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1. Introduction

Let A be an affine domain oveR of dimensiond. Let f € A be an element not
belonging to any real maximal ideal &f and let P be a projectiveA-module of rank
>d—1.Let(a, p) € Ay ® Py be aunimodular elementar@= Ay @ Pr/(a, p)Ays. If
P is free, then a result of Ojanguren and Parimala [6, Theorem] showgtisméxtended
from A. A consequence of this result is thatdif= 3, then all projective modules over
Ay are free, whered = R[X1, X», X3] (see [6] for motivation). In this paper, we prove
the following result (3.10) which is a generalization of the above result of Ojanguren and
Parimala.

Theorem. Let A be an affine algebra over R of dimension d. Let f € A be an element
not belonging to any real maximal ideal of A. Let P be a projective A-module of rank
>d—1.Let(a,p) e Ay ® Py beaunimodular element. Then the projective A ;-module
Q=A;® Py/(a, p)Ay isextended from A.

2. Preliminaries

In this paper, all the rings are assumed to be commutative Noetherian and all the
modules are finitely generated.

Let B be a ring and letP be a projectiveB-module. Recall thap € P is called a
unimodular element if there exists ane P* = Homg (P, B) such thaty(p) = 1. We
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denote by UniP), the set of all unimodular elements 8f We write O (p) for the ideal
of B generated by (p), for all + € P*. Note that, ifp € P is a unimodular element, then
O(p)=B.

Let E,(B) denote the subgroup of ${B) generated by all the elementary matrices
E;j(z), whereE;;(z) € SL,(B) is such that its diagonal elements arei ¥ j, (i, j)th
entry isz and the rest of the entries are 0, where B.

We begin by stating a classical result of Serre [7].

Theorem 2.1. Let A be aring of dimension 4. Then, any projective A-module P of rank
> d hasa unimodular element. In particular, if dim A = 1, then any projective A-module
of trivial determinant is free.

Let B be aring and lefP be a projectiveB-module. Given an elemegpte P* and an
elementp € P, we define an endomorphisp, of P as the composit® LB P

If o(p)=0, then<pf7 =0 and, hence, ¥ ¢, is a unipotent automorphism &f.

By a “transvection,” we mean an automorphism @fof the form 1+ ¢,, where
¢(p) = 0 and eitherp is unimodular inP* or p is unimodular inP. We denote by (P),
the subgroup of AtP) generated by all transvections Bf Note that,E (P) is a hormal
subgroup of AuP).

An existence of a transvection @ pre-supposes tha® has a unimodular element.
Now, let P =B @® Q,q € Q, a € Q*. ThenA,(b,q") = (b,q' + bg) and I, (b, q') =
(b+a(q’),q’) are transvections aP. Conversely, any transvectiah of P gives rise to a
decomposition? = B @ Q in such away tha® = A, or @ =T,.

Now, we state a classical result of Bass [1].

Theorem 2.2. Let A bearing of dimension d and let P be a projective A-module of rank
>d. Then E(A & P) actstransitivelyon Um(A & P).

The following result is due to Bhatwadekar and Roy [4, Proposition 4.1] and is about
lifting an automorphism of a projective module.

Proposition 2.3. Let A be a ring and let J be an ideal of A. Let P be a projective
A-module of rank n. Then, any transvection ® of P/JP (i.e, ® € E(P/JP)) can be
lifted to a (unipotent) automorphism @ of P. In particular, if P/J P is free (of rank n),
then any element & of E((A/J)") can belifted to ¥ € Aut(P). If in addition, the natural
map Um(P) — Um(P/J P) is surjective, then the natural map E(P) — E(P/JP) is
surjective.

