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The factorization theorems are a generalization for J-biexpansive meromorphic
operator-valued functions on an infinite-dimensional Hilbert space of the theorems
on decomposition of J-expansive matrix functions on a finite-dimensional Hilbert
space due to A. V. Efimov and V. P. Potapov [Uspekhi Mat. Nauk 28 (1973),
65-130; Trudy Moskov. Mat. Obsc. 4 (1955), 125-236]. They also generalize
theorems on factorization of J-expansive meromorphic operator functions due to
Ju. P. Ginzburg [ Ize. Vyss. Ucebn. Zaved. Matematika 32 (1963), 45-53). Within the
framework of generalized network theory, the results can be applied to the
J-biexpansive real operators that characterize a Hilbert port. Application of the
extraction procedure to a given real operator leads to its splitting into a product of
real factors, corresponding to Hilbert ports of a simpler structure. This can be
interpreted as an extension of the classical method of synthesis of passive n-ports
by factor decomposition.

1.

The theory of electrical circuits has acquired an increasingly complex
mathematical structure since the forties. It has attracted the interest of
researchers not only due to the practical applications, but also for its
theoretical aspects. The basic principles of modern network theory can be
found in many books (see, for instance, [1-3]). An important branch of
this theory, the synthesis of linear passive n-ports, is intimately related to
the concept of a J-expansive matrix: scattering, chain and transfer matrices
are J-expansive matrix functions in the right half plane, Rep > 0. This
paper studies factorizations of J-expansive operator functions as an exten-
sion of the synthesis of n-ports by product decomposition of their char-
acteristic matrices developed by Efimov and Potapov [4], Belevitch [5],
Youla [6] and others.

In his profound work, Potapov [7] obtains expressions for the factoriza-
tion of a J-expansive matrix function S(p) into a product of the form
S(p) = A(p). B(p), with both A(p) and B(p) J-expansive in the right half
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plane. The matrix A(p) is holomorphic in Rep > 0 together with its
inverse A~!(p), and B(p) is a Blaschke product formed with the poles of
S(p) and S7!(p) in Rep > 0 (Potapov considers J-contractive, i.e., -J-
expansive matrix functions in the unit circle |z} < 1). Matrices associated
with electrical »#-ports (and with physical systems in general) have an
additional property which is reality; for such matrices this condition can
be expressed by the identity S(p) = S(p) in Rep > 0, where 5 is the
complex conjugate of p and § is the matrix whose elements are the
complex conjugates of the elements of S. Factorization in terms of real
J-expansive matrix functions with special emphasis on scattering, chain
and transfer matrices, introducing a simplification of Potapov’s normaliza-
tion condition for the convergence of the Blaschke products, has been
obtained by Gonzalez Dominguez [8].

A natural extension of the concept of an a-port, with interesting applica-
tions to waveguides, is that of the Hilbert port, which can be described by
an operator acting on “signals” that take values on a Hilbert space JC
where a conjugation is defined (see, for example, Zemanian [9]). For a
passive Hilbert port, the characteristic operators are J-expansive in Rep >
0. The factorization theorems contained in the present paper, which
generalize results due to Ginzburg [10]} and Kovalishina and Potapov [11],
can be applied to obtain the decomposition of a real operator in products
of “elementary” real operators, thus broadening the concept of synthesis of
passive networks by factorization to include Hilbert ports.

2

Let IC be a Hilbert space, E, a projector in JC, E_= I — E . We define
the operator J = E, —E_. A linear bounded operator U in Cis J-unitary
iff U*JU =J, UJU* = J, where U* denotes the adjoint of U. A linear
bounded operator Y is J-expansive iff Y*JY > J. It is J-biexpansive if both
Y and Y* are J-expansive.

The symbol 92 denotes the product Hilbert space (> = 3 x . Given
x = (x;x,) and y = (y,5,) € H?, their scalar product in IC? is (x,y), =
(x1,71) + (X3,9,), where (-,-) denotes the scalar product in JC. By (xy)’
we denote the vector (%).

