
INFORMATION AND CONTROL 17, 485-500 (1970) 

The Weight Enumerators for Certain Subcodes 
of the Second Order Binary Reed-Muller Codes 

E. R. BERLEKAMP 

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 

In this paper we obtain formulas for the number  of codewords of each 
weight in several classes of subcodes of the second order Reed-Muller  codes. 
Our formulas are derived from the following results: (i) the weight enumerator 
of the second order RM code, as given by Berlekamp-Sloane (1970), (ii) the 
MacWilliams-Pless identities, (iii) a new result we present here (Theorem 1), 
(iv) the Carli tz-Uchiyama (1957) bound, and, (iv') the BCH bound. 

The  class of codes whose weight enumerators are determined includes sub- 
classes whose weight enumerators were previously found by Kasami (1967-69) 
and Berlekamp (1968a, b). 

We begin with a new theorem which asserts that all sufficiently low 
weight codewords in certain supercodes of the (m - -  3)rd order Reed-Muller 
code must also lie in the (m --  3)rd order Reed-Muller code. 

THEOREM 1. I f  ~ is an extended cyclic code of length 2 ~, which is invariant 
under the translational group and whose generator polynomial' s roots include ak 
for all k in the set 

k = l ;  1 + 2, 1 + 22, 1 + 23,..., 1 + 2 t-1 

or i f  there exists an s such that the generator polynomial's roots include ~k 
for all k in the set 

k = 1; 1 + 2 ~+1, 1 -+- 2 ~+2, 1 -+- 2s+3,..., 1 + 2 ~+2~-1, 

and i f  c ~ ~ is a codeword of weight ~2t ,  then c is also a codeword in the 
(m -- 3)rd order Reed-Muller code of length 2 ~. 

Proof. Without loss of generality, we may assume that weight (c) = 2t. 
Let  X1,  X2, X 3 ,..., X2~ be the elements in GF(2 '~) corresponding to the 
nonzero coordinates of c. Since ~ and the Reed-Muller code are invariant 
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under the same transitive group of permutations of their coordinates, there 
is no loss of generality in assuming that X2t = 0. We denote the power- 
sum symmetric functions of the X ' s  by 

2t--1 

st  = Z x / .  (1) 
i = l  

I t  is clear that S 2 / =  Sg z and that $1+2t = (Sl+e~-t) et. I f  e¢ k is a root of the 
code's generator polynomial, then Sk = 0. The  roots of the generator 
polynomial of the (m - -  3)rd order RM code include a~*(~J+l) for all non- 
negative i and j .  Hence, if c e N but c is not in the (m - -  3)rd order RM 
code, then there must  exist a v (v /> t) such that for all i 

$ 2  i z 0 

$2q1+~, ) = 0 

Sv(I+~. ) ~ 0 

llv, 2, 3,..., v - - 1  if v < 2 t ,  
for j =  { 2 t + l , v - - 2 t + 2  ..... v - - 1  (2) 

if v >~ 2t. 

T o  show that the assumption of Eq. (2) leads to a contradiction, we will 
show that S~+1 can be expressed as a linear combination of Sv(2~+1 ) for 
i < v. T o  this end, we introduce the locator polynomial 

and its reciprocal, 

2t--1 

~(z) = 1-I (1 - x ~ )  
i = 1  

2t--1 

f ( ~ )  = ~(z) = I I  (z - x 3 .  
i = 1  

Now if F(z)  = Z~F,~z ~ is some polynomial which is a multiple o f f ( z ) ,  
then F(Xi)  = 0 for 1 ~< i < 2t and 

2t--1 2~--1 

2 Z F . X ~  = Z F .  Z x ¢  = Z F . s .  = o. 
i = l  n n i = l  n 

In  other words, 

if ~ F n z  n =~ 0 m o d f ( z )  then ~ F n S ~  = 0. (3) 
n 
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We now wish to obtain an appropriate  polynomial  F(z). To do this, we 
first factor f ( z )  into two factors, fro(z) and f I21(z), defined by 

t--1 

fro(z) = ~I (z -- X,), 
i = 1  

2t - -1  

= F I  (z - x , ) .  

Of course, the only proper ty  we really need is that  d e g f  m = t - -  1 and 
d e g f  ¢21 --=- t; the labelling of the indices on the Xi makes no real difference. 

