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1. Introduction

Let A be an affine domain overR of dimensiond . Let f ∈ A be an element no
belonging to any real maximal ideal ofA and letP be a projectiveA-module of rank
� d − 1. Let (a,p) ∈ Af ⊕ Pf be a unimodular element andQ = Af ⊕ Pf /(a,p)Af . If
P is free, then a result of Ojanguren and Parimala [6, Theorem] shows thatQ is extended
from A. A consequence of this result is that, ifd = 3, then all projective modules ove
Af are free, whereA = R[X1,X2,X3] (see [6] for motivation). In this paper, we pro
the following result (3.10) which is a generalization of the above result of Ojangure
Parimala.

Theorem. Let A be an affine algebra over R of dimension d . Let f ∈ A be an element
not belonging to any real maximal ideal of A. Let P be a projective A-module of rank
� d − 1. Let (a,p) ∈ Af ⊕ Pf be a unimodular element. Then the projective Af -module
Q = Af ⊕ Pf /(a,p)Af is extended from A.

2. Preliminaries

In this paper, all the rings are assumed to be commutative Noetherian and
modules are finitely generated.

Let B be a ring and letP be a projectiveB-module. Recall thatp ∈ P is called a
unimodular element if there exists anψ ∈ P ∗ = HomB(P,B) such thatψ(p) = 1. We
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denote by Um(P ), the set of all unimodular elements ofP . We writeO(p) for the ideal
of B generated byψ(p), for all ψ ∈ P ∗. Note that, ifp ∈ P is a unimodular element, the
O(p) = B.

Let En(B) denote the subgroup of SLn(B) generated by all the elementary matric
Eij (z), whereEij (z) ∈ SLn(B) is such that its diagonal elements are 1,i �= j , (i, j)th
entry isz and the rest of the entries are 0, wherez ∈ B.

We begin by stating a classical result of Serre [7].

Theorem 2.1. Let A be a ring of dimension d . Then, any projective A-module P of rank
> d has a unimodular element. In particular, if dimA = 1, then any projective A-module
of trivial determinant is free.

Let B be a ring and letP be a projectiveB-module. Given an elementϕ ∈ P ∗ and an
elementp ∈ P , we define an endomorphismϕp of P as the compositeP

ϕ→ B
p→ P .

If ϕ(p) = 0, thenϕ2
p = 0 and, hence, 1+ ϕp is a unipotent automorphism ofP .

By a “transvection,” we mean an automorphism ofP of the form 1+ ϕp , where
ϕ(p) = 0 and eitherϕ is unimodular inP ∗ or p is unimodular inP . We denote byE(P),
the subgroup of Aut(P ) generated by all transvections ofP . Note that,E(P) is a normal
subgroup of Aut(P ).

An existence of a transvection ofP pre-supposes thatP has a unimodular elemen
Now, let P = B ⊕ Q, q ∈ Q, α ∈ Q∗. Then∆q(b, q ′) = (b, q ′ + bq) andΓα(b, q ′) =
(b + α(q ′), q ′) are transvections ofP . Conversely, any transvectionΘ of P gives rise to a
decompositionP = B ⊕ Q in such a way thatΘ = ∆q or Θ = Γα .

Now, we state a classical result of Bass [1].

Theorem 2.2. Let A be a ring of dimension d and let P be a projective A-module of rank
> d . Then E(A ⊕ P) acts transitively on Um(A ⊕ P).

The following result is due to Bhatwadekar and Roy [4, Proposition 4.1] and is a
lifting an automorphism of a projective module.

Proposition 2.3. Let A be a ring and let J be an ideal of A. Let P be a projective
A-module of rank n. Then, any transvection Θ̃ of P/JP (i.e., Θ̃ ∈ E(P/JP)) can be
lifted to a (unipotent) automorphism Θ of P . In particular, if P/JP is free (of rank n),
then any element Ψ of E((A/J )n) can be lifted to Ψ ∈ Aut(P ). If in addition, the natural
map Um(P ) → Um(P/JP) is surjective, then the natural map E(P) → E(P/JP) is
surjective.