Now, we recall some preliminary facts about symplectic modules.A_&e a ring.
A bilinear map(, ): A" x A" — A is calledalternating if (v, v) =0, Vv € A". Let us fix
a basis ofA", sayes, ..., e,. Let(e;, ej) = a;j € A. Thena = (a;;) € M, (A) is such that
a +a' =0. Thus, giving an alternating bilinear fortn) on A" is equivalent to giving a
n x n matrix e such thatr + o’ = 0. Conversely, if 2 A* (the set of units ofd), then
ann x n matrix o = (a;j) such thatr + o' = 0 gives rise to a bilinear alternating map
(,):A"x A" > A given by(e,', Ej) =dajj.
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An alternating form(,) on A" is called non-degenerate if the corresponding: x n
matrix « is invertible. A symplectic A-module of rankn is a pair (A", {,)), where
(,):A" x A" — A is a non-degenerate alternating bilinear form¢Af*, {,)) is a sym-
plectic A-module, then, it is easy to see thais even.

Two symplectic modulegA”, (, )1) and (A", (,)2) are said to be isomorphic if there
exists an isomorphism: A” = A" such thativ1, v2)1 = (t(v1), T(v2))2, Vv, v2 € A”.

To make the notation simple, we will alys denote a non-degenerate alternating
bilinear form by(, ).

If (A", (,)) and(A™, (,)) are two symplectic modules, then non-degenerate alternating
bilinear forms onA” and A™ will give rise (in a canonical manner) to a non-degenerate
alternating bilinear form om” @ A™ = A"*" and we denote the symplectic module thus
obtained by(A" L A™, (,)). There is a unique (up to scalar multiplication by elements
of A*) non-degenerate alternating bilinear form) on A2, namely ((a, b), (c,d)) =
ad — bc.

An isometry of the symplectic modulgA”, (,)) is an automorphism ofA”, (,)).

We denote bySp, (A, (,)) the group of isometries ofA”, (,)). It is easy to see that
P, (A, (,)) is asubgroup of S}(A) and it coincides with SL(A) whenn = 2. Therefore,
SL,(A) can be identified with a subgroup &5(A2 L A", (,)).

Let (A", (,)) be a symplecticA-module and let:, v € A" be such thatu, v) = 0. Let

a € A and letr ) : A" — A" be a map defined by

Tauv) (W) =w + (w, v)u + (w, u)v +a{w, u)u, forwe A"

Thenty v € ,(A, (,)). Moreover, it is easy to see that

-1 -
T = T—a,—uw) = T—au,—v) and atguvna L= Ta.aw)

for an elementt € S, (A, (,)).

An isometryz, , v is called asymplectic transvection if either u or v is a unimodular
elementinA”. We denote bfSp, (A, (, )) the subgroup o8, (4, (, )) generated by sym-
plectic transvections. It follows from the above discussion Efg, (A, (,)) is a normal
subgroup ofp, (A, (, )).

The following result is due to Bhatwadekar [3, Corollary 3.3] and is about lifting an
automorphism of a projective module. It is a generalization of a result of Suslin [10,
Lemma 2.1].

Proposition 2.4. Let B be a two dimensional ring and let 7 be an ideal of B such that
dim(B/I) < 1. Let P be a projective B-module of (constant) rank 2 such that P/IP is
free. Then, any element of SLo(B/1) N ESp,(B/1) can belifted to an element of SL(P).

Let A be a commutative ring and lgt be an ideal ofA. Forn > 3, let E}(A, I)
denote the subgroup &, (A) generated by elementary matrides (a) andE ;1(x), where
2<i,j<n,aeA,xel.

Let GL,(A, I) denote the kernel of the canonical map ,/61) — GL,(A/I). For
n >3, we denoteE(A, I) NGL,(A, I) by E, (A, I).
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Let P be a finitely generated projectivé-module of (constant) rank. Let ¢ be a
non-zero divisor ofdA such thatP; is free. Then it is easy to sehat there exits a free
submoduleF = A? of P and a positive integet such that, ifs = ¢/, thensP C F.
Therefores F* C P* C F*.

Lemma?25.Let A, P, F,s beasabove. If pe F,then A, e E(A® F)NE(A® P) and
ifae F*,thenT;, e E(A® F)NE(A® P).Hence, ifd > 2and, if weidentify E;11(A)
with E(A & A?), then Ej+1(A, As) can beregarded as a subgroup of E(A & P).

