∥2
+ αn ∥xn − yn∥2

},
xn+1 = PCn+1 f (xn)

for each n ∈ N. Then, {xn} converges strongly to z0 ∈ F , which satisfies PF f (z0) = z0.

Theorem 6.5. Let C be a nonempty closed convex subset of H, and let S = {T (t) : 0 ≤ t < ∞} be a one-parameter Lipschitz
semigroup of quasi-pseudocontractive mappings on C with Lipschitz constants {L(t)} ⊂ [1, ∞) such that F = F(S) ≠ ∅. Let
{tn} ⊂ [0, ∞) be such that 0 = lim infn→∞ tn < s0 = lim supn→∞ tn ≤ ∞ and limn→∞(tn+1 − tn) = 0. Let {αn} ⊂ R be such
that


1 + L(tn)2/(


1 + L(tn)2 + 1) ≤ αn ≤ 1 for all n ∈ N, (L − 1)/L < lim infn→∞ αn, and lim supn→∞ αn < 1, where

L = sup0≤t≤s0 L(t). Let f be a Meir–Keeler contraction of C into itself, and let {xn} be a sequence generated by

x1 = x ∈ C,
yn = T (tn)(αnxn + (1 − αn)T (tn)xn),
Cn = {z ∈ C : ∥yn − z∥2

≤ ∥xn − z∥2
+ αn ∥xn − yn∥2

},

Qn =


C (n = 1)
{z ∈ Qn−1 : ⟨f (xn−1) − xn, xn − z⟩ ≥ 0} (n ≥ 2),

xn+1 = PCn∩Qn f (xn)

for each n ∈ N. Then, {xn} converges strongly to z0 ∈ F , which satisfies PF f (z0) = z0.
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