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a b s t r a c t

The system of equations arising in finite element simulations of components made of ferroelectroelastic
materials is non-linear if the loading is sufficiently high. The Newton–Raphson method represents a
widely used iterative technique to solve this system of non-linear equations. However, if the scalar poten-
tial formulation is utilised, convergence difficulties may occur. This circumstance can be primarily attri-
buted to the specific form of the non-linear response of typical ferroelectroelastic materials being
subjected to electrical loading. The present paper is devoted to modifications of the Newton–Raphson
method, which are capable of improving the convergence behaviour experienced in the finite element
iteration. We extend an existing modification to the fully coupled, ferroelectroelastic case. Additionally,
a new modification of the Newton–Raphson method is proposed. This method applies an iteration algo-
rithm, which is virtually equivalent to the iteration algorithm of the unmodified Newton–Raphson
method combined with the vector potential formulation. An important feature of both modifications is
that they are applied on the integration point level. Therefore, the global non-linear finite element iter-
ation scheme remains unchanged. Finally, the practicability of the modifications discussed in the paper is
shown in a numerical example.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Polycrystalline ferroelectroelastic ceramics are used for actuator
and sensor applications due to their outstanding piezoelectric prop-
erties. However, a process called ‘‘poling’’ is necessary to induce
these properties. During poling, a high electric field is applied, which
leads to the development of a macroscopic remanent polarisation
and strain. In a similar fashion, mechanical or combined electrical
and mechanical loading can cause a change in remanence as well.

Macroscopic and microscopic material models describing the
irreversible material behaviour of ferroelectroelastic ceramics have
been developed by several authors (e.g. Cocks and McMeeking,
1999; Landis, 2002a; Kamlah and Wang, 2003; Mehling et al.,
2007; Klinkel, 2006; Huo and Jiang, 1997; Hwang et al., 1995;
Huber et al., 1999; Pathak and McMeeking, 2008; Neumeister
and Balke, 2011, respectively). In the following, we restrict
ourselves to the isothermal and rate-independent class of phenom-
enological, macroscopic material models (Cocks and McMeeking,
1999; Landis, 2002a; Kamlah and Wang, 2003; Mehling et al.,
2007; Klinkel, 2006), which assume a single switching surface
ll rights reserved.

ax: +49 351 463 32450.
e (S. Stark), Stephan.Roth@
dresden.de (P. Neumeister),
and purely kinematic hardening. These material models must de-
scribe the essential features of the material behaviour observed
in experiments during poling. Consequently, all of them have in
common that the initially linear dielectric response of a virgin
ceramic being subjected to a monotonically increasing electric field
is followed by a sudden increase in remanent polarisation. This
causes a jump in the apparent permittivity, which can be observed
as a ‘‘kink’’ in plots of electric displacement vs. electric field. If the
electric field is increased further, saturation of the remanent polar-
isation occurs and the material behaviour is virtually linear dielec-
tric again. Roth et al. (2009) have shown that this specific material
response may give rise to oscillating or diverging solutions during
Newton–Raphson iterations in finite element simulations if the
scalar potential formulation (Allik and Hughes, 1970) is used. This
finding motivates the investigation and development of modified
Newton–Raphson methods. However, most of the modified
Newton–Raphson methods known from literature are not suitable
to avoid the convergence problems. E.g., the use of the initial tan-
gent matrix for all iteration steps leads to similar difficulties as
experienced in the unmodified Newton–Raphson method. Also
more sophisticated algorithms like the line search method can
not guarantee convergence as discussed by Roth et al. (2009).
Therefore, these authors present two new modifications of the
Newton–Raphson method for the electromechanically uncoupled,
purely ferroelectric case. While the so-called ‘‘c-modification’’ is

https://core.ac.uk/display/81178104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijsolstr.2012.11.008
mailto:Sebastian.Stark1@tu-dresden.de
mailto:Stephan.Roth@imfd.tu-freiberg.de
mailto:Stephan.Roth@imfd.tu-freiberg.de
mailto:Peter.Neumeister@tu-dresden.de
mailto:Herbert.Balke@tu-dresden.de
http://dx.doi.org/10.1016/j.ijsolstr.2012.11.008
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


774 S. Stark et al. / International Journal of Solids and Structures 50 (2013) 773–780
based upon a scaling of the local electric displacement residuals at
each integration point of the finite elements, the ‘‘s-modification’’
utilises a scaling of the tangent permittivity. Both modifications re-
quire the choice of numerical parameters controlling their conver-
gence properties. Another approach to overcome the described
convergence difficulties of the scalar potential formulation is the
use of the vector potential formulation proposed by Landis
(2002b). However, this formulation has the disadvantage that it re-
quires two additional degrees of freedom per finite element node
over the scalar potential formulation for three-dimensional prob-
lems. Moreover, gauging is necessary to achieve uniqueness of
the vector potential in three dimensions and the application of
boundary conditions is not a trivial task in general (Semenov
et al., 2006). The last two difficulties can be avoided at the cost
of one further degree of freedom per finite element node by using
a hybrid finite element formulation (Ghandi and Hagood, 1997;
Schwaab et al., 2012).