Now, we recall some preliminary facts about symplectic modules. LetA be a ring.
A bilinear map〈 , 〉 :An × An → A is calledalternating if 〈v, v〉 = 0, ∀v ∈ An. Let us fix
a basis ofAn, saye1, . . . , en. Let 〈ei , ej 〉 = aij ∈ A. Thenα = (aij ) ∈ Mn(A) is such that
α + αt = 0. Thus, giving an alternating bilinear form〈 , 〉 on An is equivalent to giving a
n × n matrix α such thatα + αt = 0. Conversely, if 2∈ A∗ (the set of units ofA), then
an n × n matrix α = (aij ) such thatα + αt = 0 gives rise to a bilinear alternating ma
〈 , 〉 :An × An → A given by〈ei, ej 〉 = aij .
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An alternating form〈 , 〉 on An is callednon-degenerate if the correspondingn × n

matrix α is invertible. A symplectic A-module of rankn is a pair (An, 〈 , 〉), where
〈 , 〉 :An × An → A is a non-degenerate alternating bilinear form. If(An, 〈 , 〉) is a sym-
plecticA-module, then, it is easy to see thatn is even.

Two symplectic modules(An, 〈 , 〉1) and(An, 〈 , 〉2) are said to be isomorphic if ther
exists an isomorphismτ :An ∼→ An such that〈v1, v2〉1 = 〈τ (v1), τ (v2)〉2, ∀v1, v2 ∈ An.

To make the notation simple, we will always denote a non-degenerate alterna
bilinear form by〈 , 〉.

If (An, 〈 , 〉) and(Am, 〈 , 〉) are two symplectic modules, then non-degenerate altern
bilinear forms onAn andAm will give rise (in a canonical manner) to a non-degene
alternating bilinear form onAn ⊕ Am = An+m and we denote the symplectic module th
obtained by(An ⊥ Am, 〈 , 〉). There is a unique (up to scalar multiplication by eleme
of A∗) non-degenerate alternating bilinear form〈 , 〉 on A2, namely 〈(a, b), (c, d)〉 =
ad − bc.

An isometry of the symplectic module(An, 〈 , 〉) is an automorphism of(An, 〈 , 〉).
We denote bySpn(A, 〈 , 〉) the group of isometries of(An, 〈 , 〉). It is easy to see tha
Spn(A, 〈 , 〉) is a subgroup of SLn(A) and it coincides with SLn(A) whenn = 2. Therefore,
SL2(A) can be identified with a subgroup ofSp(A2 ⊥ An, 〈 , 〉).

Let (An, 〈 , 〉) be a symplecticA-module and letu,v ∈ An be such that〈u,v〉 = 0. Let
a ∈ A and letτ(a,u,v) : An → An be a map defined by

τ(a,u,v)(w) = w + 〈w,v〉u + 〈w,u〉v + a〈w,u〉u, for w ∈ An.

Thenτ(a,u,v) ∈ Spn(A, 〈 , 〉). Moreover, it is easy to see that

τ−1
(a,u,v) = τ(−a,−u,v) = τ(−a,u,−v) and ατ(a,u,v)α

−1 = τ(a,α(u),α(v))

for an elementα ∈ Spn(A, 〈 , 〉).
An isometryτ(a,u,v) is called asymplectic transvection if either u or v is a unimodular

element inAn. We denote byESpn(A, 〈 , 〉) the subgroup ofSpn(A, 〈 , 〉) generated by sym
plectic transvections. It follows from the above discussion thatESpn(A, 〈 , 〉) is a normal
subgroup ofSpn(A, 〈 , 〉).

The following result is due to Bhatwadekar [3, Corollary 3.3] and is about lifting
automorphism of a projective module. It is a generalization of a result of Suslin
Lemma 2.1].

Proposition 2.4. Let B be a two dimensional ring and let I be an ideal of B such that
dim(B/I) � 1. Let P be a projective B-module of (constant) rank 2 such that P/IP is
free. Then, any element of SL2(B/I) ∩ ESp4(B/I) can be lifted to an element of SL(P ).

Let A be a commutative ring and letI be an ideal ofA. For n � 3, let E1
n(A, I)

denote the subgroup ofEn(A) generated by elementary matricesE1i (a) andEj1(x), where
2 � i, j � n, a ∈ A, x ∈ I .

