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Theories of quantum gravity predict spacetime dimensions to become reduced at high energies, a striking
phenomenon known as spontaneous dimensional reduction (SDR). It has found nice applications to
astrophysics and collider phenomenologies. We construct an effective electroweak theory based on the
standard model (SM) and incorporate the TeV-scale SDR, which exhibits good high energy behavior
and ensures the unitarity of weak gauge boson scattering. This also provides a natural solution to the
hierarchy problem in the presence of a SM-like Higgs boson. We demonstrate that this model predicts
the unitary longitudinal weak boson scattering, and can be discriminated from the conventional 4d SM
by the W W scattering experiments at the CERN LHC.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Spontaneous dimensional reduction (SDR) [1] is a striking phe-
nomenon, showing that the spacetime dimensions effectively equal
3 + 1 at low energies, but get reduced toward 1 + 1 at high
energies. This is predicted by a number of quantum gravity ap-
proaches [1], including the causal dynamical triangulation, the ex-
act renormalization group method, the loop quantum gravity, the
high-temperature string theory, and Hořava–Lifshitz gravity, etc.
The SDR is expected to greatly improve the ultraviolet (UV) be-
havior of the standard model (SM) of particle physics. This prop-
erty of the quantum gravity has called phenomenological interests
recently, and has found applications to astrophysics and collider
phenomenologies in a different context [2]. In addition, some hints
of a TeV-scale SDR have been noted [2] from the observations of
alignment of high energy cosmic rays [3].

The SU(2)L ⊗ U (1)Y gauge structure of the SM is well estab-
lished for electroweak forces. In the conventional SM, it is linearly
realized and spontaneously broken by the Higgs mechanism [4],
leading to massive weak gauge bosons (W ±, Z 0). A Higgs boson is
predicted and is crucial for the renormalizability and unitarity of
the SM. Recently, ATLAS and CMS Collaborations have found signals
for a new particle with mass around 125 GeV at the LHC, which
are somewhat different from the SM Higgs boson (especially in the
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diphoton mode), although still consistent with the SM expectations
within about 2σ statistics [5]. Hence, the true mechanism of elec-
troweak symmetry breaking is awaiting further explorations at the
LHC, and the possible new physics beyond the SM Higgs boson is
highly anticipated. Given the fact that no other new particles have
been detected so far, it is tantalizing to explore alternative new
physics sources at the TeV scale, beyond the conventional propos-
als such as extra dimensions, supersymmetry and strong dynamics
at the TeV scale.

In this Letter, we will explore the quantum gravity effect of SDR
at the TeV scale, and study its applications to the electroweak sec-
tor of the SM. We conjecture that the TeV-scale SDR can play a
key role to unitarize weak gauge boson scattering in the theory
without or with a Higgs boson. As the first example, we will show
that the perturbative unitarity is maintained by the TeV-scale SDR
in scenarios without a Higgs boson, where the recently observed
125 GeV boson [5] can be something else, such as a dilaton-like
particle [6]. Without a Higgs boson, the SM electroweak gauge
symmetry SU(2)L ⊗ U (1)Y becomes nonlinearly realized [7] and
the three Goldstone bosons are converted to the longitudinal polar-
izations of (W ±, Z 0) after spontaneous symmetry breaking. Such
a minimal Higgsless SM loses traditional renormalizability [7] and
violates unitarity of W W scattering at TeV scale [8], so it is incom-
plete. We show that the TeV-scale SDR can provide a new way to
unitarize the W W scattering, and will be discriminated from the
SM at the LHC.

Then, we study the SM with a non-standard Higgs boson of
mass around 125 GeV under the TeV-scale SDR (called the Higgs-
ful SM). We will show that the corresponding WW scattering cross
sections become unitary at TeV scale under the SDR, but exhibit
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different behaviors from the conventional 4d SM. We note that dif-
ferent ways of unitarizing the longitudinal W W scattering around
TeV scale reflect the underlying mechanisms of electroweak sym-
metry breaking (EWSB), and will be discriminated by the W W
scattering experiments as a key task of the LHC [9].