Let S, be the class of operators S(p) holomorphic in the open right half
plane (Rep > 0), except for a set of isolated points, that are equal to a
J-biexpansive operator at each point of holomorphism. We are interested
in the class M, of operators S(p) € S, such that § ~Y(p) € S_,. This class
M, is the class of J-biexpansive operators meromorphic in the right half
plane.

We shall extend the definition of S(p) to the left half plane taking

S(p) =JS* Y (-p)J, Rep < 0.
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This is a natural extension for, in the case when S(p) is holomorphic
and J-unitary in some segment of the imaginary axis, it coincides with the
analytic continuation of S(p) into the left half plane. This symmetry
principle, for operator-valued functions that take J-unitary values on an arc
of the unit circle, has been established by Ginzburg [10, Theorem 1.6].

The operators of the class S; have the following property.

THEOREM 1. If the operator S(p) € S, has poles at the points p\,p,
(p1#* —P2) Rep;# 0, j = 1,2) and its Laurent expansion in the neighbor-
hood of these points is S(p) = (p —p;) "c; + (p —pj)"'!+l d;+---,then,
given an arbitrary set of vectors g,,8,,h, € I, the following inequality is
valid.

((1’1 +5,)" 101-"'?81»81) + ((Pz +5,) lcz-’cfgz’gz)
+ 2Re((p| +p,) " lc,chgz,gl) + 2Re((p1 ~-p)" lclhl’gl)
+ 2Re((p2 -p) lczhl’gz) + (W(P)hphl) 20,

@.1)
where W(p) = (S*(p)JS(p) —J)/(p + D).

The proof of the theorem follows from the matrix inequality for J-
biexpansive operators contained in [12, p. 12}.

Let us define the following operators in 9C2, in terms of 2 X 2 matrices
of operators in JC.

¢ O
; D=
0 o

A =2ZDZ*, L(p)=

(P1 +P_1) ~l (Pl +132) ~l

Z = s
(Pz +ﬁl) —l (Pz"'ﬁz) ~l

(p,—p) 1 0 ]
(p,—p) "I

W(p) =

wp)/2 0 }
0 w(p)/2

Taking these definitions into account, the inequality of Theorem 1 can
be expressed in terms of g = (g,g,)  and h = (h h,)’, as follows

(Ag,8)W(p)h, k), 2|(L*(p)Z*g, h),". 22)

We shall prove the following
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LEMMA 1. If the operator S(p) € S, has poles at the points p,,p, (P, #
—P,) and given f, u € }?, then
2
'Y(u’ u)Z(Af’f)Z ZI(Z*I’ u)2| ’

where y > 0 is independent of f and u.

Proof. Let us apply the inequality of Theorem 1, taking h,= (p,—
PuE N, g=1*ff=(LH)YEN, tER, ¢ €R.
We have thus

12(Af.f) + | py— p|?(W(p)uy,u,) + 2tRe{e*(c\uy, )}
+ 21Re{e"4’(pl —p)p—p)” l(Cz“nfz)} > 0.

Let p, and p, be points of holomorphism of S(p) such that p, — p,=
k(py— P\, P1— Bo= —K(p,— p;), wherexisaconstantand 0 < x < L. It

can readily be seen that

(A, f) + ([|P1 — Pol*W(po) + | P “ﬁole(ﬁo)]“l,“l)

= 21|(cyuy, £))| 2 0.
Therefore,
2(Af.f) + &2\ p, ~ P ([ W(po) + W(Bo) uy,uy)
= 2t|(cyuyfi)l 2 0.

The same arguments show that a similar inequality holds for h, = (p, —
P)u,, that is,

2(Af.f) + &2 by — P |2([W(po) + W(B,)uy, u,)
= 24(cyu,.5)| 2 0.

Finally, we conclude that
41 p, = po ([ W(po) + W(5o) Ju,u)(Af.0), 2 (Zu )l (23)

From this last inequality the thesis follows.