Let GLn(A, I) denote the kernel of the canonical map GLn(A) → GLn(A/I). For
n � 3, we denoteE1

n(A, I) ∩ GLn(A, I) by En(A, I).



M.K. Keshari / Journal of Algebra 278 (2004) 628–637 631

e

,

al

3.9).
Let P be a finitely generated projectiveA-module of (constant) rankd . Let t be a
non-zero divisor ofA such thatPt is free. Then it is easy to seethat there exits a fre
submoduleF = Ad of P and a positive integerl such that, ifs = t l , then sP ⊂ F .
Therefore,sF ∗ ⊂ P ∗ ⊂ F ∗.

Lemma 2.5. Let A,P,F, s be as above. If p ∈ F , then ∆p ∈ E(A ⊕ F) ∩ E(A ⊕ P) and
if α ∈ F ∗, then Γsα ∈ E(A ⊕ F) ∩ E(A ⊕ P). Hence, if d � 2 and, if we identify Ed+1(A)

with E(A ⊕ Ad), then E1
d+1(A,As) can be regarded as a subgroup of E(A ⊕ P).

We denote by Umn(A, I), the set ofI -unimodular rows of lengthn over A (i.e.,
unimodular rows of the type[a1, . . . , an], 1− a1 ∈ I andai ∈ I , 2� i � n).

For n � 3, MSEn(A, I) will denote the orbit set Umn(A, I)/En(A, I). We write
MSEn(A) for MSEn(A,A).

Let A be a commutative ring and letI be an ideal ofA. LetB = Z⊕I (with the obvious
ring structure onB). Then, forn � 3, the canonical ring homomorphismB → A gives rise
to a mapEn(B, I) → En(A, I), a surjective map Umn(B, I) � Umn(A, I) and, hence
a surjective mapMSEn(B, I) � MSEn(A, I).

The following theorem is due to W. van der Kallen [5, Theorem 3.21] and is very cruci
for our result.

Theorem 2.6 (Excision). Let n � 3. Let A be a commutative ring and let I be an ideal
of A. Then, the canonical maps MSEn(Z ⊕ I, I) → MSEn(A, I) and MSEn(Z ⊕ I, I) →
MSEn(Z ⊕ I) are bijective.

The following result is due to Vaserstein [12, Theorem].

Theorem 2.7. Let B be a commutative ring and let [b1, . . . , bn] ∈ Umn(B), n � 3. Let d

be a positive integer. Then

[
bd

1, b2, . . . , bn

] = [
b1, b

d
2, . . . , bn

] (
modEn(B)

)
.

The following corollary is a consequence of Theorems 2.6 and 2.7.

Corollary 2.8. Let A be a ring and I an ideal of A. Let [a1, . . . , an] be an element of
Umn(A, I), n � 3. Let d be a positive integer. Then

[
ad

1 , a2, . . . , an

] = [
a1, a

d
2 , . . . , an

] (
modEn(A, I)

)
.

The following result of Suslin [9, Lemma 2] is also used in the proof of our result (

Proposition 2.9. Let A be a commutative ring and let P be a finitely generated projective
A-module of rank d . Let (c,p1) ∈ A ⊕ P be a unimodular element. Suppose that P/cP is
a free A/Ac-module of rank d and that p1 ∈ P/cP can be extended to a basis of P/cP .
Then, there exists an A-automorphism Φ of A ⊕ P such that Φ(cd,p1) = (1,0).
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The following result is due to Ojanguren and Parimala [6, Proposition 3].

Proposition 2.10. Let C = SpecC be a smooth affine curve over a field k of characteristic
zero. Suppose that every residue field of C at a closed point has cohomological dimen-
sion � 1. Then, SK1(C) is divisible.

The proof of [11, Proposition 1.7] yields the following result.

Proposition 2.11. Let C = SpecC be a curve as in (2.10). Then, the natural homomorphism
K1Sp(C) → SK1(C) is an isomorphism.