2. The TeV scale SDR

Despite lacking a full theory of quantum gravity that could pre-
cisely describe the SDR, we are modest and approach this problem
by using the effective theory formulation [10]. In particular, to mimic
the result from the causal dynamical triangulation [11], we param-
eterize the spacetime dimension n = n(μ) as a smooth function of
the energy scale μ (which we call the dimensional flow by follow-
ing Calcagni [12]), such that n(μ) → 4 under μ → 0 in the infrared
region as supported by all low energy experiments, and n(μ) → 2
at a certain UV scale ΛUV. We can make a simple choice for the
dimensional flow,

n(μ) = 4 − 2

(
μ

ΛUV

)γ

, (μ � ΛUV), (1)

where the index γ > 1 is a model-dependent parameter, deter-
mined by the nonperturbative dynamics of quantum gravity. As
simple realizations we may set γ = 2 or 1.5. Before finding a
unique full theory of quantum gravity, other variations of (1) are
possible [11,12], but this will not affect the main physics features
of the present analysis. An easy choice for ΛUV would be the
Planck scale. But it is a very interesting and intriguing possibil-
ity that the nonperturbative dynamics of quantum gravity drives
ΛUV down to O (TeV) [2]. If this happens, a number of difficulties
associated with the EWSB and W /Z mass-generations in the SM
can be resolved without introducing additional ad hoc hypothetical
dynamics.

When the quantum gravity effects show up at the TeV scale,
they will induce effective operators causing sizable anomalous
Higgs couplings to W W (Z Z) and fermions in the low energy
effective theory. This will violate perturbative unitarity at TeV en-
ergy scale in the conventional 4d setup [13,14]. However, we show
that under the TeV-scale SDR, the weak boson scattering ampli-
tudes will still be unitarized through the reduction of spacetime
dimensions. Furthermore, the presence of the TeV-scale SDR will
also provide a natural solution to the hierarchy problem since the
quadratically divergent radiative corrections to Higgs mass is ren-
dered to be logarithmic in n = 2 spacetime and thus harmless.

3. The standard model with SDR

As an effective theory description of the SDR, we encode the
information of dimensional flow n = n(μ) into the measure of
spacetime integral dρ , and replace all integral measure d4x in the
action functional by dρ . A rigorous mathematical construction of
dρ is given by Ref. [12], but the detail is not needed here. All
we need to know is that the mass-dimension of this measure is
[dρ] = −n, where n = n(μ) is the dimensional flow in (1). It is
enough to define the measure dρ formally by dnx, with n a scale-
dependent quantity. Thus, we can write the action of the theory,
S = ∫

dnxL = ∫
dnx(LG + LF ), where LG and LF are the gauge

and fermion parts of the SM Lagrangian. We will focus on the
gauge sector for the current study. We first consider the gauge La-
grangian with Higgs boson removed,

LG = −1

4
W a

μν W μνa − 1

4
Bμν Bμν + M2

W W +
μ W −μ

+ 1
2

M2
W Zμ Zμ, (2)
2 cos θw
where W a
μν = ∂μW a

ν − ∂ν W a
μ + gεabc W b

μW c
ν and Bμν = ∂μBν −

∂ν Bμ . In the above, θw = arctan(g′/g) represents the weak mixing
angle and connects the gauge-eigenbasis (W 3

μ, Bμ) to the mass-

eigenbasis (Z 0
μ, Aμ). Eq. (2) contains W /Z mass-terms in unitary

gauge and can be made gauge-invariant in the nonlinear realiza-
tion of SUL(2) ⊗ U (1)Y gauge symmetry,

LΣ = 1

4
v2 tr

[(
DμΣ

)†
(DμΣ)

]
, (3)

where DμΣ = ∂μΣ + i
2 gW a

μτ aΣ − i
2 g′BμΣτ 3, Σ = exp[iτ aπa/v]

with {πa} the Goldstone bosons. Eq. (3) gives MW = 1
2 gv , where

the parameter v will be fixed by the low energy Fermi constant
G F = (

√
2v2)−1. The Lagrangian (2) derives directly from the SM

in unitary gauge after removing the Higgs boson; while Eq. (3) is
just the lowest order electroweak chiral Lagrangian of the SM [7].

