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Abstract

Plane semi-analytical hybrid stress elements are formulated from the 3D Hellinger–Reissner principle for modelling
moderately thick structural components with and without hollows subjected to loadings symmetric to the midsurface.
These components possess symmetry in the thickness direction but could not be idealised as either plane stress or plane
strain problems. 3D displacement and stress fields conforming to the exact plane stress solution are assumed and normal
stresses on the surfaces parallel to the thickness direction are nullified. These 2D elements possess good convergence char-
acteristics and simulate the 3D behaviour of solids whose stress free surfaces exhibit negligible out-of-plane distortion with
good level of accuracy comparable to 3D analyses by ABAQUS.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural analysts resort to 3D modelling of the components or structures that are moderately thick
although they are subjected to in-plane loading and their lateral surfaces remain traction free. For the illus-
tration of such cases, several examples could be drawn from civil engineering application, namely, the mod-
elling of shear walls of varying thickness (Foster and Rangan, 1999) and simple prisms used for the quality
control of concrete and masonry construction (Afshari and Kaldjian, 1989). These problems could not be
commonly analysed using the classical plane strain or plane stress approach and a full 3D analysis is essential
for the accurate prediction of all stress and displacement components.

Plane stress is used for problems involving small thickness relative to in-plane dimensions and free lateral
boundary conditions. Plane strain, on the other hand, is suitable where the thickness of the solid is much larger
than other characteristic dimensions. Under plane strain assumption, equilibrium, compatibility and constitu-
tive equations are precisely satisfied. Unfortunately, not all the compatibility conditions are satisfied in the
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plane stress approach because it supposes that all variables are independent of z-axis (an axis oriented along
the thickness direction), and all out-of-plane stress components are identically equal to zero
(rz = syz = szx = 0) (Timoshenko and Goodier, 1970) throughout the thickness of the body. In order to model
structural components of moderate thickness, in this paper we have considered that the out-of-plane stress
components vanish at all external lateral planes normal to the z-axis (in other words, these stresses remain
non-zero within the body). This consideration necessitated all fields be kept as functions of x, y and z.

Timoshenko and Goodier (1970) proposed a 3D exact solution for plane stress problems with the assump-
tion of rz = syz = szx = 0 using a stress function / that depends on x, y and z. The theory validates the clas-
sical plane stress assumption for solids possessing infinitesimal thickness but still is inadequate for problems
with moderate thickness (or, bodies whose dimensions are comparable to each other). Ye (1997) proposed an
alternative exact formulation by adopting the assumptions syz = szx = 0, and rz = rz(x,y) as a harmonic func-
tion satisfying the condition rz,xx + rz,yy = 0 and formulated a 2D displacement element capable of predicting
the out-of-plane normal stress rz. However, his method has not satisfied the traction free conditions on the
free lateral surfaces of the solids. This paper presents 2D hybrid stress element formulation that satisfies
the traction free conditions on all free lateral surfaces of the solids.

Theoretically the analysis of the plane deformable bodies possessing moderate thickness belongs neither to
the classical plane strain/stress theories nor to the modified plane stress theories. Similar problems occur in the
evaluation of the stress intensity factor in fracture mechanics (Broek, 1982; Zhou and Hsieh, 1988). For these
problems, analysis based on 3D modelling is expected to yield precise results but it is not only computationally
expensive, but also complicated for mesh generation and interpretation of the output data. In this paper we
report four-noded quasi-3D hybrid stress elements with 24 stress parameters, represented by Q3D24b for non-
hollow bodies, and Q3D24bH for hollow bodies, formulated using the 3D Hellinger–Reissner principle for the
modelling of solids and structural components of moderate thickness, or bodies whose dimensions are com-
parable to each other.

In the formulation the displacement and stress fields along the thickness direction are represented analyt-
ically by improving the modified plane stress theory proposed by Timoshenko and Goodier (1970) and Ye
(1997). However, unlike the modified plane stress theories, the hybrid stress element reported in this paper
has the potential to predict non-zero out-of-plane stress components within the body. The element satisfies
the equilibrium, compatibility and constitutive equations in a variational sense (weak form). As stress-free
conditions are enforced at the external lateral surfaces in the formulation, the element would precisely predict
the behaviour of thick solids whose external lateral surfaces do not undergo out-of-plane distortion.

Numerical results for illustrating the h-refinement, and aspect ratio sensitivity to the convergence rate and
the accuracy of the element are presented. The results are compared with that of 3D elements available in
ABAQUS where required.

2. 3D displacement and stress fields for in-plane actions of a solid

Consider a solid that has a symmetry plane xy as shown in Fig. 1. The loads are also symmetric to the xy-
plane. The z-axis is along the thickness direction as in Fig. 1. According to the exact theory of the plane stress
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Fig. 1. A symmetric solid.
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state, in order to meet all the compatibility conditions for plane stress deformation, a quadratic term in z that
vanishes when the thickness reaches zero must be included to the traditional Airy’s stress function (Timo-
shenko and Goodier, 1970; Ye, 1997). Also the functions of the in-plane displacement components that are
independent of the coordinate z must be allowed to vary in the z-direction. Thus the in-plane displacement
components which are symmetry to the midsection xy are represented by the following functions
uðx; y; zÞ ¼ u0ðx; yÞ þ z2u1ðx; yÞ ð1aÞ
vðx; y; zÞ ¼ v0ðx; yÞ þ z2v1ðx; yÞ ð1bÞ
and the lateral displacement which is anti-symmetric to the midsection xy is assumed as
wðx; y; zÞ ¼ zw0ðx; yÞ þ z3w1ðx; yÞ ð1cÞ
Ye (1997), however, assumed the lateral displacement w(x,y,z) = zw0(x,y) without the cubic term. In the ab-
sence of the cubic z term the traction free condition on the lateral surfaces cannot be precisely satisfied.