We denote by URxA, I), the set of/-unimodular rows of lengtm over A (i.e.,
unimodular rows of the typgis, ...,a,], 1—ai1 €I anda; € I, 2<i < n).

For n > 3, MSE, (A, I) will denote the orbit set Ug(A, I)/E, (A, I). We write
MSE, (A) for MSE, (A, A).

Let A be a commutative ring and |étbe an ideal ofA. Let B = Z & I (with the obvious
ring structure orB). Then, forn > 3, the canonical ring homomorphisBr— A gives rise
to a mapE,(B,I) — E,(A, I), a surjective map Up(B, I) - Um,(A, I) and, hence,
a surjective maMSE,, (B, I) - MSE, (A, I).

The following theorem is due to W. van der liém [5, Theorem 3.21] and is very crucial
for our result.

Theorem 2.6 (Excision). Let n > 3. Let A be a commutative ring and let I be an ideal
of A. Then, the canonical maps MSE,,(Z & I, 1) - MSE, (A, I) and MSE,(Z ® I,1) —
MSE, (Z & I) are bijective.

The following result is due to Vaserstein [12, Theorem].

Theorem 2.7. Let B be a commutative ring and let [by, ..., b,] € UM, (B), n > 3. Let d
be a positive integer. Then

(b4, b2, ..., 0] =[b1,b,....,by] (MOAE,(B)).
The following corollary is a consequence of Theorems 2.6 and 2.7.

Corollary 2.8. Let A be aring and I an ideal of A. Let [ay,...,a,] be an element of
Um, (A, I),n > 3. Let d be a positive integer. Then

[af,az, ...,an] = [al, ag, ...,an] (mOdEn(A, I)).
The following result of Suslin [9, Lemma 2] is also used in the proof of our result (3.9).
Proposition 2.9. Let A be a commutative ring and let P be a finitely generated projective
A-moduleof rank d. Let (¢, p1) € A @ P beaunimodular element. Supposethat P/cP is

afree A/Ac-module of rank d and that p1 € P/cP can be extended to a basisof P/cP.
Then, there exists an A-automorphism® of A @ P suchthat @ (c¢?, p1) = (1, 0).
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The following result is due to Ojgguren and Parimala [6, Proposition 3].

Proposition 2.10. Let C = SpeaC be a smooth affine curve over afield k of characteristic
zero. Suppose that every residue field of C at a closed point has cohomological dimen-
sion < 1. Then, K1 (C) isdivisible.

The proof of [11, Proposition 1.7] yields the following result.

Proposition 2.11. Let C = SpedC beacurveasin (2.10) Then, the natural homomorphism
K1(C) — K1(C) isan isomorphism.

3. Main Theorem

Given an affine algebrda overR and a subset C A, we denote byZ(7), the closed
subset ofX = SpecA defined byl and byZy (1), the setZ(I) N X (R), whereX (R) is the
set of all real maximal ideals of A (i.e., A/m — R). We denote by Sing, the set of all
the prime idealp of A such thatd, is not a regular ring.

The following lemma is proved in [6, Lemma 2].

Lemma 3.1. Let A be a reduced affine algebra over R of dimension d and let X =
SpecA. Let u = (a1, ...,a,) be a unimodular row in A”. Suppose a1 > 0 on X (R).
Then, there exists bo, ..., b, € A such that a1 + boar + --- + bya, > 0 on X(R) and
Z(a1+ bpaz + -+ - + byay,) issmooth on X\ SingX of dimension <d — 1.

Now, we state the tojasiewicz’s inequality [2, Proposition 2.6.2].

Lemma 3.2. Let B be an affine algebra over R and let X = SpecB. Let a, b € B be such
that a /b isdefined on a closed semi-algebraic set F € X (R). Thenthereexists g € B such
that g > 0on X(R) and |a/b]| < gon F.

The following lemma is an easy consequence of (2.1) and (2.2).

Lemma 3.3. Let B be a ring of dimension » and let Q be a projective B-module of
rank n. Let J be an ideal of height > 1. Suppose (¢, ¢) € Um(B & Q). Then there exists
¥ e Aut(Be® Q) suchthat (a, ¢)¥ = (a1, ¢) witha; =1 (modJ) and O(g) = B (mod/J).

