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Abstract 

Multi-objective optimization problem is reaching better understanding of the properties and techniques of evolutionary 
algorithms. This paper presents the Dynamic Particle Swarm Optimization algorithm for solving multiobjective 

 PSO in terms of 
swarm size, topology and search space. In this paper swarm size criteria for dynamic PSO is considered. Experiment 
conducted for standard benchmark functions of multi-objective optimization problem, which shows the better performance 
rather the basic PSO. 
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1. Introduction 
 

Numerous works related to subpopulation manipulation in multiobjective evolutionary algorithms (MOEAs) have 
consistently shown that the implementation of the subpopulation concept coupled with other techniques yields more 
efficient and effective designs, particularly in enhancing the population diversity. In recent years, the subpopulation concept 
is incorporated into particle swarm optimization (PSO), generically referred to as multiple-swarm PSO. In fact, multiple-
swarm PSO bears a remarkable resemblance with the mixed-species flocking. The particle swarm optimizer (PSO) is a 
relatively new technique. Particle swarm optimizer (PSO), introduced by Kennedy and Eberhart in 1995[1], emulates 
flocking behaviour of birds to solve the optimization problems. In PSO, each solution is regarded as a particle. All particles 
have fitness values and velocities. During an iteration of the PSO, each particle accelerates independently in the direction of 
its own personal best solution found so far, as well as the direction of the global best solution discovered so far by any other 
particle. Therefore, if a particle finds a promising new solution, all other particles will move closer to it, exploring the 
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solution space more thoroughly. Typical implementations of PSO start with a reasonably sized swarm (about 40 particles). 
These particles are initialized with a random distribution within the solution space. As the iterations proceed, the particles 
will tend to cluster towards a global optimum. In each iteration, the fitness function is evaluated to find the optimality of 
each proposed solution (particle), and then the location of each particle is updated to drive towards convergence. Typically, 
the optimization process is repeated about minimum 10,000 times to allow the particles to converge on the global optimum. 
If the fitness function is complex, then the per-iteration evaluation and update process will tend to be long. After a while, 
the particles tend to converge and repeating the evaluation for all particles per iteration will not add substantial 
improvement. Most particles would have converged on extremely close locations that there is no need to repeat the 
evaluation and update for each and every one of them. 
 
In this paper we have conducted the experimental performance on some multi-objective 
with the dynamic PSO. The simple PSO is considered as fixed swarm size and fixed topological environment. We perform 
this simulation work with different swarm size in each iteration of PSO and also having variation in topology. The 
remainder of this paper is organized as follows: section 2 present a brief review on PSO , section 3 describe some relevant 
works of multiobjective optimization, section 4 describe detail of the Dynamic PSO algorithm is elaborated. 
Comprehensive study and Experimental results are discussed in section 5, and finally, section 6 provides concluding 
remarks of study. 
 
2. Literature Survey 
PSO was originally proposed by Kennedy and Eberhart [1] for optimization. The optimization technique was inspired by 
bird flocking and animal social behaviours. In PSO, the particles operate collectively like a swarm that flies through the 
hyper dimensional space to search for possible optimal solutions. The behaviour of the particles is influenced by their 
tendency to learn from their personal past experience and from the success of their peers to adjust the flying speed and 
direction. Research in fusing the multipleswarm concept into PSO is well established in solving SOPs and multimodal 
problems [2]. Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for solving optimization problems 
that originally took its inspiration from the biological examples by swarming, flocking and herding phenomena in 
vertebrates. Ant colony optimization, Genetic algorithm, particle swarm optimization are various evolutionary algorithms 
proposed by researchers. Due to simplicity in PSO equation and fast convergence, PSO is found to be best among these. 
After analysing each parameter in PSO equation 
inertia weight in the basic equation. It can be imagined that the search process for PSO without the first part is a process 
where the search space statistically shrinks through the generations. It resembles a local search algorithm. Addition of this 
new parameter causes exploration and exploitation in search space. Firstly value of w was kept static. Later on it was kept 
linear from 0.9 to 0.4. Eberhart Russell and Shi Yuhui [4] in 2000 compare these results with constriction factor. A small 

 constriction method is used, 
to 0.729. According to Clerc, addition of constriction factor may be necessary to insure convergence of particle swarm 
optimization algorithm The PSO algorithm with the constriction factor can be considered as a special case of the algorithm 
with inertia weight. 
 