With the displacement modes (1) we obtain the following in-plane strain components:
ex ¼ u0;x þ z2u1;x

ey ¼ v0;y þ z2v1;y

cxy ¼ ðu0;y þ v0;xÞ þ z2ðu1;y þ v1;xÞ
ð2aÞ
We also obtain the following out-of-plane strain components:
cyz ¼ zðw0;y þ 2v1Þ þ z3w1;y

czx ¼ zðw0;x þ 2u1Þ þ z3w1;x

ez ¼ w0 þ 3z2w1

ð2bÞ
In both (2a) and (2b), ( ),i = o/oxi.
Stresses are easily calculated from strains given in Eqs. (2a) and (2b) using Hooke’s law. Out-of-plane nor-

mal stress rz is a quadratic function of z and symmetric to the midsection xy, and shear stresses syz and szx are
cubic functions of z and anti-symmetric to the midsection xy. However, these exact stresses compatible with
the displacements (1) are generally not able to satisfy the traction free condition on the lateral surfaces. This
condition is essential for the accurate solution of plane deformable bodies with moderate thickness (i.e., solids
whose dimensions are comparable to each other). Since our purpose is to develop a universal hybrid stress
element method, we will not use these exact stresses in the element formulation. In stead, we will adopt
assumed stresses that have the main features (symmetry or anti-symmetry to the midsection xy) of the exact
stresses and satisfy the traction free condition on the lateral surfaces.

The in-plane stress components are assumed as shown in (3a):
rxðx; y; zÞ ¼ rx0ðx; yÞ þ �z2rx1ðx; yÞ
ryðx; y; zÞ ¼ ry0ðx; yÞ þ �z2ry1ðx; yÞ
sxyðx; y; zÞ ¼ sxy0ðx; yÞ þ �z2sxy1ðx; yÞ

ð3aÞ
For exact formulation of plane deformable bodies with moderate thickness (i.e., solids whose dimensions are
comparable to each other), rz should be a function of z because as the thickness tending to be negligibly small,
rz should vanish. According to the equilibrium equation in the z-direction, syz and szx can not be zero every-
where but should be functions of (x,y,z). Note that the deformation is symmetric to the midsection, the out-
of-plane stress components are, therefore, assumed as shown in (3b):
syzðx; y; zÞ ¼ ð�z� �z3Þsyz0ðx; yÞ þ ð�z3 � �z5Þsyz1ðx; yÞ
szxðx; y; zÞ ¼ ð�z� �z3Þszx0ðx; yÞ þ ð�z3 � �z5Þszx1ðx; yÞ
rzðx; y; zÞ ¼ ð1� �z2Þrz0ðx; yÞ þ ð�z2 � �z4Þrz1ðx; yÞ

ð3bÞ
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where �z ¼ z
h and h is the half thickness of the body as shown in Fig. 1. The higher order terms relevant to syz1,

szx1 and rz1 are necessary for suppressing the spurious modes of the element as discussed later in this paper.
Eq. (3b) define the stresses that satisfy the traction free condition on the lateral surfaces.

In the assumed displacement fields (1), the non-zero displacement components that result in vanishing
strain fields (i.e., rigid deformation modes) are u0(x,y), and v0(x,y). To achieve static equilibrium, we therefore
require only three prescribed displacement components in the xy-plane of the solid. In other words the number
of rigid body motion modes is three. This requirement is similar to any plane element formulation although
Q3D24b represents 3D stress and displacement fields.

3. Hybrid stress element formulation using Hellinger–Reissner principle

We formulate the hybrid stress element by using the 2-field Hellinger–Reissner principle with the following
elemental functional (Pian and Wu, 1988; Wu and Bufler, 1991; Wu and Cheung, 1995)
PðeÞHRðu; rÞ ¼
Z h

�h

Z
AðeÞ
� 1

2
rTSrþ rTðDuÞ

� �
dA�

Z
AðeÞ

�fTudA�
Z

SðeÞr

TTuds
� �

dz ð4Þ
where u ¼ ½ u v w �T and r ¼ ½ rx ry sxy syz szx rz �T. S is the compliance matrix, D the differential
operator matrix
S ¼ 1
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A(e) is the area of element ‘e’, SðeÞr the part of the element boundary on which traction is prescribed. T and �f are
the surface and volumetric force vector, respectively.

