
Computers Math. Applic. Vol. 18, No. 4, pp. 321-328, 1989 0097-4943/89 $3.00 + 0.00 
Printed in Great Britain. All fights reserved Copyright © 1989 Pergamon Press plc 

AN A S S E M B L Y  C E L L  W I T H  A N  A U T O M A T E D  Q U A L I T Y  

C O N T R O L  S T A T I O N :  A F I N I T E  C A P A C I T Y  A N D  

G E N E R A L L Y  D I S T R I B U T E D  P R O C E S S I N G  T I M E S  

B. POURBABAI 
Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, 

CA 90089-0193, U.S.A. 

(Received 27 July 1988) 

Abstract--The performance of an assembly cell consisting of a set of machines, a finite capacity local 
storage, an automated quality control station, a loading station and an unloading station is modeled by 
an M/G/IK queuing system with a Poisson input, a single server, generally distributed processing times, 
a buffer of size K, the first come first served queuing discipline, and with a fixed delay Bernoulli feedback 
mechanism, in steady state. In a queuing system with a fixed delay Bernoulli feedback mechanism, a 
fraction of the departing units will merge with the incoming arrival process to be reprocessed, after being 
delayed for a fixed length of time. The performance this system is approximated by a recursive algorithm. 
Furthermore, approximation outcomes are compared against those from a simulation study. 

1. I N T R O D U C T I O N  

The primary objectives of this paper are to develop a model and test an approximation algorithm 
for analyzing the performance of a finite capacity assembly cell (see Fig. 1). This model could then 
be used to quantify the effect of the quality control mechanism on the performance of the assembly 
cell. In this system, the assembly cell consists of a set of machines, capable of processing workpieces 
belonging to the same family of parts, contains a local storage, and is' placed adjacent to an 
inspection station. In this paper, it is assumed that no matter how many stages of operation each 
workpiece requires at different machines of the assembly cell, the aggregated duration of the 
processing time at the work station can be approximated by a generally distributed random 
variable. This aggregation assumption is based on the group technology concept. That is, the 
assembly cell is intelligently designed such that a compatible group of machines are placed 
in it for processing various states of operation of a compatible group of workpieces. For a review 
of the literature of the group technology, see Waghodekar and Sahu [1]. Additionally, the 
inspection station is used to identify the defective parts. In general, the workpieces which are 
transported to the assembly cell, after being processed, leave the assembly cell and arrive at the 
inspection station; there after being inspected, the non-defective workpieces leave the system and 
the defective workpieces after a fixed inspection time are rerouted to the assembly cell to be 
reprocessed. 

To develop the model, the performances of the assembly cell and the inspection station are jointly 
modeled by a finite capacity M/G/1 queuing system with a Poisson input, a single server, generally 
distributed processing times, the first come first served queuing discipline (e.g. dispatching rule), 
and a Bernoulli feedback mechanism. That is, the performance of the inspection station is modeled 
by a Bernoulli filter which operates as a binary mechanism for identifying defective or non-defective 
workpieces. In a queuing system with a fixed delay Bernoulli feedback mechanism, a fraction of 
the departing units will merge with the incoming arrival units to be reprocessed, after being delayed 
for a fixed length of time. It is noted that this problem has never been considered in the literature. 
However, Pourbabai [2] has considered a special case of this problem with an infinite capacity local 
storage. 

The motivation behind developing the proposed algorithm is that the performance of the above 
system is too complex and its performance cannot be analytically quantified. Hence, to be able to 
understand how this system behaves, a heuristic algorithm is proposed. 
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Queuing systems with a Bernoulli feedback mechanism have previously been considered in the 
literature. For the characterization of an M/M~1 queuing system with an instantaneous Bernoulli 
feedback mechanism, see Burke [3]. For an M/G/1 queuing system with an instantaneous Bernoulli 
feedback mechanism, see Disney et al. [4]. It is noted that in the literature, there exist no exact 
or heuristic algorithm for analyzing finite capacity queuing systems with Bernoulli feedback. For 
a review of the performance modeling literature of the manufacturing systems, see Buzacott and 
Yao [5]. 