3. Main Theorem

Given an affine algebraA overR and a subsetI ⊂ A, we denote byZ(I), the closed
subset ofX = SpecA defined byI and byZR(I), the setZ(I) ∩X(R), whereX(R) is the
set of all real maximal idealsm of A (i.e.,A/m

∼→ R). We denote by SingX, the set of all
the prime idealsp of A such thatAp is not a regular ring.

The following lemma is proved in [6, Lemma 2].

Lemma 3.1. Let A be a reduced affine algebra over R of dimension d and let X =
SpecA. Let u = (a1, . . . , an) be a unimodular row in An. Suppose a1 > 0 on X(R).
Then, there exists b2, . . . , bn ∈ A such that a1 + b2a2 + · · · + bnan > 0 on X(R) and
Z(a1 + b2a2 + · · · + bnan) is smooth on X\SingX of dimension � d − 1.

Now, we state the Łojasiewicz’s inequality [2, Proposition 2.6.2].

Lemma 3.2. Let B be an affine algebra over R and let X = SpecB . Let a, b ∈ B be such
that a/b is defined on a closed semi-algebraic set F ⊂ X(R). Then there exists g ∈ B such
that g > 0 on X(R) and |a/b| < g on F .

The following lemma is an easy consequence of (2.1) and (2.2).

Lemma 3.3. Let B be a ring of dimension n and let Q be a projective B-module of
rank n. Let J be an ideal of height � 1. Suppose (a, q) ∈ Um(B ⊕ Q). Then there exists
Ψ ∈ Aut(B⊕Q) such that (a, q)Ψ = (a1, q̃) with a1 = 1 (modJ ) and O(q̃) = B (modJ ).

Proof. Let “bar” denotes reduction moduloJ . Since dimB � n − 1 andQ is a projective
B-module of rankn, by Serre’s theorem (2.1),Q has a unimodular element. Letq1 ∈ Q be
a unimodular element, i.e.,O(q1) = B.

Since rankQ > dimB, by Bass’ theorem (2.2), E(B ⊕ Q) acts transitively on
Um(B ⊕ Q). Hence, there existsΨ ∈ E(B ⊕ Q) such that(a, q)Ψ = (1, q1).

Applying (2.3),Ψ can be lifted to an elementΨ ∈ Aut(B ⊕ Q). Let (a, q)Ψ = (a1, q̃).
Then, we havea1 = 1 (modJ ) andO(q̃) = B (modJ ). This proves the result.�
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Lemma 3.4. Let B be an affine algebra over R and let f ∈ B be an element not belonging
to any real maximal ideal of B . Let K ⊂ B be an ideal and a ∈ B such that f r ∈ Ba + K ,
for some integer r . Then there exists h ∈ 1+ Bf such that ah > 0 on ZR(K). Moreover, if
I is any ideal of B such that f l ∈ I + K , for some l ∈ N, then we can choose h ∈ 1+ If .

Proof. Sincef r ∈ Ba + K, hence,a has no zeros onZR(K). Further, it is given tha
f l ∈ I + K, hence,f 2l = λ + µ, for someλ ∈ I andµ ∈ K. Sincef 2l > 0 on X(R),
whereX = SpecB, we get that the elementλ > 0 onZR(K). Applying Lemma 3.2 for the
element 1/af 2λ (with F = ZR(K)), we get an elementg ∈ B such thatg > 0 onX(R) and
1/|a|f 2λ < g on ZR(K). Thus, it follows that the element(1 + af 2λg)a > 0 onZR(K).
Let us writeh = 1+ af 2λg. Thenh ∈ 1+ If . Further,ah > 0 onZR(K). This proves the
lemma. �
Lemma 3.5. Let B be an affine algebra over R and let X = SpecB . Let f ∈ B be an
element such that f > 0 on X(R). Let K ⊂ B be an ideal and let a1 ∈ B be such that
a1 > 0 on ZR(K). Then, there exists c ∈ K such that a1 + c > 0 on X(R). Moreover, if J

is any ideal of B such that f q − a1 ∈ J , for some q ∈ N, then we can choose c ∈ KJ .