Consider an element with n nodes and six degrees of freedom at each node. The displacement of the element
u is related to nodal values q via the shape functions N
u ¼ Nq ð5Þ
in which,
qT ¼ qð1Þ
T

qð2Þ
T � � � qðnÞ

T
� �

N ¼ Nð1Þ Nð2Þ � � � NðnÞ
� 	
The nodal values and shape functions for an arbitrary node i are
qðiÞ
T ¼ uðiÞ0 uðiÞ1 vðiÞ0 vðiÞ1 wðiÞ0 wðiÞ1

h i
ð6Þ

NðiÞ ¼
Ni z2Ni 0 0 0 0

0 0 Ni z2Ni 0 0

0 0 0 0 zN i z3Ni

2
64

3
75 ð7Þ
here uðiÞ0 , vðiÞ0 , wðiÞ0 and uðiÞ1 , vðiÞ1 , wðiÞ1 are respective values of terms u0,v0,w0 and u1, v1,w1 in the displacement poly-
nomials given in Eq. (1) at node i.
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The strain array relevant to Eq. (5) is
e ¼ Du ¼ Bq ð8Þ

where B ¼ ½Bð1Þ Bð2Þ � � � BðnÞ �. For an arbitrary node i
BðiÞ ¼ B
ðiÞ
0 þ zB

ðiÞ
1 þ z2B

ðiÞ
2 þ z3B

ðiÞ
3 ð9Þ
and
B
ðiÞ
0 ¼

N i;x 0 0 0 0 0

0 0 Ni;y 0 0 0

N i;y 0 Ni;x 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 Ni 0

2
666666664

3
777777775
; B

ðiÞ
1 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2N i N i;y 0

0 2N i 0 0 N i;x 0

0 0 0 0 0 0

2
666666664

3
777777775

B
ðiÞ
2 ¼

0 N i;x 0 0 0 0

0 0 0 N i;y 0 0

0 Ni;y 0 Ni;x 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 3Ni

2
666666664

3
777777775
; B

ðiÞ
3 ¼

0 0 0 0 0 0
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0 0 0 0 0 0

0 0 0 0 0 N i;y

0 0 0 0 0 N i;x

0 0 0 0 0 0

2
666666664

3
777777775
The stress is related to stress parameters b via the stress interpolation function u
r ¼ ub ð10Þ

where
u ¼

ux0 �z2ux1 0 0

uy0 �z2uy1 0 0

uxy0 �z2uxy1 0 0

0 0 ð�z� �z3Þuyz0 ð�z3 � �z5Þuyz1

0 0 ð�z� �z3Þuzx0 ð�z3 � �z5Þuzx1

0 0 ð1� �z2Þuz0 ð�z2 � �z4Þuz1

2
666666664

3
777777775

¼ u0 �z2u1 ð�z� �z3Þu2 þ ð1� �z2Þu3 ð�z3 � �z5Þu4 þ ð�z2 � �z4Þu5

� 	
ð11Þ
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The stress parameters
bT ¼ bT
0 bT

1 bT
23 bT

45

� 	

The dimensions of vectors b0, b1, b23, and b45 are identical to the columns of u0, u1, u2 (or u3) and u4 (or u5),
respectively. The actual dimensions of vectors u and b (or more specifically b0, b1, b23, and b45) are dependent
on the assumed stress field used in the element formulation. An example element will be detailed in Section 6
and the corresponding dimensions of vectors b0, b1, b23, and b45 will be provided.
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Substituting Eqs. (5), (8) and (10) into the functional in Eq. (4), and making use of the stationary condition,
gives
b ¼ H�1Gq ð12Þ

and the discretized equations of equilibrium of element ‘‘e’’
KðeÞq ¼ �fðeÞ ð13Þ

where the stiffness matrix of element ‘e’ is
KðeÞ ¼ GTH�1G ð14Þ

and the load vector
�f ¼
Z h

�h

Z
AðeÞ

NT�f dAþ
Z

SðeÞr

NTTds
� �

dz ð15Þ
The characteristic matrices of the element are
H ¼
Z h

�h

Z
AðeÞ

uTSudAdz; G ¼
Z h

�h

Z
AðeÞ

uTBdAdz ð16Þ
As the functions are relatively easily integrable, we have integrated the matrices in Eq. (16) analytically in
the z-direction (‘thickness’ direction). However, in the xy-plane, the integration was performed using the tra-
ditional numerical Gauss integration rule. The integrals along the z-direction are given in the following
Z h

�h
uTSudz ¼ 2h
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0 Su0
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Z h

�h
uTBðiÞ dz ¼ 2h
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1 B
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3
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0 þ

2h
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1 þ

2h2
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3 B
ðiÞ
2 þ

2h3
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2 B
ðiÞ
3

2
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uT

5 B
ðiÞ
0 þ

2h
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uT
4 B
ðiÞ
1 þ

2h2
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uT

5 B
ðiÞ
2 þ

2h3

63
uT

4 B
ðiÞ
3
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ð17Þ
As defined by Wu and Bufler (1991), Eq. (13) could not be solved uniquely unless the displacement and
stress parameters are selected appropriately so that they satisfy the condition given in Eq. (18)
nb P nq � nr ð18Þ

where nb and nq represent the number of element stress parameters b and nodal displacement parameters q,
respectively, and nr (=3) is the number of independent rigid body motions which is three in this case.