We next compute the least linearized mult iple of f ro (z ) .  Since there 
are only t -  1 distinct residue classes modulo fro(z), the residues of 
z, z 2, z 2~, z~8,..., z 2.-1 cannot be linearly independent.  We may therefore 
obtain a nontrivial relation of the form 

t - -1  

L(z) = ~ Li zv ~-- 0 m o d f m ( z )  
i = 0  

which  implies that  fm(z)[L(z).  If  L 0 = 0, then L(z) is a perfect square, 
and f r o ( z )  must  also divide its square root. Therefore,  we may assume that  
L 0 4= 0, and by appropriate normalization we may take L 0 = 1. 

In  a similar manner,  we may compute a polynomial K(z) which satisfies 

t 

K(z) = ~ Kiz v =~ 0 modfIZ)(z). 
i=O 

In  this case, however, we normalize in such a way as to make K(z) monic. 
Instead of taking the square root, we square K(z) as many times as necessary 
to bring the degree of K(z) up to 2 ~. We then have 

We now have 

o r  

Since 

f(2)(z) ~ Kiz v, K~ = 1. 
i=v-- t  

fm(z)  f(2)(z) l L(z) K(z) 

K(z )  =-- 0 m o d f ( z ) .  

~=0 j = v - t  
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it follows from Eq. (3) that 

t--1 i 0 = E LiKS2'+2'" (4) 
~=0 j=v--t  

The  only subscripts of S which occur in this expression are of the form 

2 i -F 2 j = 2min(4J)(1 @ 21t-~]), 

where v -F 1 - -  2t ~ I i - j I ~ v. The  upper  bound on [ i - -  j [ is attained 
only when j = v, i = 0, and since LoK ~ = 1, Eq. (4) contradicts Eq. (2). 

Q.E.D. 

We shall now show that Theorem 1, in conjunction with previously 
known results, enables us to determine the weight enumerators for two 
sequences of codes which are supercodes of the first order Reed-Muller  
codes and subcodes of the second order Reed-Muller  codes. 

DEFINITIONS. Let  [x] be the greatest integer less than or equal to x. 
For u = 1, 2, 3 , . ,  [m/2] q- 1, let ~(u) be the extended cyclic code of length 
2 ~ whose generator polynomial is 

U--1 
g(x) = 1-[ M~1+2"(x) 

i=0 

where MO)(x) is the minimal polynomial of cd and ~ is a primitive element 
in GF(2~). Let  ~ " )  be the extended cyclic code of length 2 m whose generator 
polynomial is 

U--9, 
g(x) = M(1)(x) ]-[ MII+~L'/2J-')(x), 

i=0 

if m is odd, or 

u-- t  

g(x) = mm(x) m(~+~'~/'~(x) [ [  ma+~L'l~]-'~(x), 
i=O 

if m is even. The  duals of ~(u) and ~(~) will be denoted by ~(u) and ~(u) 
respectively. 

Remarks. The  dimension of ~(u) is 1 + u m  except when m is even and 
u = [m/2] + 1; in that case the dimension is 1 + m(m + 1)/2. ~(1), ~(~), 
and ~(3) are extended 1-, 2-, and 3-error-correcting BCH codes. ~(Lm/e3+l) is 
the second order Reed-Muller  code. 
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The  dimension of c~(~) is 1 + um if m is odd, but  it is 1 + (u + 1/2)m 
if m is even. When u ~ [(m + 1)/2] - -  [m/3] + 1, cg(~) is a BCH code. 

THEOREM 2. The weight enumerators of ~(u) and M(u) are uniquely 
determined by the following: 

(i) the weight enumerator of the second order RM code C{(L'~/2J +1), as given 
by Berlekamp-Sloane (1970), 

(ii) the MacWilliams-Pless identities, 

(iii) Theorem 1, 

(iv) the Carlitz-Uchiyama (1957) bound. 

The weight enumerators of ~ (u) and ~(u) are uniquely determined by (i), (ii), (iii) 
above and 

(iv') the BCH bound. 

I f  m is odd, the weight enumerators for c~(u) and ~(~) are identical to the 
weight enumerators for C{ (~) and ~(~), respectively. 