Proof. Let W be the closed semi-algebraic subset ofX(R) defined bya1 � 0. Let
f q − a1 = ν ∈ J . Since f > 0 on X(R), the elementν > 0 on W . On the other
hand, we haveZR(K) ∩ W = ∅, sincea1 � 0 on W and a1 > 0 on ZR(K). Hence, if
K = (c1, . . . , cn), thenc2

1 + · · · + c2
n > 0 onW . Therefore, applying (3.2) for the eleme

a1/ν
2(c2

1 + · · · + c2
n) (with F = W ), we get an element̃c ∈ B such thatc̃ > 0 on X(R)

and|a1|/ν2(c2
1 + · · · + c2

n) < c̃ on W . Let c = c̃ν2(c2
1 + · · · + c2

n). Thenc ∈ KJ . Further,
a1 + c > 0 onW . We also havea1 + c > 0 onX(R)\W , sincea1 > 0 onX(R)/W and
c � 0 on X(R). Therefore, we havea1 + c > 0 on the whole ofX(R). This proves the
result. �
Lemma 3.6. Let B be an affine algebra over R and let I be an ideal of B . Let f ∈ B be an
element such that f > 0 on X(R), where X = SpecB . Let P be a projective Bf -module
and let (a,p) ∈ Um(Bf ⊕ P) such that a = 1 (mod IBf ) and O(p) = Bf (mod IBf ).
Then, there exists h ∈ 1+ Bf and ∆ ∈ Aut(Bf h ⊕ (P ⊗ Bf h)) such that (a,p)∆ = (ã,p)

with ã > 0 on X(R) ∩ SpecBf h and ã = 1 (modIBf h).

Proof. SinceP is a projectiveBf -module, we can find aB-moduleM such thatP = Mf .
Since(a,p) ∈ Um(Bf ⊕Mf ), after multiplying by a suitable power off , we may assum
that (a,p) ∈ B ⊕ M such thata = f l (mod IB) andO(p) ⊃ f qB (mod IB), for some
l, q ∈ N.

We have(a,p) ∈ B ⊕ M and(a,p)f ∈ Um(Bf ⊕ Mf ). Hencef r ∈ aB + O(p), for
somer ∈ N. Write K = O(p)B. We also havef q ∈ K + I . Hence, applying (3.4), ther
existsh ∈ 1+ f I such thata1 = ha > 0 onZR(K).

Note that we havea1 > 0 onZR(K) anda1 = f l (modIB) (sinceh − 1 ∈ I ). Hence,
applying (3.5), we getc ∈ KI such that the elementa2 = a1 + c > 0 onX(R). Let ϕ ∈ P ∗
be such thatϕ(p) = c. Note that we still havea2 = f l (mod IB). Let ã = a2/f

l ∈ Bf .
Thenã = 1 (modIBf ).
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From the above discussion, it is clear that ifΓ1 = (h, Id),Γ2 = (1/f l, Id) ∈ Aut(Bf h⊕
Pf h), then (a,p)Γ1 = (a1,p), (a1,p)Γϕ = (a2,p1) and (a2,p)Γ2 = (ã,p). Further,
ã > 0 on X(R) ∩ SpecBf h and ã = 1 (mod IBf ). Take∆ = Γ1ΓϕΓ2. Then the resul
follows. �

The following result is an easy consequence of (3.1).

Lemma 3.7. Let B be a reduced affine algebra of dimension d over R and let X = SpecB .
Let Q be a projective B-module. Let J be the ideal of B defining the singular locus of
B and let I ⊂ J be an ideal. Let (ã, q) ∈ Um(B ⊕ Q) such that ã > 0 on X(R) and
ã = 1 (modI). Then, there exists Φ ∈ E(B ⊕Q) such that (ã, q)Φ = (b, q̃) with b > 0 on
X(R), Z(b) is smooth on X of dimension � d − 1 and q̃ ∈ IQ.

Proof. Since(ã, q) ∈ Um(B ⊕ Q), we haveãB + O(q) = B. Further,ã = 1 (mod I).
Hence, it is easy to see that ifI = (s1, . . . , sl) and O(q) = (c1, . . . , cn), then (ã, s2

1c2
1,

. . . , s2
1c2

n, s
2
2c2

1, . . . , s
2
l c2

1, . . . , s
2
l c2

n) is a unimodular row inBnl+1.
Since ã = 1 (mod I) and I ⊂ J , hence,ã = 1 (mod J ). Further,ã > 0 on X(R).