Proof. Let “bar” denotes reduction modulb. Since dimB < n — 1 andQ is a projective
B-module of rank:, by Serre’s theorem (2), Q has a unimodular element. Lgi € Q be
a unimodular element, i.eQ(71) = B.

Since rankQ > dimB, by Bass’ theorem (2), E(B @ Q) acts transitively on
Um(B & Q). Hence, there exist& € E(B & Q) such thata, 9)¥ = (1, 71).

Applying (2.3), ¥ can be lifted to an elemesit € Aut(B @ Q). Let (a, ¢)¥ = (a1, ).
Then, we have; =1 (modJ) andO(g) = B (modJ). This proves the result. O
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Lemma 3.4. Let B be an affine algebra over R andlet f € B be an element not belonging
to any real maximal ideal of B. Let K C B beanideal anda € B suchthat f" € Ba + K,
for someinteger r. Thenthereexistsh € 1+ Bf suchthat ah > 0on Zr(K). Moreover, if
I isanyideal of B suchthat f/ € I + K, for some € N, then we can chooseh € 1+ If.

Proof. Since f” € Ba + K, hencea has no zeros o (K). Further, it is given that
fle I+ K, hence,f2 = + p, for somex € I andu € K. Since fZ > 0 on X (R),
whereX = SpecB, we get that the elemeit> 0 onZy (K). Applying Lemma 3.2 for the
element Jaf?x (with F = Zy(K)), we get an elemente B such thag > 0 onX (R) and
1/la|f21 < g on Zg(K). Thus, it follows that the elemeril + af2rg)a > 0 on Zg(K).
Let us writeh = 1 +af?rg. Thenh € 1+ I f. Furtherah > 0 onZy (K). This proves the
lemma. O

Lemma 3.5. Let B be an affine algebra over R and let X = SpecB. Let f € B be an
element such that f > 0 on X(R). Let K C B be an ideal and let a1 € B be such that
a1 > 0o0n Zp(K). Then, there exists ¢ € K such that a; + ¢ > 0 on X (R). Moreover, if J
isanyideal of B suchthat f¢ — a1 € J, for some g € N, then we can choosec € K J.

Proof. Let W be the closed semi-algebraic subsetXofR) defined bya; < 0. Let
f9 —a; =veJ. Since f >0 on X(R), the elementv > 0 on W. On the other
hand, we haveZr (K) N W = @, sincea; < 0 on W andaj > 0 on Z(K). Hence, if
K =(c1,...,c), thenc? + ... + ¢2 > 0 on W. Therefore, applying (3.2) for the element
a1/v2(c2 +--- + c2) (with F = W), we get an elemerite B such that > 0 on X (R)
and|az|/v?(cZ +--- +c2) <éonW. Letc = év?(c? + - - + ¢2). Thenc € K J. Further,
a1+ c>0onW. We also havei; + ¢ > 0 on X (R)\ W, sincea; > 0 onX(R)/W and

¢ > 0 on X(R). Therefore, we have; + ¢ > 0 on the whole ofX (R). This proves the
result. O

Lemma 3.6. Let B bean affinealgebraover R andlet 7 beanideal of B. Let f € B bean
element such that f > 0 on X (R), where X = SpecB. Let P be a projective B ;-module
and let (a, p) e Um(B; @ P) such that a =1 (modIBy) and O(p) = By (modIBy).
Then, thereexistsh € 14+ Bf and A € Aut(B s, @ (P ® Byy)) suchthat (a, p)A = (a, p)
witha > 0on X (R) N SpecBy, anda =1 (modByy).

Proof. SinceP is a projectiveB -module, we can find &-moduleM such thatP = M.
Since(a, p) e Um(By @ M), after multiplying by a suitable power g¢f, we may assume
that (a, p) € B ® M such thatz = f! (modIB) andO(p) > f¢B (modIB), for some
l,qg eN.