4. Optimisation of element trial stresses

In the formulation of the solid hybrid stress element, the performance, or the capability of the element in
predicting stresses can be improved through the introduction of incompatible displacements (Pian and Wu,
1988; Wu and Bufler, 1991; Wu and Cheung, 1995). Let us add an incompatible displacement field each (as
shown in Eq. (19)) to the compatible displacement field in Eq. (1).
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ukðx; y; zÞ ¼ u0kðx; yÞ þ z2u1kðx; yÞ
vkðx; y; zÞ ¼ v0kðx; yÞ þ z2v1kðx; yÞ
wkðx; y; zÞ ¼ zw0kðx; yÞ þ z3w1kðx; yÞ

ð19Þ
Then let us substitute the resulting field into Eq. (4). The stationary condition of the functional provides equi-
librium, compatibility, equilibrium of traction between elements and the prescribed traction constraints if and
only if the integral shown in Eq. (20) vanishes.
Z h

�h

I
oAðeÞ

rTnTduk dsdz ¼ 0 ð20Þ
in which oA(e) is the boundary of the element, and n is the matrix of direction cosines of the unit outward nor-
mal to the element boundary
n ¼
n1 0 n2 0 n3 0

0 n2 n1 n3 0 0

0 0 0 n2 n1 n3

2
64

3
75
In this derivation we have used the traction free state on the lateral surfaces. Since inner incompatible displace-
ments uk can be selected arbitrarily, Eq. (20) can be rewritten as
Z h

�h

I
oAðeÞ

rTnTuk dsdz ¼ 0 ð21Þ
By integrating Eq. (21) along the thickness, we obtain

I

oAðeÞ
rx0 þ

1

3
rx1


 �
n1 þ sxy0 þ

1

3
sxy1


 �
n2

� �
u0k þ h2 1

3
rx0 þ

1

5
rx1


 �
n1 þ

1

3
sxy0 þ

1

5
sxy1


 �
n2

� �
u1k

�

þ sxy0 þ
1

3
sxy1


 �
n1 þ ry0 þ

1

3
ry1


 �
n2

� �
v0k þ h2 1

3
sxy0 þ

1

5
sxy1


 �
n1 þ

1

3
ry0 þ

1

5
ry1


 �
n2

� �
v1k

þ h
2

15
szx0 þ

2

35
szx1


 �
n1 þ

2

15
syz0 þ

2

35
syz1


 �
n2

� �
w0k

þ h3 2

35
szx0 þ

2

63
szx1


 �
n1 þ

2

35
syz0 þ

2

63
syz1


 �
n2

� �
w1k

�
ds ¼ 0
In order to meet the constraint above, we let the in-plane fields as follows:
I
oAðeÞ
ðrx0n1 þ sxy0n2Þu0k ds ¼ 0;

I
oAðeÞ
ðrx1n1 þ sxy1n2Þu0k ds ¼ 0

I
oAðeÞ
ðsxy0n1 þ ry0n2Þv0k ds ¼ 0;

I
oAðeÞ
ðsxy1n1 þ ry1n2Þv0k ds ¼ 0

I
oAðeÞ
ðrx0n1 þ sxy0n2Þu1k ds ¼ 0;

I
oAðeÞ
ðrx1n1 þ sxy1n2Þu1k ds ¼ 0

I
oAðeÞ
ðsxy0n1 þ ry0n2Þv1k ds ¼ 0;

I
oAðeÞ
ðsxy1n1 þ ry1n2Þv1k ds ¼ 0
and the out-of-plane fields as follows:
I
oAðeÞ
ðszx0n1 þ syz0n2Þw0k ds ¼ 0;

I
oAðeÞ
ðszx1n1 þ syz1n2Þw0k ds ¼ 0

I
oAðeÞ
ðszx0n1 þ syz0n2Þw1k ds ¼ 0;

I
oAðeÞ
ðszx1n1 þ syz1n2Þw1k ds ¼ 0
A convenient way to meet the constraints above is using the same interpolation functions in the interpola-
tion of the first and the second terms subscripted with ‘‘0’’ and ‘‘1’’ in all the displacement and stress
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component functions. In other words, the interpolation functions used for u0, v0, w0, rx0, ry0, sxy0, syz0 and szx0

are the same as that for u1, v1, w1, rx1, ry1, sxy1, syz1 and szx1, respectively. This further simplifies that only the
following three equations are required to be considered:
I

oAðeÞ
ðrx0n1 þ sxy0n2Þu0k ds ¼ 0

I
oAðeÞ
ðsxy0n1 þ ry0n2Þv0k ds ¼ 0

I
oAðeÞ
ðszx0n1 þ syz0n2Þw0k ds ¼ 0

ð22Þ
The first two equations in (22) are those equations for the plane components given in Pian and Wu (1988) and
Wu and Bufler (1991), while the last one is the same as that of the St. Venant torsion problem discussed by
Xiao et al. (1999). In order to satisfy Eq. (22) in the element formulation, we further divide the relevant first
terms of the stress components in Eq. (3) into constant terms and high-order terms as shown in Eq. (23).
rx0 ¼ rx0c þ rx0h

ry0 ¼ ry0c þ ry0h

rxy0 ¼ rxy0c þ rxy0h

rz0 ¼ rz0c þ rz0h

ryz0 ¼ ryz0c þ ryz0h

rzx0 ¼ rzx0c þ rzx0h

ð23Þ
We then obtain from Eq. (22) the patch test conditions (PTC) as shown in Eq. (24) for evaluating the incom-
patible displacement fields that pass the PTC,
I