Applying (3.1), we gethij ∈ B such that

b = ã +
∑
i,j

hij s
2
i c2

j > 0

onX(R) andZ(b) is smooth onX of dimension� d − 1.
Let ϕ ∈ Q∗ be such thatϕ(q) = ∑

i,j hij s2
i c2

j . Let ∆1 = Γϕ ∈ E(B ⊕ Q). Then
(ã, q)∆1 = (b, q). Note thatb = 1 (modI). Therefore, there exists∆2 ∈ E(B ⊕ Q) such
that (b, q)∆2 = (b, q̃), whereq̃ ∈ IQ. Write Φ = ∆1∆2. Then(ã, q)Φ = (b, q̃) has the
required properties. This proves the lemma.�

The following result is a generalization of [6, Proposition 1].

Lemma 3.8. Let A be a reduced affine algebra of dimension d over R and let X = SpecA.
Let J be an ideal of A of height � 1. Let f ∈ A be an element not belonging to
any real maximal ideal of A. Let P be a projective Af -module of rank d − 1 and let
(a,p) ∈ Um(Af ⊕ P). Then there exists h ∈ 1+ fA and ∆ ∈ Aut(Afh ⊕ Pf h) such that
if (a,p)∆ = (b, p̃), then

(1) b > 0 on X(R) ∩ SpecAfh,
(2) Z(b) smooth on SpecAfh of dimension � d − 1, and
(3) (b, p̃) = (1,0) (modJAfh).

Proof. By replacingf by f 2, we may assume thatf > 0 onX(R). Let J1 be the ideal of
A defining the singular locus of SpecA. SinceA is reduced and charR = 0, J1 is an ideal
of height� 1. LetI = JJ1. Then htI � 1.

Write A1 = Af(1+fA). Then dimA1 = d − 1. Recall, rankP = d − 1 and(a,p) ∈
Um(A1 ⊕ (P ⊗ A1)). Applying (3.3) withB = A1, Q = P ⊗ A1, andJ = IA1, there
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existsΨ ∈ Aut(A1 ⊕ (P ⊗ A1)) such that(a,p)Ψ = (a1,p1), wherea1 = 1 (mod IA1)

andO(p1) = A1 (modIA1).
It is easy to see that there existsh1 ∈ 1 + f A such that, if we writeB = Ah1,

thenΨ ∈ Aut(Bf ⊕ (P ⊗ Bf )) and (a,p)Ψ = (a1,p1), wherea1 = 1 (mod IBf ) and
O(p1) = Bf (mod IBf ). Applying (3.6), there exists an elementh′ ∈ 1 + f B andΓ ∈
Aut(Bf h′ ⊕ (P ⊗ Bf h′)) such that(a1,p1)Γ = (ã,p1) with ã > 0 onX(R) ∩ SpecBf h′
andã = 1 (modIBf )

Recall thath1 ∈ 1 + f A, B = Ah1, andh′ ∈ 1 + fB. Let s be an integer such tha
h = hs

1h
′ ∈ A. ThenBh = Ah andh ∈ 1 + fA. Therefore, there existsΓ ∈ Aut(Af h ⊕

(P ⊗ Afh)) such that(a1,p1)Γ = (ã,p1) with ã > 0 on X(R) ∩ SpecAf h and ã = 1
(modIAf h).

Write C = Af h. Then, we have(ã,p1) ∈ Um(C ⊕ (P ⊗ C)) such thatã > 0 on
X(R) ∩ SpecC andã = 1 (modIC), whereI ⊂ J1 (recall thatJ1 is an ideal ofA defining
the singular locus of SpecA). Applying (3.7), we getΦ ∈ Aut(C ⊕ (P ⊗ C)) such that
(ã,p1)Φ = (b, p̃) with b > 0 onX(R) ∩ SpecC, Z(b) is smooth on SpecC of dimension
� d − 1 andp̃ ∈ I (P ⊗ C).