3.

The following lemma is of major importance towards our objective of
factorization of operators.

LEMMA 2. Let A and Z be the bounded linear operators defined previously.
Given the operator equation AQ = Z, the following properties hold:
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(1) the operator Q = AU"VZ (where A'"") denotes the inverse of the
operator defined by the hermitian operator A on its range) is defined on a
subspace £ dense in I,

(I1) the operator Z*Q is bounded on £.

Proof. Let T = ZD, where Z and D are the operators defined previ-
ously. It follows that A = ZDZ* = TZ* = ZT*. The operator Q is defined
on the subspace £ = ker Z + rge 7*. We shall show that this subspace is
dense in 9C2. If there exists a vector x L £, then x € ker T and x € rge Z*
(the closure of the range of Z*). Therefore, there exists a sequence {x,} of
vectors belonging to the range of Z* that converges to x, that is x,— x and
x, = Z*y,. Let us write inequality (2.2) taking g = y, and h = (h, h,)". We
have, then,

(ZDZ*y,,y,)(W(p)h,h), 2|(L*(p)Z*y,. h),|".

Taking limits for n — oo,

(Dx, x),(W(p)h, k), 2|(x, L(p)h),I". (3.1)

Since x € ker 7, then Tx = ZDx = 0. Therefore Dx € ker Z. Taking
into account that x € rge Z*, we conclude that x 1 Dx. Relationship (3.1)
implies that (x, L(p)h), = 0. Putting x = (x, x,)’ we have

(Pr=p) " '(xphy) + (p,—p) " '(x3.h) = 0.
Since (p,— p)~ "' and (p,— p)~' are linearly independent and noting
that h, is arbitrary we obtain that x,= x, =0, that is x = 0. Thus, £ is
dense in ¥

Using Lemma 1 with f= Qu, u € £ and taking into account that
AQu = Zu so that (Zu, Qu), > 0, we obtain the following inequality.

(Zu, Qu); < v(u, u))(Zu, Qu),.

Therefore
0 <(Zu,Qu),/ (u,u), < v. (32)

This proves that the operator Z*Q is bounded on £.

The boundedness of Z*Q on a dense subspace permits the extension of
the operator to all 3(2. We shall denote this operator with the symbol K.
For every u € £, Ku = Z*Qu. Moreover, inequality (3.2) implies that
K20
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4.

Let us define the operators in X%, G = (G),;=J, B = (B),;=pé;1.
These operators satisfy the following identities.

ZGZ* = AB* + BA, ZB = BZ.
Then, for every u € £ we have

ZGZ*Qu = AB*Qu + BAQu
= AB*Qu + BZu
= AB*Qu + ZBu.

Therefore,
Z(GZ*Q — B)u = AB*Qu.

Since the operator Q* is defined on the range of A, the following
identities hold,

0*Z(GZ*Q — B)u = Q*AB*Qu = Z*B*Qu = B*Z*Qu.  (4.1)

The fact that K is the extension of the bounded operator Z*Q to J(?
allows us to conclude that, from (4.1), we have

K(GK - B)u=B*Ku, u€ct,

The operators K, G and B are bounded, therefore this identity is valid
for all x € 3(2. That is,

KGK = KB + B*K. (4.2)

It is readily seen that

ZDK = Z. (4.3)
The operator K acting on JC? can be written in matrix form as

K= (K) e

From (4.3) it follows that, for j = 1,2,

= Cj{(pj+p-l) - 1"(Ku +K;;) + (Pj+172) - IJ(Kzl + Kzz)}-
(4.4)

Since K > 0, we obtain the following relationships

2
(KL(p)x,L(p)x), = 2 ((P_ “fi) - 1(P “Pj)_ lKij‘xj’xi) >0,

i,j=1
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where x = (x, x,)". Taking (4.2) into account, we have
(Ka+ Ki2)J(Klj+ sz) = Kij(ﬁi+Pj)’ (i,j=1,2).
Let us define the operators
Pj=J(Klj+ sz), (j=1,2). (4.5)
The following identities can be readily obtained.
_ -1 — -1
(P.' +Pj) Pi‘JPj= (Pi +Pj) (K, + KiZ)J(K1j+ sz) = Kij’
(4.6)
2 -1
> (pi+p) PYP=K,;+K,;=JP,. 4.7)

i=1

LEMMA 3. The operator Up) =1+ (p — pl)"Pl+ (p - pz)_le,
where P, and P, are defined in (4.5), is J-biexpansive in Rep > 0 and
J-unitary on Rep = 0.

