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Abstract

The nonlinear oscillations of a scalar field are shown to have cosmological equations of staie=witlip ranging from
—1 < w < 1. We investigate the possibility that the dark energy is due to such oscillations.
0 2003 Published by Elsevier B.V. Open access under CC BY license.

Astrophysical data support the existence of dark w = p/p < 0. This form ofV (z) may appear odd, but
energy [1,2]. Since many proposed solutions of the a change of variables to, e.g.= |z|'/? yields
cosmological constant problem lead to exactly zero
vacuum energy for empty space, it is natural to
consider so-called quintessence models in which the
dark energy is comprised of some scalar field which
is slowly evolving towards its minimum [2]. The main ~ with K (¢) = (2/1)?¢4~2)/!. A kinetic term of this
objections to these models are their typically unnatural type can be obtained from the Kahler potential in su-
potentials, and that they require the suppression of persymmetric models. We focus here on the classical
higher dimension operators likely to be induced by behavior ofz, but its quantization wheh < 2 war-
guantum gravity [3]. rants further investigation. It has the unusual property

In this Letter we investigate a qualitatively different that there are no perturbative degrees of freedom—

1
L= 51r<(<;>)(au¢)2 — a¢?, )

idea: that the dark energy is due to (possibly rapid)
nonlinear oscillations rather than slow evolution on
cosmological timescales. We consider oscillations in
scalar models

1
L= E(a,iz)2 -V(@. 1)

where the potential/ (z) = a|z|' near its minimum.
Potentials with! < 2 are particularly interesting, as
we will see below that they yield an equation of state
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that is, small oscillations abogt= 0 have infinite fre-
quency, sinceV”(z = 0) does not exist. Only large
(non-infinitesimal)z oscillations can have finite en-
ergy density. This may lead to a number of interest-
ing features: one might expect thatecay and pro-
duction rates, as well as radiative corrections, only
arise from nonperturbative effects and are exponen-
tially small.

The redshift of a field undergoing nonlinear oscil-
lations can be calculated through its average equation
of state and depends on the ratio= p/p. From the
scalar field equations in a Robertson—Walker universe,
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one obtains

B Ro 3(1+w)
p(t) = pO(m) )

where R is the Robertson—Walker scale factor. The
scalar field energy redshifts like radiation when=
1/3, like matter whenw = 0, etc.

It remains to calculate the equation of state for
nonlinear oscillations. We note that=T7 — V and
o =T+ V, whereT is the kinetic energy density
andV is the potential energy density. We calculate the
relation betweel andV averaged over an oscillation
period, which is much smaller than the cosmological
timescale except during the very first oscillations,
which begin when the age of the universe is of order

®3)

V(e TV,
We define
(T) = %/drzz 4)
and
<w=/wﬁ, )

where each integral is taken over the same period with
boundary condition$(0) = z(t) = 0 (or equivalently

z = 0 at the endpoints) and we have adopted units in
which the overall scale of the potential is unity. Since
d 2

a 6
S )=+ (6)
and the equation of motion i = —/z/~1, we can
rewrite the average potential energy as

<V)=%/dr22=§m. (7)
This yields

_ -2
YU+ ®

with —1 < w < 1. In potentials with/ < 2, the
average potential energy dominates over the kinetic
part, and the pressure is negative. In the limit- 0

these oscillations behave like a cosmological constant.

In higher order potentialg/ > 2), the situation is
reversed, leading asymptotically to= 1 as/ — oo,

or p ~ 1/RS. These oscillations redshift away rapidly,
although it was noted in [4] that the largbehavior of
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w = 1 can never be achieved, due to an instability to a
nonoscillatory scaling solution.

Given a periodic solution to the equations of
motion, one can obtain a rescaled solution via
2/(-2) (9)
Forl < 2, the frequency of oscillation goes to infinity
as the amplitude goes to zero. Note, however, that the
average energy density goes to zero in this limit.

An advantage of nonlinear oscillation models of
guintessence is that the potentidlz) need not be
characterized by the size of the current dark energy
density ~ (10-3 eV)4, nor be fine-tuned to be flat
(i.e., have curvature of order the inverse horizon size
squared~ (1033 eV)?). Rather, the potential can be
characterized by a larger energy scale more familiar to
particle physics, with no small dimensionless parame-
ters. The smallness of the energy density today relative
to this scale could be explained by a smadiscillation
amplitude.

One scenario that would result in a small oscillation
amplitude is if the original energy density in théeld
were diluted away by inflation, and the subsequent
reheat temperature insufficient to repopulate it. This
is quite plausible if the couplings between the inflaton
and ordinary matter fields to thefield are small, for
example suppressed by the Planck scajésfa hidden
sector field: The current, energy density is dependent
on the number of e-foldingd during inflation

5 _ Tnd Y
~pil2x 100 N[22 |,
Ptoday ,01|: X e (Trh )]

z(t) —>a z(at).

(10)

wherev = 3(1+ w), Tmg ~ 5 eV is the temperature at
which the universe becomes matter dominated&apd

is the reheat temperature after inflation. For example,
usingv = 1/2 (or w = —5/6, consistent with the
WMAP limit of w < —0.78 [1]), Trh = 5 x 10'° GeV

and p; the Planck energy density, we find thit~

510 in order thatpioday ~ (1073 eV)*. For smaller

pi ~ (10 GeV)?, appropriate for intermediate scale
inflation, we findN ~ 370. Note, while the scenario
described here explains the small dark energy density

1 some reheating of thefield is inevitable, even if its couplings
to the inflaton are very small. However, the thermabosons
produced do not necessarily contribute to the coherent oscillations
studied here—their energy redshifts away more rapidly.
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today, it does not address the question of coincidence: have been considered in [6], which at late times exhibit
why is p, of order ocritical today? oscillations of the type considered here.
If the energy scale characterizirig(z) is small
(within several orders of magnitude of an electron
volt) little dilution is necessary, and it could be pro- Acknowledgements
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