The organization of this paper is as follows. In Section 2, the components of the model are 
delineated. In Section 3, numerical results are presented. Finally, in Section 4, the concluding 
remarks are discussed. 

2. THE MODEL 

2.1. Assumptions 

In this paper, the following assumptions are made. First, no matter how many stages of operation 
each workpiece requires at different machines of the assembly cell, the aggregated duration of the 
processing time at the assembly cell can be approximated by a generally distributed random 
variable. This aggregation assumption is based on the group technology concept. Second, The 
loading process is a Poisson process. Third, the non-renewal superposition arrival process can be 
approximated with a Poisson process. Fourth, the flow of the defective parts can be approximated 
with a thinned Poisson process. Fifth, the fixed inspection time does not influence the performance 
of the system in a steady state. Sixth, the workpieces which find the assembly system full are 
permanently discarded. That is, the blocked (e.g. the overflow) units leave the system. Seventh, the 
thinning (e.g. defective) probability is sufficiently small (e.g. less than 0.3). 

2.2. Notation 

Throughout the paper, the following notation will be used. Let j be the iteration (e.g. 
superposition) index. It is noted that in the proposed algorithm, the iteration index counts the 
number of times a fraction of the departing units will merge with the arrival units; # be the service 
rate; 2 a be the arrival rate; c by the coefficient of variation (c.v.) of the distribution of the service 
time, which is equal to the product of the service rate and the standard deviation of the service 
times; 2)' be the overflow rate at iteration j ;  2~ be the superposition arrival rate at iteration j; 2 a 
be the departure (e.g. throughput) rate at iteration j ;  2a be the departure rate of the thinned 
departure process which will superimpose with the incoming arrival process at iteration j ;  c a be 
the c.v. of the distribution of the interdeparture time of the net departure process at iteration j; 
~[a and ?a be the actual depare rate from the system and the corresponding c.v. of the distribution 
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of the interdepature time at iteration j;  K be the number of waiting spaces; p be the fraction of 
the departing units which will merge with the incoming arrival units; pj be the utilization factor 
at iteration j ;  qj be the blocking probability (i.e. the probability that an arbitrary unit at the instant 
of its arrival at the system finds it full) at iteration j ;  and z be the length of the inspection time. 
Also, let ~f, C f, and Dj(t) be the departure rate, c.v. of the distribution of the interdeparture time, 
and the distribution of the interdeparture time at iteration j, respectively. 

2.3. The algorithm 

Before describing the algorithms, at every iteration, a fraction of departing units will merge with 
the incoming arrival units to form a new arrival process. We call the latter process the superposition 
arrival process. 

To approximate the performance of an M/G/1/K queuing system with a fixed delay Bernoulli 
feedback mechanism in steady state, the following steps will be implemented. 

Step 1. At iteration j, the departure process will be approximated based on at least the first 
two moments of the distribution of the interdeparture time, and the departure process will 
be treated as a compatible renewal process. That is, the dependencies among the interdeparture 
times will be ignored, and the distribution of the interdeparture time will be approximated with 
a compatible (e.g. a phase type) distribution function. For further details, see Appendices A 
and B. 

Step 2. At iteration j, the non-renewal departure process corresponding to the departing units 
which will merge with the incoming arrival units will be approximated by a Poisson process, based 
on Gnedenko and Kovalenko's [6] results on thinning of a renewal process. The parameter of ;~ 
of the thinned departure process which will superimpose with the incoming arrival process can be 
obtained, as follows. That is, the dependencies among the interdeparture times of the thinned 
departure process will be ignored and an exponential distribution will be used to approximate the 
distribution of the interdepature time of the thinned departure process: 

~[~ =p ,~ l ;  j > 1. (1) 