Proof. Let  ~l~:~(u), "-'w~(u), -wC(~), and --wD(~) be the number  of codewords of 
weight w in C{ (~), ~(u), c~(u), and ~(~), respectively. An explicit, simplified 
formula for A(~ ~/2j+1) is given by Berlekamp-Sloane (1970). From this, the 
MaeWilliams-Pless identities determine R ([~/2J+1) Theorem 1 then gives - - Y 3  

B(~) ~_ B(L~/2j+I) for w = 0, 1, 2,..., 2u. I f  m is even, the roots of the 
W - - W  

generator polynomial of ~(u) include ~ for k = 1 and for all k of the form 
k ~- 1 + U; m/2 - -  (u - - 1 )  ~ i ~ m / 2 .  Since 

(1 ÷ 2 ~/2+j) ~- 2"~/2+~(1 + 2 "/2-~) mod 2 ~ - -  1, 

the generator polynomial 's  roots must also include a ~ for all h of the form 
k =- 1 + 2 i, m/2 - -  (u - -  1) ~ i ~ m/2 + (u --  1). Theorem 1 then gives 
D(~) ~-- l? (~/~+1) for w = 0, 1, 2 , . ,  2u. I f  m is odd, a similar application of 

W - - q #  

Theorem 1 gives D(~ ~) = B,~(L~/2J +1) for w = 0, 1, 2,..., 2u - -  2. 
One of the known properties of the known -~wa(L~/2a+~), which was first 

discovered by Kasami (1967-1969), is that 

Aw ~ 0 unless w is of the form 

w = 2 m-1 + ~2('~+i)/2-1, (4) 

w h e r e E - - ~ 0 o r  ~ 1  a n d i ~ m m o d 2 .  

Since Ct '(~) C ~(L~/2j+I), Eq. (4) also holds for C{ (u). Since cg(u) C ~(Lm/~j+l), 
Eq. (4) also holds for ~(~). 
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Restated in the terminology of binary coding theory, the Carl i tz-Uchiyama 
(1957) bound asserts that the min imum distance of the dual of the extended 
t-error-correcting binary BCH code of length 2 ~ is bounded by 

d > / 2  m-1 - -  (t - -  1) 2 ~/2. 

Since ~(u) is a subcode of the dual of the 1 + 2u-~-error-correcting BCH 
code, the Carl i tz-Uchiyama bound guarantees that its distance is bounded by 

d ~> 2 ~-1 - -  2~/2+~-~. (5) 

The  BCH bound asserts that Eq. (5) is also valid for c~(~). Applying this 
bound to Eq. (4), we deduce that 

A(u) = 0 unless w = O, N, N/2, or some number  of the form 
W 

w = 2 ~-1 ± 2 (~+i)/2-1, (6) 

w h e r e i ~ m m o d 2 a n d 0  ~ < i ~ < 2 ( u - - 1 ) .  

Since A~U)= A ~ ) =  1, the number  of w's for which Aw (or Cw) is 
unknown is only 2u - -  1 or 2u + 1, depending on whether m is odd or even. 
In either case, the Pless identities give us sufficient equations relating these 
unknown _A(")w (or _~C(u)~, to the B(j u) (or D(U)~3 , with sufficiently low j to be 
known from Theorem 1, and the Pless identities are known to have a unique 
solution. I f  m is odd, the fact that A~ u) = C~ ") follows from the fact that 
they are the solution to the same set of Pless identities. When m is even, 
the Pless identities for A~w ") and C(~ ) differ because the dimensionality of 
the code enters into the Pless identities. Q.E.D. 

We now procede to derive explicit formulas for these weight enumerators,  
following the methods described in the proof of Theorem 2. The  answers 
are naturally expressed in terms of Guassian binomial coefficients, which are 
defined as follows: For any real y and any nonnegative integer j ,  let 

11 [i if i=0, 
[Y] ~ 1--xY+a-Jl--xJ --Yl] if j > 0 ,  

1 if j = O ,  
[J] = ( 1 - -  M)[j  - - 1 ]  if j > 0 .  