oAðeÞ
ðrx0cn1 þ sxy0cn2Þu0k ds ¼ 0

I
oAðeÞ
ðsxy0cn1 þ ry0cn2Þv0k ds ¼ 0

I
oAðeÞ
ðszx0cn1 þ syz0cn2Þw0k ds ¼ 0

ð24Þ
and the stress optimisation conditions (OPC) as shown in Eq. (25) for optimising the trial stresses, as discussed
by Pian and Wu (1988), Wu and Bufler (1991), and Wu and Cheung (1995)
I

oAðeÞ
ðrx0hn1 þ sxy0hn2Þu0k ds ¼ 0

I
oAðeÞ
ðsxy0hn1 þ ry0hn2Þv0k ds ¼ 0

I
oAðeÞ
ðszx0hn1 þ syz0hn2Þw0k ds ¼ 0

ð25Þ
For the hybrid stress element formulated from the Hellinger–Reissner principle, it has been proved by Wu
and Bufler (1991) and Wu and Pian (1997) that the PTC (24) is equivalent to the stability condition popularly
known as the Babuska–Brezzi (BB) condition. The hybrid stress element presented in this paper is, therefore,
considered to have satisfied the stability condition.

5. 3D displacement and stress fields for in-plane actions of a hollow solid

Consider a hollow solid shown in Fig. 2. The 3D displacement field of this hollow solid is considered the
same as for the solid given in Eq. (1). The stress fields were, however assumed as in Eq. (26) to account for the
additional traction free planes.
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Fig. 2. A symmetric hollow solid.
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rxðx; y; zÞ ¼ rx0ðx; yÞ þ z2rx1ðx; yÞ

ryðx; y; zÞ ¼ ry0ðx; yÞ þ z2ry1ðx; yÞ

sxyðx; y; zÞ ¼ sxy0ðx; yÞ þ z2sxy1ðx; yÞ

syzðx; y; zÞ ¼ zf ðzÞsyz0ðx; yÞ þ z3f ðzÞsyz1ðx; yÞ

szxðx; y; zÞ ¼ zf ðzÞszx0ðx; yÞ þ z3f ðzÞszx1ðx; yÞ

rzðx; y; zÞ ¼ f ðzÞrz0ðx; yÞ þ z2f ðzÞrz1ðx; yÞ

ð26Þ
where
f ðzÞ ¼ ðh2
1 � z2Þðh2

2 � z2Þ ð27Þ
and h1 and h2 are half thickness of the inner hole and the body, respectively, as shown in Fig. 2. These func-
tions are different to that used for the solid element in (3) as the solid element possesses only two external trac-
tion free surfaces unlike the bodies with holes.

The procedure similar to that presented in Sections 3 of this paper was followed to deduce the characteristic
matrices H and G for the hollow element. The trial stresses were also optimised for the hollow element as per
details presented in Section 4 of this paper. Details of this hollow element formulation can be found in Dhan-
asekar and Xiao (2001).

6. Four-noded hybrid stress elements for solid and hollow element formulations

With reference to the four-noded isoparametric element, the shape functions employed in Eq. (7) are the
widely used bilinear interpolation functions
N i ¼
1

4
ð1þ ninÞð1þ gigÞ ð28Þ
where (n,g) represent the isoparametric coordinates, (ni,gi) represent the isoparametric coordinates of point i
with the global coordinates (xi,yi), i = 1,2,3,4.

Since the PTC and OPC for plane components in Eqs. (24) and (25) are the same as the traditional plane
problems, the optimised trial stresses of a plane hybrid stress element P-S introduced by Pian and Sumihara
(1984) and Pian and Wu (1988) are adopted here directly. We thus have
ux0

uy0

uxy0

2
64

3
75 ¼

ux1

uy1

uxy1

2
64

3
75 ¼

1 0 0 a2
1g a2

3n

0 1 0 b2
1g b2

3n

0 0 1 a1b1g a3b3n

2
64

3
75 ð29Þ
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where coefficients ai and bi (i = 1,2,3) are dependent on the element nodal coordinates as follows:
a1 b1

a2 b2

a3 b3

2
64

3
75 ¼ 1

4

�1 1 1 �1

1 �1 1 �1

�1 �1 1 1

2
64

3
75

x1 y1

x2 y2

x3 y3

x4 y4

2
6664

3
7775 ð30Þ
The procedure discussed by Xiao et al. (1999) was adopted to optimise the out-of-plane shear stresses even
though the optimised trial stresses were inappropriate here. This is because constant stress state must be
retained in the current case unlike the St. Venant torsion problem discussed in Xiao et al. (1999). Therefore,
the primary assumed stresses take the form
syz0

szx0

� �
¼

1 0 n 0 g 0

0 1 0 g 0 n

� �
; b ¼

syz0c

szx0c

� �
þ

syz0h

szx0h

� �
ð31Þ
where
syz0c

szx0c

� �
¼

1 0

0 1

� �
; bc

syz0h

szx0h

� �
¼

n 0 g 0

0 g 0 n

� �
bh
The incompatible term employed here is
w0k ¼ 1� n2 1� g2
� 	

k ð32Þ
Substituting (31) and (32) into the last equation in (25), we obtain the optimised interpolation functions for
out-of-plane trial stresses as shown in Eq. (33)
uyz0