Step 3. At iteration j, the length of the inspection time will be set equal to zero (e.g. z = 0), 
and the thinned departure process will be superimposed with the incoming Poisson arrival 
process to form a new superposition Poisson arrival process at iteration j + 1. That is, the 
dependencies among the interarrival times will be ignored, and the c.v. of the distribution of 
the interarrival time will be set equal to one. Based on a simulation analysis, as will be shown 
in the next section, it has been demonstrated that the value of z does not influence the 
approximation results in steady state. Notice that because the thinned departure process is a 
non-renewal process and because of the fixed delay feedback time, the superposition arrival process 
becomes a non-renewal process. However, it will be approximated with a Poisson process. That 
is, the distribution of the interarrival time will be approximated with a compatible exponential 
distribution function and the dependencies among the interarrival times will be ignored. The 
resulted superposition Poisson arrival process can be approximated based on the following 
parameter (notice that at iteration j = 1, g] = Aa): 

~..~+l----,~ + ),a; j > l .  (2) 

Step 4. The previous steps will be repeated until a steady state is reached at iteration e. The steady 
state is identified as follows. Let J be a sufficiently small value (e.g. 1 x 10 -3) and 

e = min(j;  Aj+t - ~-~ ~</~). (3) 

Step 5. After reaching the steady state, the performance of the system can be evaluated based 
on the parameters of the overflow rate, the blocking probability, the service utilization factor, the 
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departure rate, the thinned departure rate, and the c.v. o f  the distribution of  the interdeparture 
time, as follows: 

__ S d 
~" e ° - -  ~ e  - -  " ~ e ,  ( 4 )  

__ o s qe - -  ~ e / ~ e ,  ( 5 )  

Pe = 2ed/#, (6) 

~[d = (1 - p )  ).e d, (7) 

?d = [p + (1 - - p )  (cd)2] '/2. (8) 

The c.v. o f  the distribution o f  the interdeparture time can be obtained from Appendices A and 
B. Also,  for a summary o f  the approximation steps, see Fig. 2. 

3. N U M E R I C A L  R E S U L T S  

In this section, several examples are presented for K = 2, ~ = 1.0, p = 0.1. It is noted that K = 2 
was selected because the cost o f  simulation was expensive and consequently it was decided that 
it is more interesting to observe the performance o f  the system with a small buffer rather than a 
large buffer. Furthermore, the approximation outcomes  are compared against those from a 
simulation study. The numerical results are presented in Tables 1 and 2. In addition, to investigate 
the accuracy o f  the approximation outcomes,  a simulation model  is also developed, using the 
SLAM simulation package o f  Pritsker and Pegden [7]. Each simulation outcome is obtained based 
on ten independent runs. To generate the simulation outcomes,  the service times were assumed to 
have been generated based on one o f  the fol lowing three distributions: a hyperexponential 
distribution with two parameters and balanced means [i.e. expressions (A.1)-(A.4)] ,  or an 
exponential distribution, or a shifted exponential distribution [(i.e. expressions (A.5)-(A.7)] .  The 
approx. 95% confidence intervals for the reported measures are obtained based on a replication 
method and are also given in Tables 1 and 2. In Tables 1 and 2, for 2 a and K = 2, three sets o f  

Table 1. Approximation and simulation outcomes for K = 2, g ffi 1.0, and p ffi 0.1 

Approximation Simulation 
20 d d ,~' c ~d c d ~., c~ ~o 

0.3 0.5 0.329 0.950 0.004 0.328 ± 0.003* 1.024 ± 0.009 0.004 ± 0.001 
0.328 + 0.001"* 0.953 +_ 0.002 0.004 ± O.OOl 
0.328 ± O.OOl*** 0.949 ± 0.003 0.004 ± O.OOl 

0.5 0.5 0.525 0.864 0.027 0.525 ± O.OOl 0.919 ± O.OOI 0.027 ± 0.001 
0.524 + 0.001 0.864 ± 0.002 0.027 +_ O.OOl 
0.524 ± 0.003 0.865 ± 0.002 0.025 ± 0.002 