This  is the conventional definition of the Guassian binomial coefficients in 
terms of the indeterminate x. When dealing with subcodes of the second 
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order Reed-Muller  code, however, we shall always assume that x = 4. 
Thus,  in this paper, 

[~] : f~ (, ~,+,,) 
,=1 (1 - -  4 i) 

The  utility of this definition may be seen be examining the weight enumerator 
of the second order Reed-Muller  code itself, which was determined by 
Berlekamp and Sloane (1970) to be 

/ 2 ' ~ - 1 ± 2 m - 1 - '  = 2s{'+~) I (2~ --  4--11)(2~-~ - -  1) I ×  I (2 ~-2 --42_11)(2 ' ' -a --  1) t 

"" × I (2'~-2J+2 --4 51)(2m-=s+l- 1 - -  1) I 

with the side conditions that A 0 : A2m = 1, A~ : 0 unless i : 2 ~-1 or 
some number of the form 2 ~-1 q- 2 ~-l-J, and that once the rest of the 
weights are known, A~m-1 can then be easily determined from the formula 
~ d i : 2 aims. Since these side conditions also apply to all subcodes of 
the second Reed-Muller  code, we assume them throughout the rest of this 
paper. When the Berlekamp-Sloane formulas are rewritten in terms of the 
Guassian binomial coefficients with x : 4, they become 

(J+l] 
A,o_I~,°_,_, : 4. ~, ~-,)~ [ ; q  [( m ')i~] Eil. 

The  Guassian binomial coefficients also prove useful in expressing the 
weight enumerators of the subcodes 6~ (~) and cgt~). The  results are stated 
in Theorem 3. 

THEOREM 3. I f  m is odd, 

<o> [(,, - , ) q  ~o-,-~;o<~> A~U2_l_2(m_l)12+, = C~m_l_2(m_l)i2+i = j i'S 

where for j = u - -  2, u - -  3 , . . . ,  1, 0; O(u) is recursively given b y  ~ j  

u;-2 ~ ] 
~jO (u) = 2 . . . .  ~ - m  1 --  Z ~J+,r)(u) [(m --  .)/2 - - j  . 

i=1 
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( I f  j = u - -  2, the vacuous sum is taken as 0.) I f  m is even, 

2 - - - 2  m/2+J-1 = 

where f o r  j = u - -  1, u - -  2,..., 1, O, 

and  

o+1 o<o> [%_ q 
P~(") = 2 " * u - ~ ' - ~ + ' -  1 - -  2 " s+i 

i = 1  

2m_l_2m[2+~_ 1 z 

where f o r  j = u - -  1, u - -  2,.. . ,  1, O, 

U--S--I ]O(u)[m/2 i -  J] _.jR (u) = 2 m l ~ + m u - m ~ ' - m + j -  1 - -  ~ ~'s+i 
i = 1  

Remarks .  Theorem 3 gives the min imum distance of ~(~) and ~(~) as 
d = 2 "*-1 - -  2 ("*-1)/2+"-2 for m odd or as d = 2 "*-1 - -  2 m/2+u-2 for m even. 

The  min imum distance of ~tu) is thus identical to the lower bound given 
by the BCH theorem. For  even m, the min imum distance of 6g (u) is identical 
to the Car l i tz-Uchiyama lower bound. For  odd m, the min imum distance 
of ~(")  is the min imum value consistent with both the Car l i tz-Uchiyama 
lower bound and Kasami 's  weight restriction for all subcodes of the second 
order R M  code. The  number  of codewords of min imum weight is 

A~ u> -----(2 u - l -  1)2 m-2u+2 [urn/21] 

C~U) = ( 2 " * / 2  +u--1 

(m odd), 

(m odd), 

- ,--,[u'n/211 (,,, odd) 

The  recursions given here for Q, P,  and R are easiest to apply when u is 
small  and m is large. In  certain other cases, different recursions may be 
preferable. Indeed,  when u = (m -1- 1)/2, ~(u) is the full second order R M  
code and the recursion of Q has a simple solution. The  formula for R("*/~) 

also has a simple solution for the same reason. 
I t  is easily seen by induction that every Q is divisible by 2"* - -  1. For  
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some purposes, it may be preferable to alter the recursion in order to compute 
Q/(2 TM -- 1) instead of Q. 

The  proof of Theorem 3 is based on three Lemmas:  

LEMMA 1. I f  either y or z is an integer, then 

~x(:)(--1)J[Yl[~][j]=xU~. 