The present paper focuses on modifications of the Newton–
Raphson method, where the scalar potential formulation is used.
In the first part, we consider the simulation of the poling process
of an electromechanically uncoupled, purely ferroelectric ceramic
assuming homogeneous field distributions. The reasons for
the convergence difficulties experienced with the unmodified
Newton–Raphson method are briefly explained together with the
c-modification, which avoids these difficulties. Additionally, a
new modification of the Newton–Raphson method is introduced.
This modification will be called ‘‘D-modification’’ in the following.
The second part of the paper deals with the generalisation of the
c-modification and the D-modification to the multi-axial, fully
coupled, ferroelectroelastic case. In the last part, the poling of a
hexahedron containing a centered cylindrical hole is simulated
with the finite element method. In this context, the c-modification
and the D-modification of the Newton–Raphson method are compared
to their unmodified counterpart and the vector potential formulation.

All tensor equations in this paper are written in co-ordinate
notation, with summation implied over repeated indices. Further-
more, we assume cartesian co-ordinates. Therefore, the terms
‘‘vector’’ and ‘‘tensor’’ are used even though only their co-ordinates
are addressed.

2. Homogeneous poling of an electromechanically uncoupled,
purely ferroelectric ceramic

For a general discussion of the convergence difficulties men-
tioned above, it is sufficient to consider homogeneous field distri-
butions. Hence, the behaviour of the global Newton–Raphson
iteration of a finite element simulation can be studied on the
material point level. Furthermore, an electromechanically uncou-
pled, purely ferroelectric ceramic under electrical loading in a fixed
direction is assumed, where the material is free of remanent
polarisation initially. Consequently, all mechanical quantities van-
ish and the state of the material can be characterised with the elec-
tric field E and the remanent polarisation Pr. Given that E and Pr

specify an admissible material state, the corresponding electric dis-
placement D can be directly calculated from these quantities.

The starting point for our discussion is a reference state of the
material, which is described with the reference electric field Eref

and the reference remanent polarisation Pr;ref . The associated refer-
ence electric displacement is Dref . We assume that the electric dis-
placement is changed monotonically during a single load step from
its value D ¼ Dref in the reference state to D ¼ Dext by applying
additional free charges from an external source on the surface of
the body under consideration. It is now the task to determine the
electric field Eext corresponding to the loading Dext. If the scalar po-
tential formulation is utilised, the electric field has to be viewed as
the independent variable, since it is derived by differentiation from
the scalar potential /. Therefore, the relationship between Eext and
Dext is given in the form

Dext ¼ Dmat Eext; Pr;ref ; Eref
� �

; ð1Þ

where the function DmatðE; Pr;ref ; ErefÞ is used. This function assigns
the ‘‘material electric displacement’’ based upon the electric field
E at the end of the load step and the parameters Pr;ref and Eref char-
acterising the reference state. Note, that Dmat is usually imple-
mented by applying so-called ‘‘return mapping’’ algorithms (see
e.g. Semenov et al., 2009). In general, the formulation of such a func-
tion requires an (implicit) assumption for the loading path tra-
versed within the load step. However, this loading path is unique
for the one dimensional case with monotonic loading considered
here. In the following, the parameter Eref in Dmat is omitted since
the electric field in the reference state is not relevant for typical
phenomenological, macroscopic material models.

Due to the fact that the electric displacement Dext at the end of
the load step is prescribed here, Eq. (1) has to be solved for Eext. Gi-
ven an approximation EðkÞ;ext for the solution of this problem in the
kth step of a numerical iteration scheme, a new approximation
Eðkþ1Þ;ext may be calculated by using the ‘‘global’’ iteration rule

Eðkþ1Þ;ext ¼ EðkÞ;ext þ Dext � DðkÞ;int

jðkÞ;int : ð2Þ

Here, the ‘‘internal’’ electric displacement DðkÞ;int and the ‘‘internal’’
permittivity jðkÞ;int depend on the iteration method utilised. These
quantities have to be provided by the ‘‘local material routines’’,
which are seen as a ‘‘black box’’. Within this black box, DðkÞ;int and
jðkÞ;int must be chosen suitably to allow for convergence of the
numerical iteration scheme to a valid solution. Note, that for the
simplified case considered here, Eq. (2) corresponds to a ‘‘global
equilibrium iteration step’’ within a non-linear finite element
analysis. Since all modifications of the Newton–Raphson method
discussed below are applied locally for all material points associ-
ated with integration points of the finite elements, the global itera-
tion scheme (here represented by Eq. (2)) is not altered. Note also,
that Dext in Eq. (2) need not be constant during the iteration process
in general. This is a point we return to below.

2.1. Unmodified Newton–Raphson method

For the unmodified Newton–Raphson method the quantities
DðkÞ;int and jðkÞ;int in Eq. (2) are determined by

DðkÞ;int ¼ Dmat EðkÞ;ext; Pr;ref
� �

; ð3Þ

jðkÞ;int ¼ jmat EðkÞ;ext; Pr;ref
� �

; ð4Þ

where the consistent tangent permittivity is defined as

jmat E; Pr;ref
� �

¼ @Dmat

@E
: ð5Þ

To explain the convergence problems arising in the unmodified
Newton–Raphson method, we start from a virgin, unloaded cera-
mic. Thus, we have Eref ¼ 0; Pr;ref ¼ 0 and Dref ¼ 0 in the reference
state. The function Dmat relevant for an increase of the applied load
from Dref ¼ 0 to Dext > 0 is assumed as follows:

Dmat E; Pr;ref ¼ 0
� �

¼ Pr þ jE; ð6Þ

with

Pr

P0
¼

0 E 6 E0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P0�jE

P0�jE0

� �2
r

E0 < E < P0
j ;