0.7 0.5 0.681 0.761 0.087 0.682 ± 0.004 0.799 ± 0.007 0.086 _+ 0.003 
0.681 + 0.001 0.760 ± 0.002 0.086 ± 0.002 
0.681 ± 0.003 0.761 __ O.OO1 0.086 ± 0.001 

0.3 1.0 0.324 0.983 0.008 0.324 ± 0.001 1.055 ± 0.007 0.007 ± 0.001 
0.324 ± 0.001 1.037 ± 0.001 0.008 ± 0.001 
0.324 + 0.001 0.983 ± 0.002 0.008 ± 0.001 

0.5 1.0 0.505 0.958 0.045 0.508 ± 0.001 1.008 __+ 0.002 0.042 ± 0,001 
0.505 __. 0.001 0.958 ± 0.002 0.045 ± 0.001 
0.504 ± 0.001 0.957 ± 0.002 0.045 + 0.001 

0.7 1.0 0.642 0.941 0.I 12 0.649 ± 0.001 0.975 _+ 0.003 0.116 + 0.004 
0.642 ± 0.002 0.941 ± 0.002 0.121 + 0.002 
0.642 ± 0.002 0.941 ± 0.002 0.122 + 0.002 

0.3 1.5 0.317 1.032 0.014 0.318 5- 0.001 1.102 ± 0.001 0.013 ± 0.001 
0.317 + 0.001 1.032 ± 0.002 0.014 +_ 0.001 
0.3175-0.001 1.032+0.002 0.0145-0.001 

0.5 1.5 0.485 1.084 0.063 0.491 ± 0.003 I. 133 ± 0.002 0.057 ± 0.001 
0.485 ± 0.001 1.083 ± 0.003 0.063 5- 0.002 
0.484 ± 0.001 1.085 ± 0.003 0.063 5- 0.001 

0.7 1.5 0.612 1.147 0.149 0.621 + 0.002 1.183 ± 0.003 0.140 5- 0.001 
0.611 ± 0.001 1.1475-0.004 0.1505-0.002 
0.612 ± 0.002 1.146 ± 0.002 0.150 + 0.001 

*z = O; **z = I0; ***z = 100. 
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Table 2. Approximation and simulation outcomes for K = 2,/~ = 1.0, and p = 0.1 

Approximation Simulation 

0.3 2.0 0.310 1.096 0.020 0.312 + 0.001'  1.162 + 0.002 0.018 ± 0.001 
0.310 ± 0.001"* 1.098 ± 0.002 0.020 ± 0.001 
0.309 ± 0.001*** 1.098 ± 0.002 0.021 ± 0.001 

0.5 2.0 0.469 1.228 0.078 0.468 ± 0.001 1.229 ± 0.005 0.078 ± 0.001 
0.469 ± 0.001 1.229 ± 0.005 0.077 ± 0.001 
0.469 ± 0.001 1.229 ± 0.005 0.077 + 0.001 

0.7 2.0 0.590 1.364 0.169 0 .600±0.002 1.404±0.008 0.158±0.001 
0.590 ± 0.002 1.364 ± 0.008 0.168 ± 0.001 
0.589 ± 0.001 1.363 ± 0.009 0.168 _+ 0.001 

0.3 2.5 0.304 1.173 0.026 0.305 ± 0.001 1.174 ± 0.003 0.025 ± 0.001 
0.305 ± 0.001 1.174 ± 0.003 0.025 ± 0.001 
0.304 ± 0.001 1.172 ± 0.004 0.026 ± 0.001 

0.5 2.5 0.457 1.386 0.088 0.463 _+ 0.001 1.435 ± 0.010 0.082 ± 0.001 
0.459 + 0.001 1.391 ± 0.0t2 0.086 ± 0.001 
0.457 ± 0.001 1.388 ± 0,010 0,088 ± 0.001 

0.7 2.5 0.575 1.591 0.182 0.586 ± 0.002 1.633 ± 0.016 0.171 ± 0.002 
0.576 ± 0.002 1.592 ± 0.016 0.180 ± 0.001 
0.574 ± 0.002 1.589 ± 0.014 0.182 ± 0.002 