F. van den Bergh, A. P.E ngelbrecht invented Guaranteed Convergence Particle Swarm Optimizer (GCPSO) [5]. The 
GCPSO has strong local convergence properties than original PSO. This algorithm performs much better with the small 
number of particle. The new phenomenon is defined called as 
position coincides with the global best position particle, then the particle will only move away from the point if its previous 
velocity and w are non-zero. If their previous velocities are very close to zero, then all the particles will stop moving once 
they catch up with the global best particle, which may lead to premature convergence of the algorithm. In fact, this does not 
even guarantee that the algorithm has converged on a local minimum it merely means that all the 
particles have converged on the best position discovered so far by the swarm. 
 
The original PSO is easily fall into local optima in many optimization problems. The problem of premature convergence is 
solved by the OPSO. It allows OPSO [6] to continue search for global optima by applying opposition based learning. The 
OPSO use the concept of Cauchy mutation operator. The OPSO based on opposition- based learning method. The OBL 
method has been given by Hamid R.Tizhoosh, it is explained as when evaluating a solution x to a given problem, we can 
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guess the opposite ion can reduce. 
The opposite solution x can be calculated as 
x`= a + b - x 
where x. R within [a, b] 
 
Hierarchical PSO [7] is known as hierarchical version of PSO called as H-PSO. In this algorithm the particles are arranged 
in a dynamic hierarchy. In H-PSO, a particle is influenced by its own so far best position and by the best position of the 
particle that is directly above it in the hierarchy. In H-PSO, all particles are arranged in a tree that forms the hierarchy so 
that each node of the tree contains exactly one particle. If a particle at a child node as found a solution that is better than the 
best so far solution of particle at parent node, then these two particles are exchanged. In this algorithm the topology used as 
regular tree in which hierarchy is defined in terms of height and branching degree. This hierarchy gives the particles 
different influence on the rest of the swarm with respect to their fitness. Each particle is neighboured to itself and its parent 
in the hierarchy. Only the inner nodes on the deepest level might have a smaller number of children so that the maximum 
difference between the numbers of children of inner nodes on the deepest level is at most one. In order to give the best 

individuals in the swarm a high influence, particles move up and down the hierarchy
Mendes [1] proposed another efficient approach which deals with stagnation is the fully informed particle swarm 
optimization algorithm (FIPSO) [8]. FIPSO use best of neighbourhood velocity update strategy. In FIPSO each particle uses 
the information from all its neighbours to update its velocity. The structure of the population topology has, therefore, a 
critical impact on the behaviour of the algorithm which in turn affects its performance as an optimizer. It has been argued 
that this happens because the simultaneous 
updating its velocity, provoking a random behaviour of the particle swarm. 
 
New Particle Swarm Optimization(NPSO)[9] is the idea of NPSO came from our personal based experience that an 

 also learns from his or her own and 
 worst positi

NPSO has the better solution result than the originally PSO as more seeds are needed when the search dimension gets larger 
and other parameters might need to change too. The solutions might get out of local minima with more random numbers 
generated. Position change limits may be tuned too rather than original PSO. Eberhart proposed a discrete binary version of 
PSO for binary problems [10]. In their model a particle will decide on "yes" or " no", "true" or "false", "include" or "not to 
include" etc. also this binary values .In binary PSO, each particle represents its position in binary values which are 0 or 1. 

r better say mutate) from one to zero or vice versa. In binary PSO the velocity 
of a particle defined as the probability that a particle might change its state to one. The novel binary PSO [9] solve the 
difficulties those are occurred in binary PSO. In this algorithm the velocity of a particle is its probability to change its state 
from its previous state to its complement value, rather than the probability of change to 1. 
 