1 E P P0
j :

8>>><
>>>:

ð7Þ
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Here, j denotes the linear permittivity, E0 is the coercive electric
field characterising the onset of irreversible material behaviour
and P0 is the remanent saturation polarisation, which is achieved
for electric fields E P P0=j. Furthermore, we require E0 < P0=j.
Note, that Eq. (7) represents an ellipse with respect to Pr and E for
E0 < E < P0=j. Note further, that the function Dmat specified in (6)
and (7) resembles the electric response of typical ferroelectroelastic
ceramics during poling from the virgin state at least qualitatively.
Now, take e.g. the loading Dext ¼ P0 and Eð0Þ;ext ¼ 0 as initial guess
for the unmodified Newton–Raphson iteration. According to Eqs.

(3)–(7) this yields jð0Þ;int ¼ j and Dð0Þ;int ¼ 0. Thus, it follows from
(2) that Eð1Þ;ext ¼ P0=j. Repeating the procedure gives

jð1Þ;int ¼ j; Dð1Þ;int ¼ 2P0 and Eð2Þ;ext ¼ 0. Due to the fact that

Eð2Þ;ext ¼ Eð0Þ;ext, the solution oscillates between EðkÞ;ext ¼ 0 and

EðkÞ;ext ¼ P0=j in all subsequent iterations. This is visualised in
Fig. 1(a) for the case jE0=P0 ¼ 0:2. The material response character-
ised by Dmat according to Eqs. (6) and (7) is plotted as a thick line in
normalised form vs. the electric field. The horizontal dashed line
indicates the level of loading Dext ¼ P0, while the thin chain dotted
lines illustrate the oscillating iteration process, which consists of
equilibrium iterations and material update (return mapping) steps.

A new approximation Eðkþ1Þ;ext is obtained graphically by intersect-

ing the tangent to the curve Dmat in the point EðkÞ;ext with the dashed
line given by the loading Dext. Evidently, the oscillating solutions are
caused by the ‘‘kink’’ in the material response signifying the transi-
tion between reversible and irreversible material behaviour at
E ¼ E0. If this sharp ‘‘kink’’ is slightly smoothened, it becomes clear
that it corresponds to an inflection point in the function

DmatðE; Pr;ref ¼ 0Þ, where the curvature is negative beyond E ¼ E0.
The fact that the Newton–Raphson method can fail in one dimen-
sion if an inflection point is close to the root is well known.
(a) (

(c)

Fig. 1. (a) Unmodified Newton–Raphson method; oscillating iteration procedure for D
Dext ¼ P0; jE0=P0 ¼ 0:2; M ¼ L ¼ 0:3 (c) D-modification; converging iteration procedure
However, the convergence behaviour depends on the characteristics
of the inflection point (i.e. whether the sign of the curvature
changes from negative to positive or from positive to negative as
it is the case here). Therefore, it is not surprising that the vector po-
tential formulation, which utilises the electric displacement as an
independent variable, does not show the convergence problems of
the scalar potential formulation. Note, that the unmodified
Newton–Raphson method converges for high loadings Dext > P0

þjE0 for the same initial guess as above (Eð0Þ;ext ¼ 0).

2.2. c-Modification of the Newton–Raphson method

For the so-called ‘‘c-modification’’ developed by Roth et al.
(2009) the quantities DðkÞ;int and jðkÞ;int in Eq. (2) are determined by

DðkÞ;int ¼ Dext þ cðkÞ Dmat EðkÞ;ext; Pr;ref
� �

� Dext
h i

¼ Dext þ cðkÞDDðkÞ; ð8Þ

jðkÞ;int ¼ jmat EðkÞ;ext; Pr;ref
� �

; ð9Þ

where 0 < cðkÞ 6 1 is a parameter scaling the local electric displace-
ment residual DDðkÞ ¼ DmatðEðkÞ;ext; Pr;refÞ � Dext computed after the
iteration steps. The empirical relation

cðkÞ ¼ ð1�MÞ � exp �
DDðkÞ
��� ���

P0L

0
@

1
AþM ð10Þ

is used for cðkÞ, with 0 6 M 6 1 and L > 0 being numerical parame-
ters (Roth et al., 2009). In order to achieve convergence of the
iterative procedure, these parameters have to be chosen appropri-
ately, depending on the material behaviour involved. The c-modifi-
cation is identical to the unmodified Newton–Raphson method for
cðkÞ ¼ 1 (and therefore M ¼ 1). Furthermore, the inequality
cðkÞ P M always holds. Let dðkÞ ¼ jDDðkÞj=P0 be a measure for the
b)

ext ¼ P0 and jE0=P0 ¼ 0:2 (b) c-modification; converging iteration procedure for
for Dext ¼ P0; jE0=P0 ¼ 0:2.
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accuracy of the solution obtained after the kth equilibrium iteration
and return mapping step. Then, as can be seen from (10), dðkÞ � L
leads to cðkÞ � M and dðkÞ � L gives cðkÞ � 1. The latter implies that
the c-modification will become equivalent to the unmodified
Newton–Raphson method if the iteration process approaches the
actual solution of the problem. Fig. 1(b) illustrates the iteration pro-
cedure of the c-modification for the example discussed above, in
which jE0=P0 ¼ 0:2 and Dext ¼ P0. The numerical parameters are ta-
ken to be M ¼ L ¼ 0:3. In contrast to the unmodified Newton–Raphson
method, convergence is achieved. However, a disadvantage of the
c-modification is that the rate of convergence is relatively low as
long as the criterion dðkÞ � L is not met.