0.3 3.0 0.300 1.261 0.030 0.302 ± 0.001 1.321 ± 0.005 0.027 + 0.001 
0.300 + O.O01 1.264 :t: 0.005 0.029 __. 0.001 
0.299 + 0.001 1.262 ± 0.005 0.030 ± 0.001 

0.5 3,0 0,449 1.555 0.096 0,456 ± 0.001 1.606 ± 0.010 0.089 ± O.O01 
0.450 ± 0.001 1.564 + 0.013 0.094 + 0.001 
0.447 ± 0.001 1.556 ± 0.012 0.096 ± 0.001 

0.7 3.0 0.564 1.825 0.192 0.563 ± 0.001 1.823 ± 0.012 0.192 ± 0.002 
0.576 _ 0.001 1.830 _+ 0.014 0.190 ± 0.002 
0.576 + 0.001 1.829 _+ 0.013 0.109 ± 0.001 

*z = 0; **z = I0; ***z = 100. 

simulation outcomes are reported, based on 100,000 observations. Notice that in Tables 1 and 2 
the service rate is set equal to one. Hence, the values of the departure rate from the system and 
the service utilization factor are identical [see expression (9)]. Also, from the reported performance 
measures the value of the blocking probability can also be evaluated [see expression (8)]. 
Furthermore, the expressions which were used to obtain the second moment of  the distribution 
of the interdeparture time for every one of the examples in this section are presented in Appendix 
B, which in conjunction with expression (B.2) result in the expression for the c.v. of the distribution 
of  the interdeparture time. 

From Tables 1 and 2, it is evident that the approximation outcomes closely match the simulation 
results. Furthermore, the following results are observed from Tables 1 and 2, for K = 2: firstly, the 
length of time required for a departing unit to travel prior to merging with the incoming arrival 
units does not significantly influence the values of none of the performance measures; secondly, 
for each value of  the c.v. of the distribution of the service time, as the arrival rate increases, the 
values of both ,~o and :d increase, but the value of c d decreases; thirdly, for each value of  the arrival 
rate, as the c.v. of the distribution of the service time increases, the value of Ad decreases, but the 
values of both ,~o and c d increase. 

4. CONCLUDING REMARKS 

In this paper a performance model is presented for analyzing the effect of the quality control 
on the performance of an automated assembly cell. For this purpose, an efficient algorithm for 
approximating the performance of an M/G/1/K queuing system with a fixed delay Bernoulli 
feedback mechanism is suggested. Furthermore, the parameters of the departure process of  the 
queuing system are also accurately approximated, which can be used to study the tandem behavior 
of the system. 

It is reminded that in an M/G/1/K queuing system with an instantaneous Bernoulli feedback 
mechanism, the superposition arrival process is a Poisson process. Hence, all the reported results 
in this paper could have been obtained by exact analysis. But, in an M/G/1/K queuing system with 
a fixed delay Bernoulli feedback mechanism, the superposition arrival process is not even a renewal 
process. Thus, developing an approximation algorithm seems to be the only available 
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Approximate (~.ae, c a) of the 
net departure process, hoe 
the overflow process, and 
also qe and Pe, from 
proposition 1 and expressions 

(4)--(6) in steady state. 
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e ) ° ' '  I XI+ 1 -Xj 
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T 
Approximate the arrival process 
at iteration j as a Poisson 
process, and approximate ),~ 
from proposition 1. 
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Poisson process, and approximate X~ 
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Treat the thinned departure | 
process at iteration j as a Poisson 
process, and approximate X~ 
of the superposition arrival 
process from expression (2) 

Fig. 2. Flowchart of the proposed algorithm. 

solution technique. It is important to note that as numerically demonstrated in Tables 1 and 2, 
the performances of the M/G/1/K queuing systems with an instantaneous or a fixed delay Bernoulli 
feedback mechanism are approximately identical, in steady state. 