We can further embed the Higgs boson as a singlet scalar h0 in
this formulation by extending the Lagrangian (3) as in [13,14],

LH = 1

4

(
v2 + 2κvh + κ ′h2) tr

[(
DμΣ

)†
(DμΣ)

]

+ 1

2
∂μh∂μh − 1

2
M2

hh2 − λ3

3! vh3 + λ4

4! h4, (4)

where �κ ≡ κ − 1 and �κ ′ ≡ κ ′ − 1 denote the anomalous gauge
couplings of the Higgs boson h0 with W W and Z Z . The conven-
tional 4d SM is just a special case, �κ = �κ ′ = 0, and λ3 = λ4 =
λ0 = 3M2

h/v2, in the general effective Lagrangian (4). For nonzero
anomalous couplings �κ,�κ ′ �= 0 and/or λ3, λ4 �= λ0, as induced
by the effects of TeV-scale SDR, the scalar field h0 becomes a non-
standard Higgs boson. We will study how to discriminate such as
non-SM Higgs particle from the conventional 4d SM in Section 5.

We also note that our Lagrangian L is manifestly Lorentz
invariant and thus all particles’ dispersion relations remain un-
changed, as in [12]. This is because our formulation is based on the
framework of [12], where it is shown that the action can be con-
structed in such a way that the Lagrangian density L lies in 3 + 1
dimensional spacetime and respects the (3 + 1)d Poincaré symme-
try, while the effect of SDR is fully governed by a properly defined
integral measure dρ . In such a scenario, scalar, spinor and vector
fields are linear representations of (3 + 1)d Lorentz group SO(3,1)

(up to a gauge transformation for gauge fields). Practically, this
is similar to the conventional dimensional reduction regulariza-
tion method [15], which maintains the 4d Lorentz symmetry and
continues physics to n < 4. Thus, our model is free from Lorentz-
violation constraints in the cosmic ray observations and collider
experiments at the tree level. In addition, our present study fo-
cuses on longitudinal weak boson scattering, and their amplitudes
are equivalent to that of the corresponding Goldstone bosons at
high energies according to the equivalence theorem [16]. The am-
plitudes of scalar Goldstone bosons are cleanly defined in general
dimension n. Manipulations of scalar fields do not involve contract-
ing or counting Lorentz indices, and thus do not rely on details of
realizing the SDR.

In general n-dimensional spacetime, the action functional
should remain dimensionless. Hence the Lagrangian has the mass-
dimension [L ] = n, and the gauge coupling g has mass-dimension
[g] = (4 − n)/2. We can always define a new dimensionless cou-
pling g̃ and transfer the mass-dimension of g to another mass-
parameter. Since the gauge coupling g in (2) becomes super-
renormalizable for n < 4 and thus insensitive to the UV, it is
natural to scale g by the W mass MW [which is the only di-
mensionful parameter of the Lagrangian (2) in 4d],

g = g̃M(4−n)/2
, (5)
W
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with g̃ being dimensionless. The value of g̃ is given by that of g at
n = 4. We will concentrate on the tree-level analysis in this study,
so g̃ is a scale-independent constant.

In fact, the scaling (5) is well justified for more reasons. We
may easily wonder why we could not use the UV cutoff ΛUV in
the scaling of g as a replacement of the infrared mass-parameter
MW of the theory. This is because in spacetime dimension n < 4,
the gauge coupling g is super-renormalizable with positive mass-
dimension [g] = (4 − n)/2 > 0. Such a super-renormalizable cou-
pling must be insensitive to the UV cutoff of the theory, contrary to
a non-renormalizable coupling with negative mass-dimension and
thus naturally suppressed by negative powers of the UV cutoff ΛUV
(e.g., in n > 4 or in association with certain higher-dimensional
operators). It is easy to imagine that for a super-renormalizable
theory in dimension n < 4, if its coupling g were scaled as g =
g̃Λ

(4−n)/2
UV , it would even make tree-level amplitude UV diver-

gent and blow up as ΛUV → ∞; this is clearly not true. On the
other hand, it is well known that a non-renormalizable coupling
g with negative mass-dimension [g] ≡ −p < 0 should be scaled as
g = g̃/Λ

p
UV, and thus the tree-level amplitude naturally approaches

zero when ΛUV → ∞, as expected.
Since spacetime dimension flows to n = 2 in the UV limit, we

observe that the theory (2) is well-behaved at high energies. This is
because all gauge couplings of the Lagrangian (2) in n < 4 dimen-
sions become super-renormalizable, and the gauge boson propaga-
tors scale as 1/p2 in high momentum limit under the Rξ gauge-
fixing. So we only concern about gauge boson mass-terms in (2) or
(3), which is the origin of nonrenormalizability and unitarity viola-
tion in 4d. But, in our construction the spacetime dimension flows
to n = 2 in high energy limit where (3) just describes a 2d gauged
nonlinear sigma model and is renormalizable, as is well known.

