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Abstract

The nonlinear oscillations of a scalar field are shown to have cosmological equations of state withw = p/ρ ranging from
−1 < w < 1. We investigate the possibility that the dark energy is due to such oscillations.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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Astrophysical data support the existence of d
energy [1,2]. Since many proposed solutions of
cosmological constant problem lead to exactly z
vacuum energy for empty space, it is natural
consider so-called quintessence models in which
dark energy is comprised of some scalar field wh
is slowly evolving towards its minimum [2]. The ma
objections to these models are their typically unnatu
potentials, and that they require the suppression
higher dimension operators likely to be induced
quantum gravity [3].

In this Letter we investigate a qualitatively differe
idea: that the dark energy is due to (possibly rap
nonlinear oscillations rather than slow evolution
cosmological timescales. We consider oscillations
scalar models

(1)L = 1

2
(∂µz)2 − V (z),

where the potentialV (z) = a|z|l near its minimum.
Potentials withl < 2 are particularly interesting, a
we will see below that they yield an equation of st

E-mail address: hsu@duende.uoregon.edu (S.D.H. Hsu).
0370-2693  2003 Published by Elsevier B.V.
doi:10.1016/j.physletb.2003.05.001

Open access under CC BY lice
w = p/ρ < 0. This form ofV (z) may appear odd, bu
a change of variables to, e.g.,φ = |z|l/2 yields

(2)L= 1

2
K(φ)(∂µφ)2 − aφ2,

with K(φ) = (2/l)2φ(4−2l)/ l. A kinetic term of this
type can be obtained from the Kähler potential in
persymmetric models. We focus here on the class
behavior ofz, but its quantization whenl < 2 war-
rants further investigation. It has the unusual prope
that there are no perturbative degrees of freedo
that is, small oscillations aboutz = 0 have infinite fre-
quency, sinceV ′′(z = 0) does not exist. Only larg
(non-infinitesimal)z oscillations can have finite en
ergy density. This may lead to a number of intere
ing features: one might expect thatz decay and pro
duction rates, as well as radiative corrections, o
arise from nonperturbative effects and are expon
tially small.

The redshift of a field undergoing nonlinear osc
lations can be calculated through its average equa
of state and depends on the ratiow = p/ρ. From the
scalar field equations in a Robertson–Walker unive
nse.
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one obtains

(3)ρ(t) = ρ0

(
R0

R(t)

)3(1+w)

,

whereR is the Robertson–Walker scale factor. T
scalar field energy redshifts like radiation whenw =
1/3, like matter whenw = 0, etc.

It remains to calculate the equation of state
nonlinear oscillations. We note thatp = T − V and
ρ = T + V , whereT is the kinetic energy densit
andV is the potential energy density. We calculate
relation betweenT andV averaged over an oscillatio
period, which is much smaller than the cosmologi
timescale except during the very first oscillation
which begin when the age of the universe is of or
V ′′(z)−1/2.

We define

(4)〈T 〉 = 1

2

∫
dt ż2

and

(5)〈V 〉 =
∫

dt zl,

where each integral is taken over the same period
boundary conditionṡz(0) = ż(τ ) = 0 (or equivalently
z = 0 at the endpoints) and we have adopted unit
which the overall scale of the potential is unity. Sin

(6)
d

dt
(zż) = ż2 + zz̈,

and the equation of motion is̈z = −l zl−1, we can
rewrite the average potential energy as

(7)〈V 〉 = 1

l

∫
dt ż2 = 2

l
〈T 〉.

This yields

(8)w = (l − 2)

(l + 2)
,

with −1 < w < 1. In potentials with l < 2, the
average potential energy dominates over the kin
part, and the pressure is negative. In the limitl → 0
these oscillations behave like a cosmological const
In higher order potentials(l > 2), the situation is
reversed, leading asymptotically tow = 1 asl → ∞,
or ρ ∼ 1/R6. These oscillations redshift away rapid
although it was noted in [4] that the largel behavior of
w = 1 can never be achieved, due to an instability t
nonoscillatory scaling solution.

Given a periodic solution to thez equations of
motion, one can obtain a rescaled solution via

(9)z(t) → a2/(l−2)z(at).

For l < 2, the frequency of oscillation goes to infini
as the amplitude goes to zero. Note, however, tha
average energy density goes to zero in this limit.

An advantage of nonlinear oscillation models
quintessence is that the potentialV (z) need not be
characterized by the size of the current dark ene
density ∼ (10−3 eV)4, nor be fine-tuned to be fla
(i.e., have curvature of order the inverse horizon s
squared∼ (10−33 eV)2). Rather, the potential can b
characterized by a larger energy scale more familia
particle physics, with no small dimensionless param
ters. The smallness of the energy density today rela
to this scale could be explained by a smallz oscillation
amplitude.

One scenario that would result in a small oscillat
amplitude is if the original energy density in thez field
were diluted away by inflation, and the subsequ
reheat temperature insufficient to repopulate it. T
is quite plausible if the couplings between the infla
and ordinary matter fields to thez field are small, for
example suppressed by the Planck scale ifz is a hidden
sector field.1 The currentz energy density is depende
on the number of e-foldingsN during inflation

(10)ρtoday∼ ρi

[
2× 10−5e−N

(
Tmd

Trh

)]ν

,

whereν = 3(1+ w), Tmd ∼ 5 eV is the temperature a
which the universe becomes matter dominated andTrh
is the reheat temperature after inflation. For exam
using ν = 1/2 (or w = −5/6, consistent with the
WMAP limit of w < −0.78 [1]), Trh = 5 × 1010 GeV
and ρi the Planck energy density, we find thatN ∼
510 in order thatρtoday ∼ (10−3 eV)4. For smaller
ρi ∼ (1011 GeV)4, appropriate for intermediate sca
inflation, we findN ∼ 370. Note, while the scenari
described here explains the small dark energy den

1 Some reheating of thez field is inevitable, even if its coupling
to the inflaton are very small. However, the thermalz bosons
produced do not necessarily contribute to the coherent oscilla
studied here—their energy redshifts away more rapidly.
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today, it does not address the question of coincide
why isρz of orderρcritical today?

If the energy scale characterizingV (z) is small
(within several orders of magnitude of an electr
volt) little dilution is necessary, and it could be pr
vided by the expansion of the universe after inflati
If z originates from the scalar component of a ch
superfieldΦ, the energy scale ofV (z) (i.e., the para-
metera in (2)) is protected by supersymmetry from r
diative corrections. A Yukawa coupling betweenz and
its superpartner can be excluded by imposingΦ →
−Φ symmetry in the superpotential, thereby stabi
ing z.

To conclude, we find that realistic quintessen
models based on nonlinear oscillations can be c
structed without any fine-tuning of fundamental pa
meters. These models will be disfavored if future d
show thatw = −1.

Note added

After this work was completed, we learned th
the result (8) for the equation of state was previou
derived by Turner in [5]. Also, models based on
hyperbolic cosine potential raised to a fractional pow
have been considered in [6], which at late times exh
oscillations of the type considered here.
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