uzx0

uz0

2
64

3
75 ¼

uyz1

uzx1

uz1

2
64

3
75 ¼

1 0 b1g b3n 0 0 0

0 1 a1g a3n 0 0 0

0 0 0 0 1 n g

2
64

3
75 ð33Þ
In the element formulation discussed in Section 3, we now use the assumed displacement given in Eq. (5), in
which Ni is defined by Eq. (28), and the trial stresses given in Eq. (10), in which Eqs. (29) and (33) are used as
stress interpolation functions of the plane and out-plane components, respectively; correspondingly the dimen-
sions of DIM(b0) = DIM(b1) = 5; and DIM(b23) = DIM(b45) = 7. The resulting element has 24 stress param-
eters b and is therefore designated as Q3D24 b for solid element and Q3D24bH for hollow element. For theses
elements, nb = 24, nq = 24, and hence they meet the stability condition of Eq. (18).

Second order Gauss quadrature is employed for the element formulation. Theoretical analysis and results
of eigenvalue checks show that the element is rank-sufficient.

7. Numerical tests

In this section, we first study the pattern of the convergence with h-refinement as well as the sensitivity to
aspect ratio of the Q3D24 b element. Then using this element we will examine the effect of the thickness of the
solids on the displacement and stress fields. Test results for the Q3D24bH element can be found in Dhanasekar
and Xiao (2001).

7.1. Convergence with h-refinement

A classical 2D flexural beam problem with span to depth ratio 5.0 subjected to pure bending was used to
examine the convergence with h-refinement. The span, depth, and thickness of the beam were considered as 10,
2 and 2 (unit free measurements), respectively. As this example is widely used as the bench marking problem
for classical plane stress elements, the current Q3D24b element have also been validated through this problem.
The loading and material properties for the beam problem were chosen in such a way that the theoretical ver-
tical deflection of the cantilever beam at its tip would be 100 and the top fibre stress rx be –3000. The Young’s
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modulus used in the problem was 1500 and the Poisson’s ratio was kept as 0.25. The free end of the beam was
subjected to a positive bending moment of 2000 per unit thickness with its unit consistent with that of the
Young’s modulus.

The convergence with h-refinement was studied by meshing the beams with 3, 5 and 20 elements as shown in
Fig. 3(a)–(c), respectively. u0, u1, v0 and v1 of the node (0, 0) and u0, u1 of the node (0, 2) are fixed.

The results of the analysis for h-refinement are plotted in Fig. 4 for the convergence of stress rx at (1,2) and
tip deflection. Rapid convergence is obtained even when the beam was modelled with only five elements.

7.2. Sensitivity to element aspect ratio

In meshing complex problems (for example mortar joints in masonry structures) engineers confront with
the problem of aspect ratio of elements. In order to test the sensitivity of the aspect ratio of the current ele-
ments, the cantilever problem reported in the previous section was used. The mesh used in the analysis is
shown in Fig. 5.

Four aspect ratios namely, 5, 10, 20 and 100 were used. The aspect ratio 100 was achieved from a non-
uniform meshing of the problem and all other aspect ratios were achieved from uniform meshing. The results
of the study presented in Fig. 6 show clearly that the current Q3D24b element is not sensitive to aspect ratio.
The regularity of mesh without large distortion, rather than the narrow aspect ratio is important in achieving
good results with the current Q3D24b element.
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Fig. 3. Cantilever beam for h-refinement test. Mesh with (a) three elements, (b) five elements, (c) twenty elements.
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7.3. Effect of thickness

The current elements were used to examine the effect of the thickness of the solid on the stress and displace-
ment fields. A cantilever beam used by Ye (1997) was used for this purpose as shown in Fig. 7. A concrete
cantilever beam of span 2000 mm, depth 200 mm and varying thickness 100 mm, 200 mm, 1000 mm,
2000 mm, 4000 mm, 10,000 mm and 20,000 mm was considered. A total load of �10,000 N distributed
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Fig. 7. Concrete cantilever beam for studying the effect of thickness.
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uniformly along the thickness direction was applied at the tip of the cantilever. The modulus of elasticity was
kept as 20 GPa and the Poisson’s ratio was chosen as 0.15.

Regular mesh with 128 elements (16 elements along the length and 8 elements in the depth direction) was
used in the 2D analysis using the current Q3D24b element. The node (0, 0) that represented the centroid of the
fixed end was fixed in both x-(u0,u1) and y-(v0,v1) directions; other nodes (0,y, 0) on the left-hand side were
fixed only in the x-direction (u0,u1). The beams of varying thickness were also modelled in ABAQUS using
an eight noded linear brick element (C3D8). The number of elements for the thinnest beam (100 mm) was
576 (16 · 6 · 6) and the thickest beam (20,000 mm) was 2400 (16 · 6 · 25).

The thickness to depth ratio varied from 0.5 to 100. Deflection at the neutral axis level on the tip (200 mm,
100 mm, 0 mm) and stresses at a point (62.5 mm, 187.5 mm, 0 mm) were monitored. As the total load was kept
constant, with the increase in thickness the rx stress and v deflection reduced markedly as shown in Table 1.
The dominant axial normal stress rx predicted by the current Q3D24b element is in very good agreement with
the 3D ABAQUS analysis result (maximum error of 3.2%) for the range of thickness to depth ratio of 0.5–100.