We also note that in n < 4 dimensions gauge bosons can ac-
quire masses via new mechanisms other than the Higgs mecha-
nism. For instance, in the 2d Schwinger model [17], radiative cor-
rections to the vacuum polarization from a massless-fermion loop
generate a nonzero photon mass, mγ = e√

π
. Also, the 3d Chern–

Simons term induces a topological mass for the corresponding
gauge field [18], mcs = κe2. Hence, it is natural to have an explicit
mass-term of vector boson in a lower dimensional field theory. We
will further demonstrate below that such a mass-term is indeed
harmless in a Higgsless SM with the TeV-scale SDR, and the uni-
tarity of high energy longitudinal W W scattering is ensured.

4. Longitudinal weak boson scattering under SDR

As a simple illustration of the unitarization mechanism of lon-
gitudinal W W scattering under the SDR, we first present the anal-
ysis in the SM without Higgs boson (called the Higgsless SM and
denoted by HLSM–SDR). It is noted that such a scenario is still con-
sistent with the current LHC data since the 125 GeV new boson
can be something else, such a dilaton-like particle [6]. The effect
of SDR is most clearly seen in this case. After this, we will further
extend this mechanism to the Higgsful SM under the SDR (includ-
ing a Higgs boson and called the HFSM–SDR), in the next section.

The minimal 4d Higgsless SM violates unitarity at TeV scale,
because the SM Higgs boson plays the key role to unitarize the
bad high energy behaviors of the longitudinal W W scattering. For
instance, without Higgs boson, the amplitude of W +

L W −
L → Z 0

L Z 0
L

has non-canceled E2 term,

THL = g2 E2
cm/

(
4M2

W

) +O
(

E0
cm

)
, (6)

where Ecm is the c.m. energy. This bad E2 behavior leads to uni-
tarity violation at TeV scale. In contrast, for the conventional 4d
SM, this E2 term is exactly canceled by the contribution of the
s-channel Higgs-exchange, which is the key to ensure the SM uni-
tarity.

In lower dimensions, the longitudinal amplitudes remain the
same as in 4d. But, we observe that the form of partial wave ex-
pansion changes, due to the phase-space reduction for final state.
Hence, the E2-cancellation described above is no longer essen-
tial for ensuring the unitarity. This is an essential feature of the
unitarization mechanism through SDR, i.e., the W W scattering am-
plitudes remain unitary at high energies under SDR, even without
a Higgs boson.

To be explicit, we recall that unitarity condition for S-matrix
arises from probability conservation, S S† = S† S = 1. This leads to
T †T = 2
mT , where T is defined via S = 1+ iT , and is related
to the amplitude T via T = (2π)nδn(p f − pi)T with pi (p f ) the
total momentum of the initial (final) state. For 2 → 2 scattering, T
depends only on the c.m. energy Ecm and scattering angle θ . Thus,
in this case we can always expand T (Ecm, θ) in terms of partial
waves a�(Ecm) for n > 3 dimensions,

T = λn E4−n
cm

∑
�

1

Nν
�

Cν
� (1)Cν

� (cos θ)a�,

a� = En−4
cm

λnCν
� (1)

π∫
0

dθ sinn−3 θCν
� (cos θ)T , (7)

with

λn = 2(16π)n/2−1�

(
n

2
− 1

)
, ν = 1

2
(n − 3),

Nν
� = π�(� + 2ν)

22ν−1�!(� + ν)�2(ν)
,

and Cν
� (x) is the Gegenbauer polynomial of order ν and degree �.