Let ∆ = Ψ Γ Φ. Then∆ ∈ Aut(Afh ⊕ Pf h) is such that(a,p)∆ = (b, p̃) with b > 0
on X(R) ∩ SpecAfh andZ(b) is smooth on SpecAfh of dimension� d − 1. Moreover,
(b, p̃) = (1,0) (modJAfh). This proves the lemma.�
Proposition 3.9. Let A be an affine algebra over R of dimension d . Let f ∈ A be an
element not belonging to any real maximal ideal of A and let A′ = Af(1+Af). Then, every
projective A′-module P of rank d − 1 is cancellative.

Proof. By replacingf by f 2, we may assume thatf > 0 onX(R), whereX = SpecA.
It is enough to show that, if(a,p) ∈ Um(A′ ⊕P), then, there existsΛ ∈ Aut(A′ ⊕P) such
that(a,p)Λ = (1,0). Without loss of generality, we may assume thatA is reduced.

We can chooseg ∈ 1+Af such thatP is a projectiveAfg-module of rankd − 1. Write
Ã = Afg . Let t ∈ Ã be a non-zero divisor such thatPt is a freeÃt -module of rankd − 1.
Let F = Ãd−1 be a free submodule ofP such thatFt = Pt and lets = t l be such tha
sP ⊂ F . Let (e1, . . . , ed−1) denote the standard basis ofÃd−1.

Let J be the ideal ofA defining the singular locus ofA. SinceA is reduced and cha
R = 0, J is an ideal of height� 1. LetI = sJ . Then htI = 1. Applying (3.8) forB̃ = Ag ,
there existsh′ ∈ 1+ f B̃ andΓ ∈ Aut(B̃f h′ ⊕ Pf h′) such that if(a,p)Γ = (a1,p1), then

(1) a1 > 0 onX(R) ∩ Spec̃Bf h′ ,
(2) Spec(B̃f h′/a1B̃f h′) is smooth of dimension� d − 1, and
(3) (a1,p1) = (1,0) (modsB̃f h′).

We can choose a suitable positive integerr such thath = grh′ ∈ A (in fact,h ∈ 1+ Af

and B̃f h = Afh) and Γ ∈ Aut(Afh ⊕ Pf h) such that(a,p)Γ = (a1,p1), satisfies the
above properties(1) − (3), i.e.,

(1) a1 > 0 onX(R) ∩ SpecAfh,
(2) Spec(Afh/a1Afh) is smooth of dimension� d − 1, and
(3) (a1,p1) = (1,0) (modsAf h).
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Sincep1 ∈ sPf h and we havesP ⊂ F , hence, we can writep1 = b1e1+· · ·+bd−1ed−1,
for somebi ∈ Afh. Let B = R(f ) ⊗R[f ] Afh. ThenB is an affine algebra overR(f ) of
dimensiond − 1. We writeP̃ = P ⊗ B.

Let “bar” denotes reduction modulo the ideala1B. Sincea1B + sB = B andFs = Ps ,
it follows that the inclusionF ⊂ P gives rise to the equalityF = P . In particular,P is free
of rankd − 1 with a basis(e1, . . . , ed−1) andp1 is a unimodular element ofP .

If d = 3, thenC = B/a1B is smooth of dimension 1. Note that, every maximal ideam

of C is the image in SpecC of a prime idealp of Afh of height 2 containinga1. Sincea1
does not belong to any real maximal ideal ofAfh, by [8], the residue fieldR(p) = k(m)

has cohomological dimension� 1. By (2.11),SK1(C) is divisible and the natural ma
K1Sp(C) → SK1(C) is an isomorphism. Hence, there existsΓ ′ ∈ SL2(C) ∩ ESp4(C) and
c1, c2 ∈ B such that, ifq = c2

1e1 + c2e2 ∈ F , thenΓ ′(p1) = q. By (2.4), Γ ′ has a lift
Γ1 ∈ SL(P̃ ). Recall thatP̃ = P ⊗ B.