We have(a, p) e B® M and(a, p)yf e UM(By @ My). Hencef” € aB + O(p), for
somer € N. Write K = O(p)B. We also havef? € K + I. Hence, applying (3.4), there
existsh € 1+ f1 such thatiy = ha > 0 onZp(K).

Note that we have; > 0 on Zz (K) anda; = f! (modIB) (sinceh — 1 I). Hence,
applying (3.5), we get € K1 such that the elemenp = a1 + ¢ > 0 on X (R). Lety € P*
be such thai(p) = c. Note that we still haver, = f! (modIB). Leta =ap/f! € By.
Thena =1 (modIBy).



634 M.K. Keshari / Journal of Algebra 278 (2004) 628-637

From the above discussion, itis clear thafif= (h, Id), I = (1/f*, Id) € Aut(By, ®
Pyp), then (a, p)I1 = (a1, p), (a1, p)Iy = (a2, p1) and (a2, p)I2 = (a, p). Further,
a>0onX(R)NSpecBys, anda =1 (mod IBy). Take A = I'1I,I». Then the result
follows. O

The following result is an easy consequence of (3.1).

Lemma 3.7. Let B be a reduced affine algebra of dimension d over R and let X = SpecB.
Let O be a projective B-module. Let J be the ideal of B defining the singular locus of
B andlet I C J be anideal. Let (a,q) € Un(B & Q) such that a > 0 on X(R) and
a=1(modI). Then, thereexists ® € E(B & Q) suchthat (a,q)® = (b, g) withb > 0on
X(R), Z(b) issmoothon X of dimension<d —1andg €10Q.

Proof. Since(a,q) e Um(B & Q), we haveaB + O(q) = B. Further,a =1 (mod I).
Hence, it is easy to see thatif= (s1,...,s;) and O(q) = (c1....,cy), then(a, s?c2,
. ..,s%c,zl, s%c%, e slzc%, e slzc,zl) is a unimodular row inB™+1,

Sincea =1 (mod 7) andI C J, hence,a =1 (mod J). Further,a > 0 on X(R).

Applying (3.1), we geth;; € B such that

b=&+2hijsi2cf>0
iJ

on X(R) andZ(b) is smooth onX of dimension< d — 1.

Let ¢ € O* be such thatp(q) = Y, ; hijs?c5. Let A1 =T, € E(B @ Q). Then
(@,q)A1= (b, q). Note thatb = 1 (mod I). Therefore, there exist8, € E(B @& Q) such
that (b, q)A2 = (b, q), Whereg € I Q. Write ® = A1Ap. Then(a, q)@ = (b, q) has the
required properties. This proves the lemma

The following result is a genalization of [6, Proposition 1].

Lemma 3.8. Let A be areduced affine algebra of dimension d over R and let X = SpecA.
Let J be an ideal of A of height > 1. Let f € A be an element not belonging to
any real maximal ideal of A. Let P be a projective A r-module of rank d — 1 and let
(a,p) eUm(Ar @ P). Thenthereexistsh € 1+ fA and A € Aut(A y, @ Pyy) such that
if (a, p)A = (b, p), then

(1) b>00n X(R) N SpecA 74,
(2) Z(b) smooth on SpecA 7, of dimension < d — 1, and
(3) (b, p) =(1,0) (modJ A rp).

Proof. By replacingf by 2, we may assume that > 0 on X (R). Let J; be the ideal of
A defining the singular locus of Spédc SinceA is reduced and ch& = 0, J; is an ideal
of height> 1. Let/ = JJ1. Then ht/ > 1.

Write A1 = Af14ra). Then dimd; =d — 1. Recall, rankP =d — 1 and(a, p) €
Um(A1 & (P ® A1)). Applying (3.3) withB = A1, Q = P ® A1, andJ = [ A1, there
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exists¥ € Aut(A1 @ (P ® Aj)) such that(a, p)¥ = (a1, p1), wherea; =1 (mod A1)
andO(p1) = A1 (modIAy).