This partial wave expansion holds for n > 3 because the eigenfunc-
tions of rotation generators (namely the Gegenbauer function) are
not well defined below n = 3. The appearance of factor E4−n

cm in the
expansion of T is expected, since the S-matrix of 2 → 2 scatter-
ing has a mass-dimension 4 − n in n dimensions, and the partial
wave amplitude a� is dimensionless by definition. Then, we can de-
rive unitarity conditions for the elastic and inelastic partial waves,
|�eael

� | � ρe
2 , |ael

� | � ρe , and |ainel
� | � √

ρiρe/2, where ρe (ρi) is a
symmetry factor of final state in 2 → 2 elastic (inelastic) scattering,
and equals 1! (2!) for the final state particles being nonidentical
(identical) [19].

With these, we perform the coupled channel analysis for elec-
trically neutral channels. There are two relevant initial/final states,
|W +

L W −
L 〉 and 1√

2
|Z 0

L Z 0
L 〉, and the corresponding amplitudes form

a 2 × 2 matrix,

Tcoup = g2 E2
cm

8M2
W

(
1 + cos θ

√
2√

2 0

)
. (8)

Thus, we derive the s-wave amplitude from (8) in n-dimensions
and extract the maximal eigenvalue,

∣∣amax
0

∣∣ = g̃2

2n+1π(n−3)/2�(n−1
2 )

(
Ecm

2MW

)n−2

. (9)

Although the partial wave expansion (7) holds for n > 3, we can
make analytical continuation of (9) as a function of dimension n
to the full range 2 � n � 4. Here, we perform the analytic contin-
uation on the complex plane of spacetime dimension n, while the
one-to-one mapping between n and μ is only defined within the
real interval 2 � n � 4.

In Fig. 1, we present the unitarity constraint for the standard
model without a Higgs boson, under Eq. (1) with γ = 1.5, where
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Fig. 1. Partial wave amplitude of coupled channel scattering versus c.m. energy Ecm.
Predictions of the HLSM–SDR are shown by (red, purple, blue) curves from bottom
to top, for ΛUV = (4,5,6) TeV. For comparison, the amplitudes for the 4d Higgsless
SM and for the conventional 4d SM (with a 600 GeV Higgs boson) are depicted by
the black curves. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

we have varied the transition scale ΛUV = (4,5,6) TeV. The shaded
yellow region is excluded by the unitarity bound |amax

0 | � 1. The s-
waves of HLSM–SDR always have a rather broad “lump” around
1.5–5 TeV and then fall off quickly, exhibiting desired unitary high
energy behaviors. For comparison, we also show the results of the
4d SM with a 600 GeV Higgs boson, and the naive 4d Higgsless SM
which breaks unitarity at Ecm 
 1.74 TeV.

Next, we compute the cross section for W +
L W −

L → Z 0
L Z 0

L and
W +

L W +
L → W +

L W +
L , as shown in Fig. 2. The 4d unitarity condi-

tion for inelastic cross sections is, σinel � 4πρe E−2
cm . We derive the

generalized form in n-dimensions,

σinel � λnρe

4Nν
0 En−2

cm
, (10)

where λn and Nν
0 are defined below (7). Fig. 2 shows how the

SDR works as a new mechanism to successfully unitarize the high
energy behaviors of cross sections without invoking extra hypothe-
sized particle (such as the SM Higgs boson). Furthermore, the new
predictions of the HLSM–SDR are universal and show up in all
W W scattering channels. This is an essential feature of our model
and will be crucial for discriminating the HLSM–SDR from all other
models of the EWSB at the LHC.

Here we note that in n-dimensions the cross section σ has its
mass-dimensions equal [σ ] = 2−n, while the experimentally mea-
sured cross section σexp always has mass-dimension −2, as the
detectors record events in 4d. So we need to convert the theory
cross section σ under the SDR to σexp, where the extra mass-
dimensions of σ should be scaled by the involved energy scale
Ecm of the reaction, σexp = σ En−4

cm .
As a final remark, it was found [19] in 4d that varying the

phase space may strongly alter the unitarity limit. Ref. [19] ob-
served that the enlarged phase space of 2 → N scattering (due to
properly increasing the number N of gauge bosons in the final
state) will enhance the cross section and result in a new class of
much stronger unitarity bounds for all light SM fermions. Inter-
estingly, the current study just shows the other way around: for
2 → 2 scattering, reduction of the phase space of final states from
decreasing the spacetime dimension n can significantly reduce the
partial wave amplitudes and cross sections, leading to the unitarity
restoration.