In the PSO world, there exist global and local PSO versions. Instead of learning from the personal best and the best position 
achieved so far by th  velocity is adjusted according to its 
personal best and the best performance achieved so far within its neighborhood. Kennedy claimed that PSO with large 
neighborhood would perform better for simple problems and PSO with small neighbourhoods might perform better on 
complex problems. Kennedy and Medes discussed the effects of different neighborhood topological structures on the local 
version PSO. Suganthan applied a combined version of PSO where a local version PSO is run first followed by a global 
version of PSO at the end. Hu and Eberhart proposed a dynamically adjusted neighborhood when they solve the multi-
objective optimization problems using PSO. In their dynamically adjusted neighborhood, for each particle, the m closest 
particles are selected to be its new neighborhood. Veeramachaneni and his group developed a new version of PSO; Fitness-
Distance-Ratio based PSO (FDR-PSO) [11], with near neighbor interactions. When updating each velocity dimension, the 
FDR_PSO algorithm selects one other particle, nbest, which has higher fitness value and near the particle being updated, in 
the velocity updating  
neighbors of a particle are weighted and used to calculate the velocity. 
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3. Multi-objective Optimization 
3.1 Basic of MOP 
A multiobjective optimization problem (MOP) can be formally stated as follows: 
Minimize F(X) = [f1(X), f2 M(X)] T 

 
Subject to X  F                                                               (1) 
Where X is a decision vector with n decision variables, F(X) is the M- -

region. Here, we are interested in solving multi objective 
optimization problems; that is, the subset of MOPs involving M > 1 objectives [12]. In multi-objective optimization we 
wish to determine, from among all X  F, the particular X* which yields the optimum value for all the objective functions. 
However, it is unusual that there is a single solution simultaneously optimizing all the (conflicting) objectives. Instead, we 
are interested in finding a set of trade-off solutions. The most commonly adopted notion of optimality is the so-called 
Pareto optimality [13] [19]. 
 
Let us first define the Pareto dominance (PD) relation. Given two solutions X, Y  F, we say that X Pareto-dominates Y, 
denoted by X  Y, if and only if: 

m  fm(X)  fm(Y) ^ 
m  fm fm(Y)                                        (2) 

Otherwise, we say that Y is non dominated with respect to X. Finally, we say that a point X*  F is Pareto optimal if there 
is no X  F such that X  X*.The set of all X*  F satisfying this condition constitutes the Pareto optimal set, whose 
image in objective space is called the Pareto front or trade-off surface. 
 
3.2 Pareto dominance in multi-objective optimization 
Pareto dominance (PD) is known to become ineffective as the number of optimization criteria raises. Figure 1 show how the 
proportion of non dominated solutions in the population behaves with respect to the number of objectives and as the search 
progresses. We adopted a well-known scalable test problem, ZDT1 [14], and Dynamic PSO (described later in Section 
4.4.1) with a population of 100 individuals. A total of 31 independent executions were performed. 

 
 
From Figure 1, we can clearly see that the increase in the number of objectives raised the proportion of non dominated 
individuals in the population. Even in the case of the initial population (at generation zero), which is randomly generated, a 
high percentage of the individuals are non dominated. After a few generations, the population became completely non 
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dominated in all cases. Thus, no preferences can be set among individuals for selection purposes, leading the algorithm to 
perform practically a random search. Recently, alternative ranking approaches have been adopted to cope with this issue 
[6] [15]. 
 