Proof. Without loss of generality, we may assume that y is integral. 
I f  y ---- 0, then 

~ o ~  ,~, [~1 [;.] E~~ = xo~_,~o [Oo1 [0 ] eo~ = l 

We procede by induction on y. We compute 

J j - -  

(J+lh 

: z ~, ~,,(-,~, [y][;] tj~ 

- -  ~ x ' 2  '(--1)J -}- 1 [ j  -}- I] 
3 

(J+l~ 

LEMMA 2.  

~ r l r ] y  z 
= x~ ~ ~x(~)(--1) '[ jJ[j]  [J] = x'U+"~. 

Q.E.D. 

For integral y or z, 

y z [z 
~x(~)(--1)J[j][j][J] k j]  = [k] xV' ~-k'. 

hoof. Replace the z of Lemma 1 by z - -  h to obtain 

, j [ j ]  = x ~ ° - ~ ' .  
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Multiplying both sides by [~] then yields Lemma 2, because 

i [i] [~] E~] = b + ~] ei  + ~] : ~-J] [~] [}] e,]. 
Q.E.D. 

LEMMA 3. Let 

and ~t 

a(U)i =2-dim~(U)-//i(u) 

A~U) (u) _ _  a ( L m / 2 J + l )  
a 2 m _  1 _ 2 m - l - j  2m--1 _ 2m-- l-- i 

where ~(Lm/2j+l) denotes the full second order Reed-Muller code. Then if ~, k, 
and r are integers such that 0 ~ k, 1 <~ r, and k + r <~ u, then 

~ 4 - ~ J A ( u ' [ g k J  = 0 .  
J 

Proof. One form of the MacWilliams-Pless identities (p. 405 of Algebraic 
Coding Theory) gives, for any u, 

~, (N -- 2i) ~ a (~) = B(u)F(J)(N) 
i j r ~ 

~=0  j=O 

for r = 0, 1, 2,..., where 

F~)(N) = [-ff~-~ cosh~-JzsinhJz]z=0. 

Fortunately, we can eliminate B~ u) and F(j)(N) from the Pless identities for 
r ~ 2u by applying Theorem 1, which states that for w = 0, 1, 2,..., 2u, 
BIU) = R(L~/2j+I) Therefore, if r ~ 2u, W - - W  " 

N N 

E (N -- 2i) r a 'u) = E (N -- 2i) ~ attm/zJ +1' 
i i " 

i = 0  i=O 

Replacing r by 2r, we conclude that for 0 ~< r ~ u, 

N 

(N  -- 2i) ~r {a~ u' --  aIlm/2J+l)}i = O. 
i=O 
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Since a~ ~) = a ~  for all i, 

N/2  

(N - -  2i) ~"/a (~) - -  a (Lm/2J+l)} = O. 
~=0 

If  1 ~< r ~< u, then the summand vanishes for i = N/2 so 

N / 2 - 1  

g 
9=0 

(N - -  202" (a (") - -  a(L~/eJ+l)/ = 0. 

Since a~L~/~J+l) and "9~(u) vanish for all i, 0 <~ i < N/2, except those of the 
form i = 2 m-1 - -  2 ~-1-3, we set N - -  2i = 2 ~-j  and multiply through by 
2 -~* to obtain 

4 -J~ A(Y ) = 0 
9 

J 

for r = 1, 2,..., u. This establishes the Lemma for k = 0. The  proof for 
positive h follows immediately by induction, using the identity 

[{k  j] - - 1 - - 4  ~-j+l-k 
1 - - 4 "  [ ; - - - - J ] "  Q.E.D. 

Proof of Theorem 3. With x = 4, we may apply Lemma 2 to the computa- 
tion of certain sums involving the weights of the second order Reed-Muller 
code, whose weight distribution is given by Berlekamp-Sloane (1970). Setting 
y = m/2 and z = (m --  1)/2 gives, for any i, 

Z A-~A (Lm/eJ+l) 

Alternatively, we may set y = (m --  1)/2 and z = m/2 to obtain 

~ 4  A(Lm/2J+l)2m-l_2~-l-, [m/2 h-  J] : [mh/2 ] 2(m-a)(~/~-k)- 
J 

Since the dimension of 6g(Lm/2J+l) is 1 + m(m q- 1)/2, normalization of these 
two identities yields the single identity 

Z "-J(k~/zJ+l)'4 a2m_L2,,_l_, ['m/2"k--J ] = [[m/k2]]2-1-m"(1-t-h(k,m,u)) 
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where, in order to simplify subsequent expressions, we have introduced 
the definition 

t2 m~-r~k-~ -- 1 if m odd, 
h(k, m, u) : {2 . . . .  ~-m+~ _ 1 if m even. 