5. Weak boson scattering in Higgsful SM with SDR

In this section, we extend our mechanism in Section 4 to the
Higgsful SM with SDR (HFSM–SDR). In this case, the quantum-
gravity-induced SDR at TeV scales provides a natural solution to
the hierarchy problem that plagues the Higgs boson in the conven-
tional 4d SM. For TeV-scale SDR, it is expected that new physics
effects induced by the quantum gravity will show up in the low
energy effective theory. So, the Higgs boson can have anomalous
couplings with W W and Z Z gauge bosons, and thus behaves as
non-SM-like.

In unitary gauge, we can write down the leading anomalous
gauge interactions of the Higgs boson [13,14] from the effective
Lagrangian (4),

(
�κvh + 1

2
�κ ′h2

)[
2M2

W

v2
W +

μ W −μ + M2
Z

v2
Zμ Zμ

]
, (11)
Fig. 2. Cross sections versus center-of-mass energy Ecm for processes (a) W +
L W −

L → Z 0
L Z 0

L and (b) W +
L W +

L → W +
L W +

L . In each plot, predictions of the HLSM–SDR are shown
by (red, purple, blue) curves, for ΛUV = (4,5,6) TeV. As comparison, results of the conventional 4d SM with a light (heavy) Higgs boson of mass Mh = 125 GeV (600 GeV) are
depicted by black dashed-curves; the result of the 4d Higgsless SM is given by black solid-curve. Shaded regions in yellow and light-blue represent unitarity violation in 4d
and in the HLSM–SDR, respectively. The three blue dashed-lines, from bottom to top, show the unitarity bounds for ΛUV = (4,5,6) TeV. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Letter.)
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Fig. 3. Cross sections of W +
L W −

L → Z 0
L Z 0

L versus center-of-mass energy Ecm. In each plot, predictions of the HFSM–SDR with Higgs mass Mh = 125 GeV [5] and anomalous
couplings �κ = +0.3 [plot (a)] and �κ = −0.3 [plot (b)] are shown by (red, purple, blue) curves, for ΛUV = (4,5,6) TeV. As comparison, results of the conventional 4d-SM
with Mh = 125 GeV (labeled by “SM”) and the 4d-SM with the same anomalous coupling (labeled by “SM + AC”) are depicted by black curves. Shaded regions are the same
as in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
where the anomalous couplings �κ,�κ ′ �= 0 represent new
physics. Besides the hierarchy problem, the conventional 4d SM
also suffers constraints from the Higgs vacuum instability and the
triviality of Higgs self-coupling. If such a 4d SM would be valid
up to Planck scale, then the SM Higgs boson mass is bounded
within the range [20], 133GeV � Mh � 180 GeV. Hence, a Higgs
mass outside this window will indicate a non-standard Higgs bo-
son in association with new physics. The Higgs boson in our present
model under the TeV-scale SDR has anomalous couplings induced
from quantum gravity and thus behaves as non-SM-like. With the
recent LHC data [5], model-independent fits already put some in-
teresting constraints on the Higgs anomalous couplings. Using the
fitting result of [21], we find that for Mh = 125 GeV, the �κ in
(11) is bounded within the range, �κ = 0.2+0.4

−0.5.
In the conventional 4d SM with (11), it was found [14] that

the W W scattering has non-canceled large E2 behavior and will
eventually violate unitarity at TeV scale. But in our new model,
the TeV-scale SDR can always unitarize W W scattering and pre-
dicts different behaviors for cross sections, as shown in Fig. 3 for
γ = 1.5. In Fig. 3, we study W W scattering process for probing a
non-SM Higgs boson with mass Mh = 125 GeV [5] and anomalous
coupling �κ = ±0.3. We find that the cross sections under SDR-
unitarization (middle colored curves) have sizable excesses above
the 4d SM with a 125 GeV Higgs boson (κ = 0, flat black curve).
Then they fall off in the 2–4 TeV region, consistent with the cor-
responding unitarity limits. Fig. 3 also shows that for the usual
non-unitarized 4d SM with nonzero anomalous coupling κ �= 0,
the cross section (upper black curve) rapidly increases and eventu-
ally violate unitarity around Ecm = 2 TeV for this scattering chan-
nel.