2.3. D-modification of the Newton–Raphson method

The so-called ‘‘D-modification’’ is based upon the idea of di-
rectly inverting the relationship D ¼ DmatðE; Pr;ref Þ with respect to
D and E within the ‘‘local material routines’’. In the following, the
resulting inverse function is denoted by EmatðD; Pr;refÞ. Now, the
quantities DðkÞ;int and jðkÞ;int in Eq. (2) are determined by

DðkÞ;int ¼
Dmat Eð0Þ;ext; Pr;ref

� �
if k ¼ 0

Dext þ DDðkÞ;a if k > 0;

8<
: ð11Þ

jðkÞ;int ¼
jmat Eð0Þ;ext; Pr;ref

� �
if k ¼ 0

jmat Emat Dext; Pr;ref
� �

; Pr;ref
h i

if k > 0;

8><
>: ð12Þ

where an ‘‘auxiliary electric displacement’’

DDðkÞ;a ¼ jðkÞ;int � EðkÞ;ext � Emat Dext; Pr;ref
� �h i

ð13Þ

is introduced. The latter is necessary due to the fact that the return
mapping is done at fixed electric displacement for the D-modifica-
tion (and not at fixed electric field as for the unmodified Newton–
Raphson method and the c-modification). This leads to a difference
between the electric field EðkÞ;ext of the global iteration and the
‘‘material electric field’’ Emat Dext; Pr;ref

� �
, which has to be corrected.

Note, that the initial iteration step of the D-modification is identical
to the unmodified Newton–Raphson method. By inserting (11) and
(12) into the ‘‘global’’ iteration rule (2) it can be easily verified that
Eðkþ1Þ;ext ¼ EmatðDext; Pr;refÞ for k > 0. This fact is illustrated in Fig. 1(c).
As already stated, the result Eð1Þ;ext of the initial iteration step is the
same as for the unmodified Newton–Raphson method. However, in
contrast to the unmodified Newton–Raphson method, the tangent
to the curve Dmat is now constructed in the point corresponding
to the loading Dext. Since this loading is assumed to be constant
here, the iteration converges after the second iteration step and
therefore Eð2Þ;ext is already the converged solution.

3. Generalisation to the multi-axial, fully coupled,
ferroelectroelastic case

In this part of the paper, we discuss the generalisation of the
unmodified Newton–Raphson method, the c-modification and
the D-modification to the fully coupled, ferroelectroelastic case.
Furthermore, the restriction to homogeneous field distributions is
dropped. Consequently, it is no longer sufficient to consider only

a single material point. Rather, the strain tensor eðkÞ;ext
ij and the elec-

tric field vector EðkÞ;ext
i are computed from the global finite element

solution for each integration point of the finite elements after each
equilibrium iteration step (denoted by k) of a load step. These
quantities are passed to the ‘‘local material routines’’. As illustrated
in Fig. 2, the task of the ‘‘local material routines’’ is to calculate the

‘‘internal’’ mechanical stress tensor rðkÞ;int
ij , the ‘‘internal’’ electric

displacement vector DðkÞ;int
i , the ‘‘internal’’ mechanical stiffness

tensor at constant electric field CðkÞ;E;int
ijmn , the ‘‘internal’’ piezoelectric

coupling tensor at constant strain eðkÞ;e;int
mij , the ‘‘internal’’ piezoelec-

tric coupling tensor at constant electric field eðkÞ;E;int
imn and the

‘‘internal’’ permittivity tensor at constant strain jðkÞ;e;int
im for each

integration point. As in the electromechanically uncoupled, purely
ferroelectric, homogeneous case discussed above, these quantities
have to be chosen suitably to allow for convergence of the iteration
to a valid solution. A further task of the ‘‘local material routines’’ is

to compute the current remanent strain tensor er;ðkÞ
ij and the current

remanent polarisation vector Pr;ðkÞ
i after each equilibrium iteration

step. After convergence of the global iteration scheme, the current

material state becomes the reference state er;ref
ij ; Pr;ref

i for the next
load step at each integration point.

We define the ‘‘loads’’ which each material point (or integration
point) has to carry after the ðkþ 1Þth equilibrium iteration step by

rðkþ1Þ;ext
ij ¼ rðkÞ;int

ij þ CðkÞ;E;int
ijmn eðkþ1Þ;ext

mn � eðkÞ;ext
mn

� �

� eðkÞ;e;int
mij Eðkþ1Þ;ext

m � EðkÞ;ext
m

� �
;

Dðkþ1Þ;ext
i ¼ DðkÞ;int

i þ eðkÞ;E;int
imn eðkþ1Þ;ext

mn � eðkÞ;ext
mn

� �

þ jðkÞ;e;int
im Eðkþ1Þ;ext

m � EðkÞ;ext
m

� �
: ð14Þ

Note here, that eðkÞ;e;int
mij is defined as usual with respect to the nega-

tive electric field. The electric fields are the negative gradient of the
scalar potential, i.e. Ei ¼ �/;i. Since the scalar potential / is a nodal
degree of freedom, this choice leads to symmetric global finite ele-
ment system matrices if the conditions