Proof. Using relationships (4.6) and (4.7), we obtain
2
Q*(p)Jp) I =(p+5) T (5-5) 'Ky(p—p)~"
i,j=1

= (p +P)UDL*(p)KL(p)I1)". (4.8)

Therefore Q*(p)JQ(p) —J is = 0 for Rep > 0, =0 for Rep = 0 and
< 0 for Rep < 0. When Rep, > 0, Rep, > 0, the J-biexpansivity of (p)
in Rep > 0 follows directly from Lemma 6.2 of Ref. [13].

Taking into account (4.5) and (4.6) it is easy to show that

J*(-p)JQ(p) = 1. 4.9
The fact that for p large enough (that is | p| > p) we have
"(P —p) " 'P+(p—p,)" le" < const < 1,

implies that 27!(p) exists for | p| > p. The identity (4.9) points out that
QY p) = JQ*(—p)J, which is equivalent to

(I+(p-p) 'P\+(p-p) 'B)I—-(p+5)) 'JPH
| ~(p+p) IR =1, |p|>op.

This implies that

2
BJ=3(p+p) 'BIPY, (j=12).

i=1]
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After a few simple calculations we obtain

Qp)Q*(p) - J

2
=(p+5) 2 (5-5) " "(p,+5) 'PIR(p-p) "
i j=1

Thus, §(p) is J-unitary on the imaginary axis.
The following symmetry principle is, therefore, established:

Q7'(p) = JQ*(-p)J.
Making use of the fact that
Q*(p)JUp) —J <0 inRep <O,
we obtain the following inequalities:

J-2*Yp)J2 Y (p) <0 inRep<O,
J—Q-p)J2*(—p) <0 inRep <O,
J—Q(p)J2*(p) <0 inRep>0.

This completes the proof of Lemma 3.
It is interesting to note that, taking into account (4.4) and the definition
of P, and P,,

27 (p) = ¢;— ¢((p,+ 51) ~ ' N(Kp+ Kp)
+(p+5) HKy+Kp))=0 (j=12). (4.10)
Let us write inequality (2.2), taking g = Qu,, u, € £. Since
(48,8), = (AQu,,0u,), = (Q*AQu,,u,), = (Ku,,u,), 2 0,
and
(L*(p)Z*3,h), = (Z*Qu,, L(p)h), = (Ku,,L(p)h),,
therefore,
(Kttn, ,)o(W(p)h, h), 2|(Kitp, L(p)B),[".

Let u, be a sequence in £ that converges to L( p)h. Taking limits in the
preceding inequality we conclude that

(W(p)h,h), = (W(p)h\,h,) = (L*(p)KL(p)h,h), 2 0.
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Using the definition of W{(p) and Eq. (4.8), we have

(L*(p)KL(p)h,h), = (p + ) ~'((R*(p)JQUp) — I )hy, b)),
and

(p+5) " (S%(p)IS(p) = J) > (p +5) ~ (@%(p)J(p) - J) > 0.
(4.11)

5.

The preceding results will be used to prove the following

THEOREM 2. Let the operator S(p) € M, have poles at the points p , p, of
the right half plane (Rep > 0) and a Laurent expansion in the neighborhood
of these points of the form

S(p)=(p—p) M+ (p—p) " d, 4o, (j=12).