Before concluding this section, we also clarify the validity range
of our effective theory of the SDR. This validity range lies be-
tween the W W (Z Z ) threshold (around 160–180 GeV) and the
UV-cutoff ΛUV = O (5 TeV). It is clearly shown in our Fig. 2
and Fig. 3, where the relevant scattering energy Ecm (for our
model to be discriminated from the 4d-SM and 4d-HLSM at
the LHC) is always within 0.2–3 TeV, which is significantly be-
low 4 TeV � ΛUV. Moreover, within this energy region 0.2–3 TeV
(relevant to the LHC test), we can explicitly derive the dimen-
sional flow from Eq. (1), n 
 3.98 − 3.07 (under the typical in-
put of ΛUV = 5 TeV and γ = 1.5), which is significantly above
n = 2.1 This clearly shows that for our effective theory study
we do not need to invoke any detailed UV dynamics at or
above ΛUV.

6. Conclusions

We have studied the exciting possibility for the onset of the
SDR at TeV scale. We demonstrated that the TeV-scale SDR can
play a key role to unitarize longitudinal weak boson scattering. We
have constructed an effective theory of the SM under the SDR, ei-
ther without a Higgs boson or with a light non-standard Higgs
boson.

In the first construction, it nonlinearly realizes the electroweak
gauge symmetry and its spontaneous breaking. The model be-
comes manifestly renormalizable at high energies by power count-
ing. We found that the non-canceled E2 contributions to the W W
scattering are unitarized by the SDR at TeV scales (Fig. 1), and
the scattering cross sections exhibit different behaviors (Fig. 2).
This will be probed at the LHC. Here the recent observation of a
125 GeV boson at the LHC (8 TeV) could be something else, such
as a dilaton-like particle [6].

For the second construction of the Higgsful SM with SDR, we
studied the W W scattering with a light non-standard Higgs bo-
son of mass 125 GeV. It has effective anomalous couplings with
gauge bosons as induced from the TeV-scale quantum gravity ef-
fects [cf. Eq. (11)]. Fig. 3 showed that the W +

L W −
L → Z 0

L Z 0
L cross

section with anomalous Higgs couplings has distinctive invariant-
mass distributions from the naive SM Higgs boson over the
0.2–3 TeV energy regions. This will be definitively probed by the
next LHC runs at 14 TeV collision energy with higher luminos-
ity.

In passing, we note that the unitarity of W W scattering in
generic 4d Technicolor theories was recently studied in Ref. [22].
For future works, it is useful to further develop a method for
quantizing field theories with SDR and compute the sub-leading
effect of loop corrections in fractional spacetime [12], which is
expected to have better UV behavior than the usual 4d SM and

1 Note that only at n = 2 and its vicinity, we have Ecm → ΛUV and thus our
effective theory should be replaced by a full theory of quantum gravity.
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thus agree better with the precision data. This is fully beyond the
current scope and will be further explored in future works. A sys-
tematical expansion of our study in the present Letter is given
elsewhere [23].

Note added

As the final remark, our effective theory construction is also partly motivated
by the asymptotic safety (AS) scenario of quantum general relativity (QGR) à la
Weinberg [24,25]. In the AS scenario, the theory is originally defined in (3 + 1)d,
while solving the exact renormalization group equation of QGR points to nontriv-
ial UV fixed point, under which the graviton two-point function exhibits effective
two-dimensional UV behavior [25]. Here, the SDR is reflected in anomalous scalings
of the fields, as well as physical variables like the spacetime curvature. Such anoma-
lous scalings share the similarity with our effective theory construction, while the
field contents are still defined in (3 + 1)d and respect the (3 + 1)d Lorentz sym-
metry. Our effective theory is a simplified formulation at low energy, so it does not
rely on any detailed UV dynamics of the AS scenario. It is interesting to further
study the quantitative connection between the SDR and the AS scenario. We also
note that the Horava–Lifshitz model [26] of quantum gravity can provide a con-
crete field-theoretical realization of SDR with UV-completion, which has relatively
tractable Lagrangian. Thus, the various scaling properties in our effective theory are
expected to arise from the formulation of the Horava–Lifshitz model. We will con-
sider these two interesting scenarios for future works.
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