It is easy to see that there exisis € 1 + fA such that, if we writeB = Ay,
then¥ € Aut(By @ (P ® By)) and (a, p)¥ = (a1, p1), wherea; =1 (mod I By) and
O(p1) = By (modIBy). Applying (3.6), there exists an elemehate 1+ fB and I €
Aut(Bsy @ (P ® Byyy)) such that(as, p1)I” = (a, p1) with a > 0 on X (R) N SpecB 7y
anda =1 (modIBy)

Recall thathy € 1+ fA, B = Ap,, andh’ € 1+ fB. Lets be an integer such that
h=hih' € A. ThenB, = A, andh € 1+ fA. Therefore, there exists' € Aut(A s, @
(P ® Ayp)) such that(as, p1)I” = (a, p1) with @ > 0 on X(R) N SpecA ¢, anda =1
(mod TAgp).

Write C = Ay,. Then, we havea, p1) € Um(C & (P ® C)) such thata > 0 on
X(R)NSpeaC anda =1 (modIC), wherel C J; (recall that/; is an ideal ofA defining
the singular locus of Spet). Applying (3.7), we get® € Aut(C @ (P ® C)) such that
(a, p1)® = (b, p) with b > 0 on X (R) N SpeaC, Z(b) is smooth on Spe€ of dimension
<d—-landpel(P®C).

Let A=W¥I'®. ThenA e Aut(A s, ® Pyp) is such thatla, p)A = (b, p) with b >0
on X (R) N SpecA ¢, andZ(b) is smooth on Sped ¢, of dimension< d — 1. Moreover,
(b, p) =(1,0) (modJ A ). This proves the lemma.O

Proposition 3.9. Let A be an affine algebra over R of dimension d. Let f € A be an
element not belonging to any real maximal ideal of A andlet A" = A y(1414r). Then, every
projective A’-module P of rank d — 1 is cancellative.

Proof. By replacingf by f2, we may assume thgt > 0 on X (R), whereX = SpecA.
Itis enough to show that, iz, p) € Um(A’ @ P), then, there existd € Aut(A’ @ P) such
that(a, p)A = (1, 0). Without loss of generality, we may assume tAas reduced.

We can choosg € 1+ Af such thatP is a projectiveA ,-module of rank? — 1. Write
A=Ay, Lett € A be a non-zero divisor such that is a freeA,-module of rankd — 1.
Let F = A9~! pe a free submodule af such thatF, = P, and lets = ¢/ be such that
sP C F.Let(e,...,eq_1) denote the standard basisaf 1.

Let J be the ideal ofA defining the singular locus of. SinceA is reduced and char
R =0, J is an ideal of height> 1. Let/ = sJ. Then ht' = 1. Applying (3.8) forB = A,
there exist$’ e 1+ f B andI" € Aut(Byjy @ Pyy) such thatif(a, p)I" = (a1, p1), then

(1) a1 >0 0onX (R) N Specs sy,
(2) Spe¢By/a1Bgy) is smooth of dimensiort d — 1, and
(3) (als Pl) = (1, O) (mOdSth/).

We can choose a suitable positive integsuch that: = g"h’ € A (infact,h e 1+ Af
and By, = Ayy) and I € Aut(A g, ® Pyp) such that(a, p)I” = (a1, p1), satisfies the
above propertie€l) — (3), i.e.,

(1) a1 > 0onX(R) N SpecA 74,
(2) SpecA ri/a1A ¢p) is smooth of dimensiort d — 1, and
(3) (a1, p1) = (1,0) (ModsA sp).
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Sincepy € s Py, and we have P C F, hence, we canwritg; = bier+---+by_1e4-1,
for someb; € Ay;. Let B =R(f) ®g(s] Asn. ThenB is an affine algebra ovek(f) of
dimensiond — 1. We writeP = P ® B.

Let “bar” denotes reduction modulo the idealB. Sincea1B + sB = B and Fy, = P,
it follows that the inclusior¥ C P gives rise to the equality = P. In particular,P is free
of rankd — 1 with a basigey, . .., ¢;—1) andp is a unimodular element a?.