CðkÞ;E;int
ijmn ¼ CðkÞ;E;int;

mnij

eðkÞ;e;int
mij ¼ eðkÞ;E;int;

mij

jðkÞ;e;int
im ¼ jðkÞ;e;int

mi

ð15Þ

are met. Additionally, permutability within the index pairs of

CðkÞ;E;int
ijmn and permutability of the last both indices of eðkÞ;e;int

mij and

eðkÞ;E;int
imn is required. This can be always achieved due to the symmetry

of the strain tensor and the mechanical stress tensor.
It is possible to write (14) in a similar form as (2) by solving for

eðkþ1Þ;ext
ij and Eðkþ1Þ;ext

i . Thus, on the local level, the iteration process
may be interpreted analogously as for homogeneous field distribu-

tions. But now, the ‘‘loads’’ rðkÞ;ext
ij and DðkÞ;ext

i are no longer neces-
sarily constant throughout the iteration. However, they converge
as the global finite element iteration converges to a solution.

In the multi-axial, fully coupled, ferroelectroelastic case,
the material behaviour is described by the functions

rmat
ij ðers; Er ; er;ref

rs ; Pr;ref
r Þ and Dmat

i ðers; Er ; er;ref
rs ; Pr;ref

r Þ, which assign the
‘‘material mechanical stresses’’ and the ‘‘material electric displace-
ments’’ based on the total strains ers and the electric fields Er at the

end of a load step. The parameters er;ref
rs and Pr;ref

r characterise the
materials reference state at the beginning of the load step. For clar-
ity, these parameters are omitted in the following. The consistent
tangent stiffness tensor at constant electric field CE;mat

ijmn , the consis-
tent tangent piezoelectric coupling tensor at constant mechanical
strain ee;mat

mij , the consistent tangent piezoelectric coupling tensor
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at constant electric field eE;mat
imn and the consistent tangent permit-

tivity at constant strain je;mat
im are defined as
CE;mat
ijmn ¼

@rmat
ij

@emn
;

ee;mat
mij ¼ �

@rmat
ij

@Em
;

eE;mat
imn ¼ @Dmat

i

@emn
;

je;mat
im ¼ @Dmat

i

@Em
:

ð16Þ
In order to satisfy the symmetry conditions (15) in the follow-
ing, a symmetrisation is applied:

CE;mat;sym
ijmn ¼ 1

2
CE;mat

ijmn þ CE;mat
mnij

� �
;

ee;mat;sym
mij ¼ 1

2
ee;mat

mij þ eE;mat
mij

� �
;

eE;mat;sym
imn ¼ 1

2
ee;mat

imn þ eE;mat
imn

� �
;

je;mat;sym
im ¼ 1

2
je;mat

im þ je;mat
mi

� �
:

ð17Þ

Note, that the use of the symmetrised quantities may reduce the
rate of convergence of the global finite element iteration. However,
we expect that this disadvantage is overcompensated by the higher
efficiency of methods available for solving symmetric systems of
equations.

3.1. Unmodified Newton–Raphson method

For the unmodified Newton–Raphson method, the ‘‘internal’’
quantities are determined by
rðkÞ;int
ij ¼ rmat

ij eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

DðkÞ;int
i ¼ Dmat

i eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

CðkÞ;E;int
ijmn ¼ CE;mat;sym

ijmn eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

eðkÞ;e;int
mij ¼ ee;mat;sym

mij eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

eðkÞ;E;int
imn ¼ eE;mat;sym

imn eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

jðkÞ;e;int
im ¼ je;mat;sym

im eðkÞ;ext
rs ; EðkÞ;ext

r

� �
:

ð18Þ
3.2. c-Modification of the Newton–Raphson method

For the c-modification, the ‘‘internal’’ quantities are determined
by
rðkÞ;int
ij ¼ rðkÞ;ext

ij þ cðkÞ rmat
ij eðkÞ;ext

rs ; EðkÞ;ext
r

� �
� rðkÞ;ext

ij

h i
¼ rðkÞ;ext

ij þ cðkÞ � DrðkÞij ;

DðkÞ;int
i ¼ DðkÞ;ext

i þ cðkÞ Dmat
i eðkÞ;ext

rs ; EðkÞ;ext
r

� �
� DðkÞ;ext

i

h i
¼ DðkÞ;ext

i þ cðkÞ � DDðkÞi ;

CðkÞ;E;int
ijmn ¼ CE;mat;sym

ijmn eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

eðkÞ;e;int
mij ¼ ee;mat;sym

mij eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

eðkÞ;E;int
imn ¼ eE;mat;sym

imn eðkÞ;ext
rs ; EðkÞ;ext

r

� �
;

jðkÞ;e;int
im ¼ je;mat;sym

im eðkÞ;ext
rs ; EðkÞ;ext

r

� �
:

ð19Þ

Here, rðkÞ;ext
ij and DðkÞ;ext

i can be calculated from known quantities by
using (14). We propose the relationship

cðkÞ ¼ ð1�MÞ � exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DDðkÞm DDðkÞm

q
P0L

0
@

1
AþM ð20Þ

as an extension of (10) for the computation of cðkÞ in the electrome-
chanically coupled, multi-axial case. Only the absolute value of the
normalised electric displacement residual vector DDðkÞm =P0 is utilised
as a measure for the accuracy of the local solution after the kth
equilibrium iteration step since the convergence problems arise
from the electrical part of the problem. Thus, no scaling is necessary
in purely mechanical situations.