Application of Lemma 3 with r = 1, { = [m/2] now yields 

4-'a(~!2 -1_2,,-1-, [ [ m / 2 ~ -  j] : [[mk/2J ] 2-a . . . .  (1 q-h(k, m, u)). 

Since the dimension of ~(u) is 1 + mu and A~o ~) : 1, we may unnormalize 
and then subtract [L~2J] from each side of this identity to obtain 

~ 4_,A<~ )9.m_1_2m_1_, [[ml2~--j] = [[mik2J]h(k,m,u) 
j>O 

for k : 0, 1, 2,..., u - -  1. 
Another definition at this point allows us to generalize the previous 

identity to include the codes cg(u) as well as (2 (u). I f  m is odd, there is no 
problem because C(~*)(z) = A(u)(z) by Theorem 2. To include the case of 
even m, however, it is convenient to define A(')(z)  for half-integers v by the 
equation A(')(z) : C('-112)(z). Since A(')(1) : 2 l+m" remains valid for both 
integral and half-integral v, the previous identity still holds. 

If  v is integral, the Carlitz-Uchiyama bound asserts that A}') = 0 unless 
vr/> 2m-1 _ 2m/2 +,-3. This allows us to boost the lower limit of the summa- 
tion from j > 0 to j ~ m12 q- 1 --  v. When v is half-integral, the BCH 
bound applied to cg(v-1/2) allows us to boost the lower limit of the summation 
to j ~ m/2 q- 1 --  v. In  either case, upper limits on the summation may 
be obtained from the fact that [~] : 0 whenever n is integral and n < k. 
We thus obtain the identity 

Lml2J-lc 4_,..//(.) [[m/2~--j] 
2m_l_2m_l_ ~ 

3=Lml2J+l-LvJ 

[[m/k2]] h(k, m, v ) 

for k ---- 0, 1, 2, . . ,  [v] - -  1. Replacing j by [m/2] - -  j gives 

A-Lm/~l+,a(,) --  h(k, m, v). 
'+ ~i2m-i-2L (m--l)/2] +, - -  
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W e  next apply the identity 

[J] [j][[m/2J --  k][[m/2J - - j ]  [ [ ; (2 ]  k k] 

[[mk/2]] [j -- k][[m/2J][[m/2J -- j] [[;(211 

and the substitution 

4 Qj 
L J J 

to obtain 

Z [ ] = h(k, m, v). 
J=k 

Finally, setting i = j -- k gives 

[ ] i, mod., 
k~J-~-aQ~2i Ira~2 --  k = h(k, m, v) = {2~v_~_~,~+ k _ 1 if m even. 

.= 

For odd m, h(h, m, v) = 0 if k = v -- 1, and this implies that t~(~) = 0. ;~v--1  

This identity is then directly equivalent to Theorem 3. Q.E.D. 

COROLLARY. If j ~ m / 2 -  1, then the extended primitive BCH code of 
length 2" and designed distance d ~- 2 ~-1 --  2J has codewords of weight d. 

Proof. The extended BCH code contains the subcode c~o+2-Lt.,-1)12p and 
Theorem 3 shows that this subcode contains codewords of weight d. Q.E.D. 

This corollary lends further support to the conjecture that the minimum 
distance of all long primitive BCH codes is, in a certain asymptotic sense, 
essentially equal to the Bose distance. More precisely, let I(q, n, d) denote 
the number of information symbols in the q-ary BCH code of length n and 
designed distance d, and let [(q, n, d) denote the maximum number of 
information symbols in any q-ary BCH code of length n and actual distance 
) d .  Berlekamp (1968) has evaluated the singular function 

s(u) = l im l °g I (2 ' 2  m - l , u 2  m) for O < u  < 1/2, 
,ra~ ce m 

643/z7/5-6 
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and conjectured that s(u) = g(u), which is defined as 

~(u) = lim sup log •(2, 2 ~ - -  1, u2 ~) 
m-+oo m 

I t  was previously known that s(u) = ~(u) for various particular values of u, 
including 1/2, 1/4, 1/8, 1/16,..., and certain other sequences of u ~< 1/4. The  
corollary of this paper shows that s(u) = ~(u) for u = 1/4, 3/8, 7/16, 15/31,.... 
Kasami and Tokura  (1968) have shown that 1(2, 2 ~ - -  1, d) > I(2, 2 ~ - -  1, d) 
for various particular values of m and d starting with m = 7, d = 31, but 
the asymptotic conjecture that ~(u) = s(u) for all u, 0 < u < 1/2, remains 
open. 