The deflection predicted by the Q3D24b element is also in very good agreement with the 3D ABAQUS
analysis (maximum error 0.6%). Also shown in the table are the vertical deflections (v) predicted by the ana-
lytical expression (34) assuming plane stress and plane strain conditions (Ugural and Fenster, 1995)
Table
Effect

(h/a)

0.5
1
5
10
20
50
100
v ¼ PL3

3EI
þ Ph2ð1þ mÞL

EI
ð34Þ
where P is the total load, L is the span, I is the moment of inertia of the section and E and m are the Young’s
modulus and Poisson’s ratio, respectively.

For the plane stress condition, the E and m were used as the assumed values of 20GPa and 0.15, respectively.
For the plane strain condition E was replaced by E

ð1�m2Þ and m was replaced by m
ð1�mÞ.

It could be seen that the deflection predicted by the Q3D24b element (and ABAQUS 3D analysis) is close to
the plane stress calculation for h

a

� 
< 1:0 and close to plane strain calculation for h

a

� 
P 10 where h and a are
1
of thickness of the cantilever beam on its stress and deformation

rx (62.5, 187.5, 0.0) (MPa) d (2000, 100, 0) (mm) rz (62.5, 187.5, 0.0) (MPa)

Current
El

ABAQ_3D %
Difference

Current
El

ABAQ_3D %
Difference

Pl
stress

Pl
strain

Current
El

ABAQ_3D %
Difference

12.771 12.737 0.27 �10.060 �10.040 0.20 �10.086 – – – –
6.435 6.380 0.85 �5.024 �5.020 0.08 �5.043 – – – –
1.359 1.316 3.19 �0.996 �0.997 �0.09 �1.009 �0.986 0.189 0.196 3.42
0.671 0.667 0.60 �0.498 �0.495 0.62 �0.504 �0.493 0.092 0.097 5.36
0.327 0.318 2.86 �0.248 �0.247 0.48 �0.252 �0.247 0.044 0.048 8.18
0.128 0.127 1.14 �0.099 �0.098 0.26 – �0.099 0.017 0.019 9.32
0.064 0.063 0.99 �0.049 �0.049 0.06 – �0.049 0.008 0.010 11.44
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dimensions shown in Fig. 7. It could be seen for 1 6 h
a 6 10, the deflection is in between the plane stress and

plane strain solutions, with the increase in the ratio moving closer to plane strain. From this result, it may be
concluded that the Q3D24b element can analyse solids and structures irrespective of their thickness. For solids
whose 1 6 h

a 6 10, normally neither plane stress nor plane strain solution will be applicable; only a 3D solution
must be sought. However the Q3D24b element presented in this paper have the potential to solve such
problems.

As the Q3D24b element predicts the rz stress, its prediction was also compared with that of the ABAQUS
3D solution. The results compare generally very well. At very low stress values a maximum error of 11.4% was
reported. In the region of 1 6 h

a 6 10, the error was only 5.4%.

8. Application of the current elements

In this section, we present a comparative study using the present Q3D24b and Q3D24bH elements and a
3D incompatible element (C3D8I) available in ABAQUS by carrying out the analysis of a cube shaped can-
tilevered solid subjected to lateral loading and a hollow masonry prism subjected to vertical compression.

8.1. Cube shaped solid cantilever

As the element is formulated using 3D semi-analytical and hybrid stress approach, it was decided to vali-
date all fields predicted by the element by comparing them with the prediction of the C3D8I element available
in ABAQUS.

We considered a cube shaped elastic solid of dimension 2 · 2 · 2 shown in Fig. 8 as the example problem
for validation. The Young’s modulus and the Poisson’s ratio of the solid were kept as 1500 and 0.25,
respectively.

The origin of the coordinate system was chosen at the lower left edge of the middle plane of the cube. The
xy-plane defined the middle section of the cube and z-axis defined its thickness direction (from �1 to +1). The
left yz-plane was fixed and the vertical load was applied at the top edge of the right yz-plane in the – y-direc-
tion. The vertical load was 1000 per unit length with its unit consistent with that of the Young’s modulus.

Due to symmetry about the xy-plane, only half of the solid was analysed using the 3D element in ABA-
QUS. A 10 · 10 · 16 mesh with 1600 brick elements and 2057 nodes was used in the 3D analysis. The displace-
ment and stress components were monitored at the centre of the solid (x = 1.0, y = 1.0, z = 0–1.0). The trace
2

2

2

p=1000

x

y

 z 

P’(1.72, 2, z)

Fig. 8. A cube problem.



2472 Q.Z. Xiao, M. Dhanasekar / International Journal of Solids and Structures 44 (2007) 2458–2476
of the intersection between the top horizontal surface of the solid (y = 2.0) and a vertical plane (x = 1.72) as
shown in Fig. 8 was used for validating rz as it was the largest in this region.

The same problem was then modelled using the Q3D24b element. The node (0,0) was fixed in both x-(u0,u1)
and y-(v0, v1) directions; other nodes (0, y, 0) on the left-hand side were fixed only in the x-direction (u0, u1).
Only the middle section was required to be meshed in this case and a 8 · 8 mesh was used. The displacement
and stress were monitored at a point P (x = 1.0, y = 1.0) and P 0 (x = 1.72 y = 2.0). The variation of displace-
ment and stress components through the thickness was then determined from Eqs. (1) and (3), respectively.
Comparison of the results predicted by the two methods is presented in Fig. 9 for stresses and 10 for
displacements.