3.3. D-modification of the Newton–Raphson method

For the D-modification, inversion of the relationship
Di ¼ Dmat

i ðers; Er ; er;ref
rs ; Pr;ref

r Þ with respect to Di and Er is required.
The resulting inverse function is denoted by Emat

i ðers;Dr ; er;ref
rs ; Pr;ref

r Þ.
This function corresponds to a return mapping at fixed strain and
electric displacement. With the help of Emat

i , the ‘‘internal’’ quantities
are determined by

rðkÞ;int
ij ¼ rmat

ij eðkÞ;ext
rs ; Emat

r eðkÞ;ext
pq ;DðkÞ;ext

p

� �h i
þ DrðkÞ;aij ;

DðkÞ;int
i ¼ DðkÞ;ext

i þ DDðkÞ;ai ;

CðkÞ;E;int
ijmn ¼ CE;mat;sym

ijmn eðkÞ;ext
rs ; Emat

r eðkÞ;ext
pq ;DðkÞ;ext

p

� �h i
;

eðkÞ;e;int
mij ¼ ee;mat;sym

mij eðkÞ;ext
rs ; Emat

r eðkÞ;ext
pq ;DðkÞ;ext

p

� �h i
;

eðkÞ;E;int
imn ¼ eE;mat;sym

imn eðkÞ;ext
rs ; Emat

r eðkÞ;ext
pq ;DðkÞ;ext

p

� �h i
;

jðkÞ;e;int
im ¼ je;mat;sym

im eðkÞ;ext
rs ; Emat

r eðkÞ;ext
pq ;DðkÞ;ext

p

� �h i

ð21Þ

for k P 1, where the ‘‘auxiliary mechanical stresses’’ DrðkÞ;aij and the
‘‘auxiliary electric displacements’’ DDðkÞ;ai are:

DrðkÞ;aij ¼ �eðkÞ;e;int
mij � EðkÞ;ext

m � Emat
m eðkÞ;ext

rs ;DðkÞ;ext
r

� �h i
;

DDðkÞ;ai ¼ jðkÞ;e;int
im � EðkÞ;ext

m � Emat
m eðkÞ;ext

rs ;DðkÞ;ext
r

� �h i
:

ð22Þ

As for the c-modification, DðkÞ;ext
i follows from the second equation

in (14). Both modifications use the relations (18) of the unmodi-



Fig. 3. Finite element model of hexahedron with hole.
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fied Newton–Raphson method before the first equilibrium
iteration (k ¼ 0). By inserting (21) and (22) into (14) it can be
verified that the D-modification will yield a converged result
after the second equilibrium iteration step if fixed strains eðkÞ;ext

ij

and fixed electric displacements DðkÞ;ext
i are prescribed. In

contrast, the unmodified Newton–Raphson method and the c-
modification converge instantaneously in cases of fixed strains
eðkÞ;ext

ij and fixed electric fields EðkÞ;ext
i . Thus, as stated above, the

D-modification switches the roles of electric fields and electric
displacements locally without changing the global iteration
scheme.

In the following, we shall show that the D-modification and the
vector potential formulation combined with the unmodified New-
ton–Raphson method yield a virtually identical iteration scheme
(we emphasise the term ‘‘virtually’’, since differences between
both methods arise due to the finite element discretisation as
described below). In this context, it is important to note that the
unmodified Newton–Raphson method generally consists of a series
of linearisations. This procedure is described for the vector poten-

tial formulation below. Let eðkÞ;ext
kl be the mechanical strain solution

derived from the displacement field uðkÞk after the kth equilibrium
iteration step of a non-linear finite element calculation and let

DðkÞ;ext
k be the corresponding electric displacement solution derived

from the vector potential field wðkÞk . Then, the next solution for the

displacement field uðkþ1Þ
k and the vector potential field wðkþ1Þ

k (and

therefore the next solution for the mechanical strain field eðkþ1Þ;ext
kl

and the electric displacement field Dðkþ1Þ;ext
k ) is obtained by

linearising the material behaviour around eðkÞ;ext
kl ;DðkÞ;ext

k

h i
;

n

rmat
kl ðe

ðkÞ;ext
ij ;DðkÞ;ext

i Þ; Emat
k ðe

ðkÞ;ext
ij ;DðkÞ;ext

i Þ
h i

g at the integration points

of the finite elements and calculating a new solution based on
the given boundary conditions. This procedure is repeated until
convergence is achieved. The D-modification applies a similar
iteration algorithm by linearising around the same point. Thereby,

the difference EðkÞ;ext
k � Emat

k ðe
ðkÞ;ext
ij ;DðkÞ;ext

i Þ, which results from the
fact that the scalar potential is the nodal degree of freedom, is
compensated by introducing the auxiliary mechanical stresses
and auxiliary electric displacements. Note, that this has no influ-
ence on the point of linearisation. Consequently, the only major
difference between the vector potential formulation combined
with the unmodified Newton–Raphson method and the
D-modification is that, for the latter, the electric displacements

