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One of the greatest achievements in the life sciences in the 
20th century was the recognition of three forms, or domains, 
of cellular life, i.e., Bacteria, Archaea, and Eukarya, in the 
three-domain theory put forward by Carl Woese and George 
Fox in 1977 [1]. According to their theory, Archaea, which 
were previously regarded as a peculiar group of bacteria, are 
no more closely related to Bacteria than to the Eucarya from 
a phylogenetic viewpoint and, thus, represent the third form 
of life. This theory was not widely accepted until 1996 
when the genome sequence of Methanocaldococcus jan-
naschii, a methane-producing archaeon, was published [2]. 
The genetic blueprint of this organism offered strong sup-
port for the three-domain theory.   

By some estimates, Archaea account for 20% of the total 
biomass on Earth [3]. The majority of known Archaea are 
extremophiles thriving in extremes of temperature, pH, salin-
ity, etc. [4]. A number of hyperthermophilic Archaea have 
been isolated from hot springs and hydrothermal vents, 
halophilic Archaea from salt lakes, and acidophilic Archaea 
from acid mine drainage. Archaea also exist in “non-ex-     
treme” environments, including soils, wetlands, oceans, and 
the human colon [5]. Archaea are capable of a wide range of 
metabolic activities and are believed to serve important 
roles in driving the C, N, and S cycles on the planet [6]. 
Despite their resemblance in size and morphology, Archaea 
and Bacteria differ markedly in many important aspects, 
such as cell wall and membrane composition and DNA 
transactions [7–10]. Strikingly, Archaea employ genetic 
mechanisms similar to, but simpler than, those found in 
Eucarya [11]. Furthermore, a surprising variety of mobile 

genetic elements (e.g., viruses and plasmids) have been 
found in the domain Archaea [12]. Some archaeal viruses 
have unusual shapes that are never seen in bacteriophages 
or eucaryal viruses [13]. 

The landmark discovery of Archaea drew much attention 
to this new form of life. There was a further boost of inter-
est in Archaea after the sequencing of the M. jannaschii 
genome. A number of laboratories have since become in-
volved, at least partially, in studying Archaea for clues on 
the fundamentals and evolution of life or for enzymes or 
functions with potential applications. In the short period of 
less than 20 years since the end of the last century, our un-
derstanding of Archaea has significantly increased [13–21]. 
To date, nearly 200 archaeal genomes have been sequenced. 
Because of their unusual stability, proteins from thermo-
philic Archaea are favored for biochemical and structural 
biological studies. Some 5500 crystal structures of archaeal 
proteins, 60% of which are derived from thermophiles, are 
now available in PDB. Over 80% of them were obtained in 
the past decade. 

In China, research on Archaea started in the late 1970s 
when the first extremophile laboratory was established at 
the Institute of Microbiology, Chinese Academy of Sciences 
(IMCAS). The laboratory isolated halophilic microorgan-
isms from salt lakes in Qinghai province, China [22]. In the 
1980s, scientists from IMCAS isolated the first thermoaci-
dophilic archaeon, Acidianus tengchongenses, from hot 
springs in Tengchong, Yunnan Province [23,24]. From the 
late 1990s to the early 2000s, the pace of archaeal research 
accelerated and entered the molecular and genomic phase. 
Several archaeal laboratories devoted entirely to research on 
thermophilic, halophilic, or methanogenic Archaea were set 
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up at IMCAS as well as at several universities. Their re-
search covers chromosomal organization, genetic mecha-
nisms, viruses and plasmids, synthesis of polyhydroxyalka-
noates (PHAs), quorum sensing, enzyme stability, etc. [25–36]. 
Although moderate in size, the Chinese archaeal community 
has made important contributions to the understanding of 
Archaea and is now well respected in the field.  

In this special archaeal issue, we have assembled five re-
view articles on topics ranging from archaeal DNA replica-
tion, chromatin proteins, archaeal viruses, haloarchaeal cel-
lular and organellar membrane-associated proteins, and 
psychrotolerant methanogenic archaea. Obviously, there are 
many more hot topics on Archaea than this issue can cover. 
However, we hope that these review articles will offer a 
glimpse into Archaea and convey our immense excitement 
derived from the study of these surprising organisms.   

I thank Dong XiuZhu (IMCAS), Xiang Hua (IMCAS) and Lin LianBing 
(Kunming University of Science and Technology) for donating the photos 
of Methanosaeta harundinacea 6Ac cells, Halobacterial colonies and a 
Tengchong hot spring, respectively, for the cover of this special topic. 
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