HISTORICAL REMARKS 

Using a variety of special arguments instead of the Carl i tz-Uchiyama 
bound and Theorem 1 of this paper, Kasami (1967-69) obtained the formulas 
for the enumerators of several of the codes considered here. For even m, 
he enumerated c~(1), ~(2), and ~(2), and he conjectured the correct enumerator 
for 6g 13). For odd m, he enumerated 6g ~), ~(~), ~(2), ~(8), and ~(4). By further 
special arguments, Berlekamp (1968a) obtained enumerators for c~(5) and 
c~(~), odd m. Later, Berlekamp (1968b) observed that the Carl i tz-Uchiyama 
bound completed the proof of Kasami 's  conjectured enumerator for ~(a), 
m even. The  formulas for all of these codes, and several other codes not 
in the classes considered in this paper, are given in Tables 16.3 and 16.4 
of Berlekamp (1968a). 

FURTHER PROBLEMS 

Although Theorem 3 solves the weight enumeration problem for certain 
infinite classes of codes, and the MacWilliams-Pless identities then give the 
weight enumerators of their dual codes in principle, there remains the 
practical problem of actually calculating the answers and simplifying the 
resulting expressions for the weight enumerators of the dual codes. Even 

,4 (Lm/2J+l) the calculation of R (L~/2J+I) from the known --w proves difficult. T h e  - - w  

relevant Pless identities yield relatively cumbersome expressions which are 
not easy to simplify. However, it is known that in the dual of the second 
order RM code, 

B8 = N ( N  --  1)(N - -  2)(N - -  4) 
8 × 7 × 6 × 4  
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Using special arguments, Berlekamp-Sloane (1969) give 

Blo = 0 .  

Kasami-Tokura  (1970) give 

2"~+x(2 ~ - -  1)(2 "~-~ - -  1) . . .  (2 ~-4 - -  1) 
B12 = 45 ' 

5 

2 m+s YI (2 ~- i  - 1) 
B14 = i=0 

72 × 32 

but  no expressions of comparable simplicity are known for Bw when w ~ 16. 
There are also a number  of intriguing questions of a more theoretical 

nature. Is there some geometric characterization of the min imum weight 
codewords in ~(~) and H ¢~), similar to that obtained by DoMing (1969) for 
the min imum weight codewords in ~(2) and H ¢2) ? If  so, what ? Are ~(~) 

and H <~> isomorphic to each other under  some unexpected permutation of 
the coordinates ? If  not, how do they differ ? Are their automorphism groups 

the same ? Are their distributions of coset leaders the same ? 

What  are the weight enumerators for other interesting classes of subcodes 
of the second order Reed-Muller  code ? 

How can Theorem 1 be generalized ?1 Specifically, for an arbitrary linear 

cyclic code, what is the linear cyclic subcode generated by the sufficiently 
low weight codewords of the original code ? Table 16.1 suggests that for 
most short cyclic codes, the min imum weight codewords generate the entire 
code, but  Theorem 1 exhibits cases in which all codewords of weight up 
to and including some number  much larger than the min imum weight all 
lie in a much smaller subcode. 
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1 The alert reader may notice that Theorem 2 implies that when m is odd and 
s = (m - -  1)/2 - -  t, then the conclusion of Theorem 1 remains valid when k ranges 
over the set 

k = l; 1 + 2  s+l,1 + 2~+2,...,1 + 2 ~+2~-2. 

There is no known way of obtaining this strengthened form of Theorem 1 for this 
special case directly. 
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Note added in proof. While this paper was in press, Kasami showed that  these 
same formulas also give the weight enumerators for many more subcodes of the 
second Reed-Muller  codes. Kasami's paper will appear in a forthcoming issue of 
Information and Control. 
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