 
4. Dynamic Particle Swarm Optimization 
While searching for food, the birds are either scattered or go together before they locate the place where they can find the 
food. While the birds are searching for food from one place to another, there is always a bird that can smell the food very 
well, that is, the bird is perceptible of the place where the food can be found, having the better food resource information. 
Because they are transmitting the information, especially the good information at any time while searching the food from 
one place to another, conducted by the good information, the birds will eventually flock to the place where food can be 
found.As far as particle swam optimization algorithm is concerned, solution swam is compared to the bird 
moving from one place to another is equal to the development of the solution swarm, good information is equal to the most 
optimist solution, and the food resource is equal to the most optimist solution during the whole course. 
Particle swarm optimization is a global optimization algorithm for dealing with problems in which a best solution can be 
represented as a point or surface in an n-dimensional space. Hypothesis are plotted in this space and seeded with an initial 
velocity, as well as communication channel between the particles. Particles then move through the solution space and are 
evaluated according to some fitness function after each timestamp. Over time particles are accelerated towards those 
particles within their grouping which have better fitness values. In dynamic PSO there is variation with swarm size and 
variation in topology. The dynamic particle swarm optimization concept consists of, at each time step, changing the 
velocity of (accelerating) each particle toward its pbest and lbest (for lbest version). Acceleration is weighted by random 
term, with separate random numbers being generated for acceleration towards pbest and lbest locations. After finding the 
best values, the particle updates its velocity and positions with following equations. 
V[id]=v[ id]+c1*r(id)*(pbest[id ]-x[ id])+c2*r*(id)(gbest[id]-x[ id])------ (a) 
x[ id] = x[ id]+v[ id]------------------------(b) 
where, 
v[id] is particle velocity 
x[ id] is the current particle 
r(id ) is random number between (0,1) 
c1 and c2 are learning factors usually c1=c2=2. 
Algorithm 4.1:- Algorithm for Dynamic Particle Swarm Optimization (DPSO) 
The pseudo code of the procedure is as follows, 
For each particle 
   Initialize Function value 
END 
   Calculate average fitness value 
Do 
   For each particle 
   If fitness value is less than average 
     Consider the particle 
     Calculate fitness value. 
   If the fitness value is better than the best 
     Fitness value (pbest) in history 
     Set current value as the new pbest. 
END 
Choose the particle with the best fitness value of all 
the particles as the gbest 
For each particle 
Calculate particle velocity according to equation (a) 
Update particle position according equation (b) 
END 
While maximum iterations or minimum error criteria is not attained. 
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5. Experimental Work 
Here our aim is to solve multi-objective optimization problem with using Dynamic PSO. Dynamic PSO can be defined as 
varying characteristics of PSO while experimentation is running. Characteristic include topology, swarm size, search space. 
If topology or swarm size can be change during process, then it is treated as dynamic particle swarm optimization. So we 
carry out the simulation work with varying swarm size at each iteration .For experimental status we have considered some 
standards benchmark function of multi-objective optimization. 
 
Problems ZDT1, ZDT2 and ZDT3 [14] [21] were adopted for our experimental study. These problems can be scaled to two 
numbers of objectives and decision variables. We perform simulation to study particle behavior for dynamic PSO to apply 
for solving multi-objective optimization in 6 dimensional spaces. Values of parameter involved in equation are considered 
as 0.7 for inertia, 1.49 for c1 and c2 and particle swarm size 100 for first iteration. Simulation has been carried out for 
10000 iterations. We first find the dominated point (in figure it has shown by main population) and then we find the cost 
function value of each dominated point which gives us the set of optimized dominated point. 
 
   We find non dominated point ( repository optimized dominated point) and finally we compare this point by using non 
dominated sorting algorithm which gives us optimized non dominated point. The set of such non dominated point gives us 
true Pareto front. The result for this problem has shown in following figure. 
 

Table1.Benchmark Functions 
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Figure 2. (a), (b) & (c). Superimposed results of dynamic PSO, on benchmark function ZDT1, ZDT2 and ZDT3 with population size 100. 
(a) Showing result for ZDT1 with true Pareto front (convex Pareto- optimal front). (b) Showing result for ZDT2 with true Pareto front 
(non-convex Pareto-optimal front). (c) showing result for ZDT3 with true Pareto front (discreteness feature to the front). {blue point (main 
population) indicates dominated particle and red point (repository) indicate non dominated particle. The set of non dominated particle gives 
Pareto front} 
 
6. Conclusion: 
The review of Multi-objective PSO algorithm has studied with considering the pre-existing algorithms. Our basic aim of 
project is to solve multi-objective optimization problem with the help of dynamic PSO. so on the basis of simulation result 
we conclude that the dynamic PSO gives better optimized value for multi-objective optimization problem.  
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