DðkÞ;ext
k at an integration point can not be directly computed from

the nodal quantities. Rather, these electric displacements are ob-
tained from (14) by using the linearised material behaviour of
the previous iteration step. However, it can be shown that the
resulting electric displacements are consistent with the nodal
charges. Additional differences between the vector potential for-
mulation combined with the unmodified Newton–Raphson
method and the D-modification can arise from the fact that dif-
ferent quantities are discretised by the shape functions. This
leads to a different accessible solution space, which may lead
to a better convergence behaviour of one or the other method,
depending on the exact problem under consideration. Due to
the described similarities, it is expected that the D-modification
shows a comparable behaviour as the vector potential formula-
tion combined with the unmodified Newton–Raphson method.
However, the outstanding advantages of the D-modification are
that it does not require gauging, allows for a simple implemen-
tation of common boundary conditions and saves two degrees of
freedom per finite element node.
4. Numerical example

4.1. Geometry and boundary conditions

In order to demonstrate the capabilities of the methods de-
scribed above, the poling of a hexahedron containing a centered
cylindrical hole is simulated with the finite element method,
where the geometry is taken from Semenov et al. (2009) (edge
length 2w ¼ 20 mm, thickness 2d ¼ 6 mm, diameter 2r ¼ 4 mm).
Due to the symmetries/anti-symmetries in geometry and
boundary conditions, only one eighth of the hexahedron is
modelled. Fig. 3 shows the resulting finite element model. The
mesh is composed of 154 20-noded elements with quadratic shape
functions and 14 integration points. Only one element is used for
discretisation in thickness direction.

In the symmetry planes x1 ¼ 0 and x2 ¼ 0 the normal compo-
nent of the displacement vector is set to zero. Furthermore, the
displacement in x3-direction is prohibited at all nodes. This corre-
sponds to a plane strain state. As shown in Fig. 3, the scalar poten-
tial / ¼ /0 is prescribed on the upper face of the hexahedron at
x2 ¼ w. In the plane x2 ¼ 0 the scalar potential is constrained to
/ ¼ 0, which incorporates an anti-symmetric distribution of elec-
tric fields and electric displacements. Vanishing tractions and van-
ishing free surface charges are assumed for all remaining
boundary conditions. In order to derive the electrical boundary
conditions from the jump conditions at the boundaries x1 ¼ w
and x3 ¼ �d, the domain external to the body is taken to be
approximately free of electric displacements. This leads to
D1 ¼ 0 at the surface x1 ¼ w and D3 ¼ 0 at the surface x3 ¼ �d.
The boundary conditions assumed here result in a plane electrical
and mechanical state. Nevertheless, three-dimensional finite ele-
ments are used since plane elements have not been implemented
yet.



Table 1
Material parameters for PIC151, fitted to experimental data of Zhou (2003).

Parameter Symbol Value Unit

Young’s modulus Y 120 GPa
Poisson’s ratio m 0:31 –
Dielectric permittivity j 2:2� 10�8 F/m

Piezoelectric constants d31 �1:7� 10�10 m/V

d33 4:0� 10�10 m/V

d15 4:6� 10�10 m/V

Saturation polarisation P0 0:415 C/m2

Compressive saturation strain e0 0:0032 –
Coercive electric field E0 0:92 MV/m
Coercive mechanical stress r0 35 MPa
Hardening parameters He

0 350000 m/F
me 2:0 –
Hr

0 350 MPa
mc 2:0 –
mt 2:0 –
Hp

0 0 m/F
Switching surface shape factor b 2:0 –
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4.2. Material

The fully coupled, multi-axial, phenomenological, macroscopic
material model presented by Landis (2002a) is utilised to describe
the material behaviour. We use a return mapping algorithm
(Semenov et al., 2009) for the numerical integration of the consti-
tutive equations, where the evolution equations for the remanent
strains and polarisations are discretised with the backward Euler
method. The material parameters shown in Table 1 are chosen to
fit the bipolar hysteresis experiments and the mechanical com-
pression experiments conducted by Zhou (2003) for the soft lead
circonate titanate (PZT) ceramic PIC151. Note, that these material
parameters have not been verified for experiments under com-
bined electrical and mechanical loading. Therefore, they can not
be expected to give a complete representation of the material
behaviour of PIC151. Rather, the material parameters should be
seen as a basis for testing the numerical methods described above.
Table 2
Number of load increments and equilibrium iterations for different iteration
methods/modifications and parameters, Tolerance � ¼ 1� 10�6.

Method/modification Load increments Equilibrium iterations R

Unmodified Newton–Raphson >200 –
c (M ¼ 0:03; L ¼ 0:11) 1 37
c (M ¼ 0:3; L ¼ 0:11) 1 12
D 1 9
Vector potential 1 9

(a)

Fig. 4. Finite element results for j/0j=ðE0dÞ ¼ 1 in the symmetry/anti-symmetry plane
Normalised remanent polarisation Pr

2=P0.
4.3. Results

In this section, results for an increase of the prescribed norma-
lised potential from zero to j/0j=ðE0wÞ ¼ 1 are presented. If there
was no hole in the hexahedron, the resulting applied potential of
j/0j ¼ 9:2 kV would lead to a uniform electric field equal to the
coercive electric field E0. Note, that initially the material is free of
remanent strains and polarisations everywhere.

The calculation is done with the commercially available finite
element software ANSYS, where a user defined finite element is
used along with appropriate material routines. A tolerance of
� ¼ 1� 10�6 about the typical values of the nodal degrees of free-
dom and the nodal forces/charges is used as convergence criterion,
where the convergence check is performed at each node and de-
gree of freedom individually (infinity norm). The loading /0 is split
up into as many equally spaced load increments as are required to
achieve convergence. Thereby, a single load increment is consid-
ered to be not converged if a number of 50 equilibrium iterations
is exceeded without satisfying the convergence criteria or the re-
turn mapping procedure fails.