If d � 4, then, sinceP is a free of rankd − 1, using (2.9) and (2.11), one can dedu
from the proof of [10, Theorem 2.4] that there existsΓ̃ ∈ E(P) andci ∈ B, 1� i � d − 1
such that, ifq = cd−1

1 e1 + c2e2 + · · · + cd−1ed−1 ∈ F , thenΓ̃ (p1) = q. By (2.3), Γ̃ can
be lifted to an elementΓ1 ∈ SL(P̃ ). (In particular, the above argument shows that ev
stably freeB/a1B-module of rank� d − 2 is cancellative.)

Therefore, in either case, there existsq1 ∈ P̃ andΓ1 ∈ SL(P̃ ) such that

Γ1(p1) = q − a1q1, whereq = cd−1
1 e1 + c2e2 + · · · + cd−1ed−1.

Now, the rest of the argument is similar to [3, Theorem 4.1]. We give the proof fo
sake of completeness.

Now, Γ1 induces an automorphismΨ1 = (IdB,Γ1) of B ⊕ P̃ . Let Ψ̃ = Ψ1 ∆q1.
Recall that∆q1 ∈ E(B ⊕ P̃ ) is defined as∆q1(b, q ′) = (b, q ′ + bq1). Therefore, we have
(a1,p1)Ψ̃ = (a1, q). Let us writeΛ1 = Γ Ψ̃ ∈ Aut(B ⊕ P̃ ) . Then(a,p)Λ1 = (a1, q).

Recall thata1 = 1 (mod sB). Hence, there existsx ∈ B such thatsx + a1 = 1. Let
µi = sxci . Thenµi − ci ∈ a1B. Let

q2 = µd−1
1 e1 +

d−1∑
2

µiei ∈ sF and q3 =
d−1∑

1

µiei.

Then q2 − q = a1p2, for somep2 ∈ F . Hence, we have(a1, q)∆p2 = (a1, q2). Let
Λ2 = Λ1∆p2. Then(a,p)Λ2 = (a1, q2).

Since 1− a1 ∈ sB andµi ∈ sB for 1� i � d − 1. Hence, the row[a1,µ1, . . . ,µd−1] ∈
Umd (B,Bs). Therefore, by (2.6),

[
ad−1

1 ,µ1, . . . ,µd−1
] = [

a1,µ
d−1
1 , . . . ,µd−1

] (
modEd(B,Bs)

)
.

By (2.5), there existsΦ ∈ E(B⊕P̃ ) such that(a1, q2)Φ = (ad−1
1 , q3). Write Φ̃ = Λ2Φ.

Then, we have(a,p)Φ̃ = (ad−1
1 , q3).

SinceP̃ /a1P̃ is free of rankd −1 and every stably freeB/a1B-module of rank� d −2
is cancellative,q3 ∈ P̃ /a1P̃ can be extended to a basis ofP̃ /a1P̃ . Therefore, by (2.9), there
existsΦ1 ∈ Aut(B ⊕ P̃ ) such that(ad−1, q3)Φ1 = (1,0).
1
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LetΛ = Φ̃Φ1. ThenΛ ∈ Aut(B ⊕ P̃ ) and(a,p)Λ = (1,0). Note thatA′ = Af(1+Af ) =
B ⊗R(f ) A′. Therefore, we get the result.�

As a consequence of above Proposition 3.9, we prove the following result. IfP = Ad−1

in the following Theorem 3.10, then we get [6, Theorem].

Theorem 3.10. Let A be an affine algebra over R of dimension d and let f ∈ A be an
element not belonging to any real maximal ideal of A. Let P be a projective A-module
of rank � d − 1. Let (a,p) ∈ Af ⊕ Pf be a unimodular element. Then, the projective
Af -module Q = Af ⊕ Pf /(a,p)Af is extended from A.

Proof. Let A′ = Af(1+Af). By (3.9),P ⊗ A′ ∼→ Q ⊗ A′. Hence, there existsg ∈ 1 + Af

and an isomorphismΨ :P ⊗ Afg
∼→ Q ⊗ Afg . The moduleQ overAf andP overAg

together with an isomorphismΨ yield a projective module overA whose extension toAf

is isomorphic toQ. This proves the result.�
Remark 3.11. Theorem 3.10 is valid for an affine algebraA over any real closed fieldk.
For simplicity, we have takenk = R.
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