If we define the operator X(p) = I + (p — p,) " 'P,+ (p — p;) " 'P,, where
P, and P, are given in (4.5), then,

D S(p) = S} (p)S(p), with S\(p) €E M, and Q(p) € M,; the operator
Q(p) is J-unitary on the imaginary axis,;

(D) at the point p; (j = 1,2) the operator S\(p) has a pole of order
n;— 1;

(I1I) if p; is a pole of order m;> O of the operator S ~Y p), the order of
the pole of S, '(p) at pjism;.

Proof.

(I) We have already shown that £(p) belongs to the class M, and that
it is J-unitary on the imaginary axis. Let p be a point of holomorphism of
S(p) and S ~'(p). From (4.11) we obtain

2*(p)SHp)IS|(P)AUp) ~ W (p)Jp) 20, Rep>0.
Taking into consideration the fact that ( p) has an inverse, we get
SH(p)Js(p) -J 20, Rep > 0.
On the other hand, since S ~'(p) € S_,, we have,
Si(p)ISH(p) ~J = S(p)(L7'(p)I2"*(p)
- S~ Y p)IS~'*(p))S*(p) > 0, Rep > 0.

Therefore S\(p) € M,.
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(II) In the neighborhood of p, we may write
Si(p) = S(P)2~'(p) = S(pXQ7'(p)) + (27'(P) — 27 '(£)

=[(p=p) e+ (p—p) "+ {2 2D+ (2 - p)
[(1’1"’1-’—1)— (p+5) P +(p,+5)  \(p +132)—]JP2*J:|}-

From Eq. (4.10), we have ¢, ~!(p,) = 0. Therefore S,(p) has a pole of
order n, — 1 at p = p,. A similar argument proves that S,(p) has a pole of
order n,— 1 at p = p,.

(III) In the neighborhood of p; (j = 1,2), let
- - m; —-—m;+ 1
SHpy=(p—p) Ta+(p—p) " b+

In that case, we must have c;a;=0.
Now, §,7'(p) = (p)S ~'(p), so that in the neighborhood of p;

S p)=(I+(p—p) " 'P+(p—p;) " 'P)

((P _pj)_mjaj+ (P _pj)—mj+lbj+ T )

We will show that P.a; = 0.

Given that c;a,=0, for all x;,x, € J(, the vector u = (a, x; a,x,)"
belongs to the kernel of Z, so it belongs to £. This implies that Ku = Z*Qu
= Z*A"YZu = 0, or equivalently, K,a,= K, a,=K,a,=K,a,=0.
Since P,= J(K,; + K,,), then P,a;= 0. That is, the operator S,"'(p) has a
pole of order m, at p = p,. This ends the proof of Theorem 2.

The -J-biexpansivity of § ~'(p) accounts for the validity of the following
theorem, whose proof we shall not carry out since it is similar to that of
Theorem 2.

THEOREM 3. Let the operator S(p) belong to M,. If S ~\(p) at p, and p,
has poles of order r, and r, respectively, the following factorization formula

holds . .
S(p) =Q(p)-Si(p),

having the properties:

M Si(p) € M;;

an ﬁ( P) € M, and is J-unitary on the imaginary axis;

(IIT) at the point p; (j = 1,2) the operator fl‘ Y(p) has a pole of order
5= b

aAV) if p; (J = 1,2) is a pole of order q;> O of the operator S(p), the
order of the pole of S\(p) at p, is q; also.
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The proof of the theorems may readily be extended to extract any
number of poles simultaneously, by combining the ideas contained in this
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presentation with the methods descnbed in [12}.

6.

If S(p) is a real operator (assuming that there is a conjugation operation

defined in 9C), that is if S(7) = S(p), where S is the conjugate operator of
S, and p, is a pole of S(p), then p, is also a pole.
It can readily be seen that in this case, if J = J, then

Qp)=I1+(p—p) '"P+(p—5) 'P

and is therefore a real operator.

Thus, the factorization procedure provides automatically a decomposi-
tion into real factors, which can be readily applied to operators that
characterize Hilbert ports.
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