It could be seen from the graphs shown in Figs. 9 and 10 that the prediction of the stresses and displace-
ments by the Q3D24b element is in reasonable agreement with the ABAQUS 3D results. In particular the dis-
placements (u,v,w) and all in-plane stresses (rx, ry,sxy) are in very good agreement with the maximum error
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Fig. 9. (a–f) Prediction of stresses for cube problem – Q3D24b element and ABAQUS.
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Fig. 10. (a–c) Prediction of displacements for cube problem – Q3D24b element and ABAQUS.
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less than 5%. As the lateral normal stress rz at the centre of the cube (location P in Fig. 10) is quite small
(typically 0.9% of rx and 5% of ry), a new location (P 0 in Fig. 10) was chosen for validating the rz. It could
be seen that the comparison is very good. Results predicted by the current elements may be viewed as the fit-
ting of the corresponding results obtained by the 3D element in all these cases.

The two out-of-plane shear stresses (syz,szx) are very small (in particular the sxz being as small as 0.08% of
sxy). At no other region of the body these stresses have been larger due to the type of problem considered. In
spite of the small magnitude, the trend of the stress variations as predicted by ABAQUS and the Q3D24b
element is in good agreement although the stress functions assumed for the out-of-plane shear in the current
element formulation is somewhat more complex (this was required to eliminate the spurious deformation
mode). Further refinement of the stress functions in the 2D formulation and/or meshing in the 3D analysis
may eliminate the deviation in the magnitude of these two stress components.

8.2. Four block hollow masonry prism

Four block stack bonded hollow prisms were considered in the modelling. The clay blocks were nominally
150 mm · 310 mm · 76 mm in size and had two symmetrically placed voids of approximately
80 mm · 100 mm internal dimension. All prisms were constructed with 10 mm mortar joint. Face shell bedded
mortar joint construction was considered. The prism was tested under uniform compression due to face shell
loading. To examine the state of stress in the face shell bedded prism, prescribed vertical displacement
(v = �0.1 mm) on the top surface was used.

Due to symmetry only a quarter of the prism was analysed. The mesh used in the analysis is shown in
Fig. 11. The mesh consisted of solid and hollow elements. The solid Q3D24b element was used in the end
web shell and the middle web shell. Full-bedded masonry prisms were modelled with solid elements for the
portion of the mortar bed joints directly in contact with these two web shells and the top plywood capping.
The face shell block and the associated mortar joints were modelled using hollow Q3D24bH elements.
The model consisted of 88 elements and 108 nodes (648 degrees of freedom). The Young’s modulus and
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the Poisson’s ratio of the clay block, mortar and plywood capping were set as (35 GPa, 0.15), (5 GPa, 0.25)
and (12 GPa, 0.12), respectively.

ABAQUS finite element package was used to validate the results. The hollow prism was modelled as a 3D
assemblage of eight noded brick elements. A quarter model of the prism was analysed as shown in Fig. 12.

All components of stress at the midthickness of the end web shell (x = 17.5 mm z = 0 mm along y-axis) are
shown in Fig. 13. The dominant vertical stress (ry) generated due to the application of a uniform prescribed
vertical displacement of �0.1 mm was used to validate the 2D analysis result; the ABAQUS 3D modelling
result is also shown in Fig. 13. The dominant ry stress predicted by the 2D analysis compare very well with
the ABAQUS 3D analysis. All other stresses existed with their integral vanishing as exhibited by the distribu-
tion in Fig. 13.

It can be seen that the mortar joints are subjected higher levels of triaxial compression (rx, ry and rz) due to
the lack of ability of the mortar to ‘‘spread’’ in the lateral direction due to incompatible deformation of the
brick at the interface. This incompatible deformation modes at the interface induces lateral tension (rx and rz)
in the web shells of the brick. There is much evidence in the literature that these stresses are the root cause of
cracking of web shells of the face shell bedded prisms. The ability of the current Q3D24b and Q3D24bH
elements to predict this complex phenomenon elegantly is worth noted.

9. Conclusions and discussions

Plane hybrid stress elements suitable for modelling solids and structural components of moderate thickness
(or bodies whose dimensions are comparable to each other) with and without hollows where the classical plane
stress and plane strain assumptions are either inadequate or inappropriate is presented in the paper. The
geometry and loading of the solid/structure must be symmetric to its middle plane.

The elements exhibit very good convergence rate and they are not sensitive to the aspect ratio. The elements
have been validated by comparing its results with that of the 3D elements (C3D8 and C3D8I) available in
ABAQUS. All dominant displacement and stress fields have been predicted within good level of accuracy.
The out-of-plane stresses were also predicted reasonably well.

The ability of the elements in predicting stresses in a face shell bedded masonry prism subjected to pre-
scribed deformation with relative ease is considered important in the light of the complexity of such problems.

The behaviour of solids with moderate thickness differs from the plane stress and plane strain bodies par-
ticularly when the ratio of thickness to depth is between 1 and 10. It is, therefore, expected that this new ele-
ment will find its applications in the inelastic and fracture mechanics based analysis of structural components
with moderate thickness.
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