If d =3, thenC = B/a1B is smooth of dimension 1. Note that, every maximal ideal
of C is the image in Spe€ of a prime ideab of A 7, of height 2 containing;. Sincea;
does not belong to any real maximal ideal&f, by [8], the residue fiel®R(p) = k(m)
has cohomological dimensiod 1. By (2.11),SK1(C) is divisible and the natural map
K1$(C) - K1(C) is an isomorphism Hence, there exigtse SLy(C) N ES(C) and
c1,¢2 € B_such that, ifg = clel + cpep € F, thenI'(p1) = q. By (2.4), I’ has a lift
Ie SL(P) Recall thatP = P ® B.

If d > 4, then, sinceP is a free of ranki — 1, using (2.9) and (2.11), one can deduce
from the proof of [10 Theorem 2.4] that there exifts E(P) andc; € B, 1<i <d —1
such that, ifg = c¢{ Ye1 + c2e2 + -+ + c4-1e4-1 € F, thenI"(p1) = . By (2.3), T can
be lifted to an elemeni € SL(P) (In particular, the above argument shows that every
stably freeB /a1 B-module of rank> d — 2 is cancellative.)

Therefore, in either case, there exigts= P and Iy € SL(P) such that

In(p1) =q —aiqa, whereq= Ci*1e1 +c2e2+ -+ ci-184-1.

Now, the rest of the argument is similar to [3, Theorem 4.1]. We give the proof for the
sake of completeness.

Now, I'1 induces an automorph|sm1 = (Idg,I) of B® P. Let ¥ = Y1 Ay
Recall thatAq,1 € E(B @ P) is defined asy, (b, q N = (b, q’' + bq1). Therefore, we have
(a1, p1)¥ = (a1, q). Letus writeA; = 'Y € Aut(B @ P) Then(a, p) A1 = (a1, q).

Recall thata; = 1 (mod sB). Hence, there exists € B such thatsx + a1 = 1. Let
Wi =sxci. Thenu; —c¢; € a1B. Let

d-1 d-1

g2 =p§ ter + Zmei esF and g3= Zmei.
2 1

Then g2 — g = a1po, for some po € F. Hence, we havéai, g)A,, = (a1, q2). Let
Apx=A1Ap,. Then(a, p) Az = (a1, q2).

Since 1—a; e sB andu; € sB for 1 <i <d — 1. Hence, the rovia1, u1, ..., na—1] €
Umy (B, Bs). Therefore, by (2.6),

[affl, VR T ,U«dfl] = [al, yffﬁl, ol ;Ldfl] (modEd(B, BS)).

By (2.5), there exist® € E(B® P) such thataz, g2)@ = (a2, g3). Write & = A,®.
Then, we haveza p)5 (ad’l, q3).

SlnceP/alP is free of r ranld 1 and every stably fre8 /a; B-module of rank> d — 2
is cancellativegs € P/alP can be extended to a basis®fa; P. Therefore, by (D), there
exists®1 € Aut(B ® P) such tha1(al ,q3)<1>1 =(1,0).
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LetA = ®P1. ThenA e Aut(B @ P) and(a, p)A = (1,0). Note thatd’ = A y11ay) =
B ®g(f) A’. Therefore, we get the resulto

As a consequence of above Proposition 3.9, we prove the following resBlt=1#¢~1
in the following Theorem 3.10, then we get [6, Theorem].

Theorem 3.10. Let A be an affine algebra over R of dimension d and let f € A be an
element not belonging to any real maximal ideal of A. Let P be a projective A-module
of rank > d — 1. Let (a, p) € Ay @ Py be a unimodular element. Then, the projective
Ap-module Q =Ar ® Pr/(a, p)Ay isextended from A.

Proof. Let A’ = Afa1ap- By (3.9),P ® A’ > Q ® A'. Hence, there existge 1+ Af

and an isomorphisr# : P ® Ay, — O ® A,. The moduleQ over A, and P over A,
together with an isomorphis#r yield a projective module ovet whose extension td ¢
is isomorphic toQ. This proves the result. O

Remark 3.11. Theorem 3.10 is valid for an affine algebfaover any real closed fielkl.
For simplicity, we have takeh=R.
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