The number of required load increments and equilibrium itera-
tions is shown in Table 2 for the different iteration methods/
modifications. Even with 200 load increments, it is not possible
to achieve convergence with the unmodified Newton–Raphson
method. This is primarily due to oscillating solutions during the
equilibrium iteration process as described above. In contrast, the
c-modification requires only 1 load increment for convergence.
However, it can be seen from the results in Table 2 that the number
of equilibrium iterations strongly depends on the numerical
parameters M and L chosen. Note, that the probability of non-
convergence increases as the numerical parameters are modified
in a way that the c-modification approaches the unmodified
Newton–Raphson method (even though the number of required
equilibrium iterations decreases in Table 2). The D-modification
converges within a single load increment and only 9 equilibrium
iterations. For comparison, a result obtained with the vector
potential formulation is also included in Table 2. This calculation
was performed with the finite element code PANTOCRATOR
(Semenov, 2003), where the same mesh as for the scalar potential
formulation was used. As for the D-modification, one load incre-
ment and 9 equilibrium iterations are required for convergence.
This result supports the assertion that the scalar potential formu-
lation combined with the D-modification shows a convergence
behaviour comparable to the vector potential formulation.

It is noted that the number of required load increments is much
higher for the D-modification than for the vector potential formu-
lation if 8-noded finite elements with 8 integration points are used.
We believe that this is due to oscillations occuring in the electric
(b)

x2 ¼ 0 along a path in x1-direction: (a) Normalised electric field E2=E0 and (b)
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field solution, which are caused by the linear shape functions uti-
lised for the discretisation of the scalar potential. These oscillations
increase within the iteration process, leading to divergence of the
solution. Probably, this unstable numerical behaviour is associated
with the strongly varying tangent permittivity. The effect de-
scribed was found to be highly dependent on the finite element
model under consideration, where the mesh (particularly the ori-
entation of the elements with respect to the electric field) seems
to play a crucial role. Therefore, it is likely that similar problems
can be observed for the vector potential formulation for other
examples. Thus, we generally do not recommend the usage of finite
elements with linear shape functions.

The field solutions obtained with the scalar potential formula-
tion and the vector potential formulation are compared to each
other in Fig. 4. The results are plotted along a path in x1-direction
in the symmetry/anti-symmetry plane x2 ¼ 0. For the scalar poten-
tial formulation, the curves shown are the same for D-modification
and c-modification within the accuracy imposed by the conver-
gence criteria. Due to the boundary conditions, there is no depen-
dency on the co-ordinate x3. Fig. 4(a) depicts the normalised
electric field E2=E0 and Fig. 4(b) shows the normalised remanent
polarisation Pr

2=P0. The agreement between scalar potential formu-
lation and vector potential formulation is reasonable even though
the mesh is coarse. Note, that the electric field is elevated over its
nominal value only very close to the hole and the ratio between
maximum electric field and nominal electric field is relatively
low (E2;max=E0 � 1:13). Moreover, as can be seen in Fig. 4(b), the
remanent polarisation level stays far away from saturation. How-
ever, the range of small remanent polarisations and therefore elec-
tric fields close to the coercive electric field is most problematical
for finite element computations of ferroelectroelastic ceramics
based on the scalar potential formulation. If a higher loading than
j/0j=ðE0dÞ ¼ 1 is applied, the convergence behaviour becomes bet-
ter due to the material saturation properties. Consequently, for a
sufficiently high level of loading, even the unmodified Newton–
Raphson method converges as discussed above.

The example demonstrates only the capabilities of the D-
modification and the c-modification for the poling of a specimen.
We have tested further load cases including higher applied poten-
tials j/0j, reversal of the poling direction by changing the sign of
the applied potential /0 and mechanical depolarisation by
applying pressure on the upper face at x2 ¼ w after removal of
/0. No significant convergence difficulties are experienced in these
examples with D-modification and c-modification. However,
relatively small load increments are required for the mechanical
depolarisation once the applied pressure exceeds the coercive
stress r0. This behaviour is also found if pressure of this level is ap-
plied to the unpoled configuration. It is therefore concluded that
this effect results from the shape of the purely ferroelastic material
hysteresis. Note, that for such purely mechanical load cases all
methods discussed here, including the vector potential formula-
tion, yield identical results given that no initial remanent polarisa-
tion is present.

5. Concluding remarks

In the present paper, methods to improve the convergence
behaviour of non-linear finite element computations with the scalar
potential formulation utilised are discussed. Starting from the sim-
ple purely ferroelectric case with homogeneous field distributions
and loading in a fixed direction, the methods have been extended
to the multi-axial, fully electromechanically coupled, ferroelectro-
elastic case. A numerical example has shown the convergence diffi-
culties of the unmodified Newton–Raphson method. The two
modifications of the Newton–Raphson method proposed to reduce
or eliminate these problems, namely the c-modification and the
D-modification, were both succesfully tested in the numerical
example. A disadvantage of the c-modification is the requirement
of choosing the numerical parameters L and M. In this context, it
is desirable to develop methods which assign the value of cðkÞ adap-
tively, based on the convergence behaviour in previous equilibrium
iteration steps. The attractiveness of the D-modification is that it
does not require such numerical parameters and shows conver-
gence properties similar to the vector potential formulation com-
bined with the unmodified Newton–Raphson method.
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