It is interesting to note that approximating the superposition arrival process by a Poisson process 
has not significantly influenced the approximation accuracy of our algorithm. If in the future, the 
distribution or the interdeparture time of a G/G/1/K queuing system with generally distributed 
interarrival time is characterized, then the proposed algorithm can be improved by using at least 
the first two moments of both the respective distributions of the thinned departure process and the 
original arrival process. 
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APPENDIX A 

As discussed in Kuehn [8] and Whitt  [9], to approximate the distribution of  the interarrival time of  a generic stationary 
arrival process with the arrival rate 2 and the c.v. of  the distribution of  the interarrival time c t> 1, the following 
hyperexponential distribution function with two parameters and balanced means can be used: 

where the shape parameter is 

and the intensity parameters are 

H2(O,'~;t)= l - O e - Y ) t - ( l - O ) e - 7 2  t, t >10, (A.I) 

= r ( c 2 - 1 ~ ' 1 2  I]12 
0 LV-W- J + (A.2) 

71 = 202, (A.3) 

?2 = 2(1 - 0)2. (A.4) 

On the other hand, when 0 ~< c ~< 1, the following shifted exponential distribution function can be used: 

where the intensity parameter is 

and the shift parameter is 

' ' - e-P(*-b) I> b, M(b,  fl, t ) = l  , t (A.5) 

2 
fl = - (A.6) 

C 

I 1 
b = ] - ~. (A.7) 

APPENDIX B 

These results are also discussed in Pourbabai  [10]. Let the service times {Sn} be independent and identically distributed, 
where, Pr{$n ~< t} = B(t), t >I 0 and for all n. Potential units arrive at successive epochs of  a stationary counting arrival 
process with interarrival times {tl}, where Pr{T~ <~ t} = A(t), A ( 0 + )  = 0. An arrival finding a queue with K units waiting, 
does not enter the queuing system, and is considered lost unit (e.g. such a unit is not  considered as part  of  the departure 
process). Furthermore,  let {Q,} be the queue sizes at  successive service completion epochs, denoting its stationary 
distribution by nj = P(Q, --j),  0 <<.j <~ K, for all n. Also, let #, c, D(t), 2 a, and c d be the service rate and the c.v. of  the 
distribution of  the service time, the distribution of  the interdeparture time, the departure rate, and the cv. of the distribution 
of  the interdeparture time, respectively. Furthermore, let D(t), D*(s), and ( - 1 ) "  D* ' (0 )  be the stationary distribution 
function of  the interdeparture time, its Laplace-Stieltjes transform, and its m *  moment,  respectively. Then, 

where 

2 d = - [ D * ' ( 0 ) ] -  I, (B. 1) 

c d = 2 d { D * " ( 0 )  - -  [D  *'(0)12} I/2, (B .2)  

D*(s) = e -st dD(t).  (B.3) 

Proposition I 

Consider an M/G/I /K  queuing system. Let Dn be the interdeparture interval between the epochs defining Q, and Q,+~, 
and let X be a generic interarrival random variable, exponentially distributed with mean 1/2' independent of  Qn and S,+t .  
Then, 

D &fs~+~} , i f Q n > 0 ,  (B.4) 
LS~+a + X, if Q, = 0. (B.5) 

The distribution of  the interdeparture time is 

Pr(D n <~ t) -- B(t) - n 0 Ii t e -(*-') dB(u). (B.6) 
q i v  

n o can be obtained by solving the following set of  equations: 

noki + njk~_j+ l, (B.7) 

ni = l K -  i g x - j  

[1-no E k.- E Y k., (as) 
n-O j - I  n--0 

where 

0 ~ < i ~ < K - 1 ,  

i = K ,  

fo = e -~(2 t )  ~ . . . .  
k~= ------[~. alJ(t), O<~i<~K. (B.9)  
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Proof For expressions (B.6) and (B.7-B.8), see Daley and Shanbhag [I I] and Gross and Harris [12, pp. 251, 229], 
respectively. 

Proposition 2 

Let 

A ( t ) = l - e  -~', t />0 ,  (B.10) 

B(t)  = M ' ( p ' ,  b; t) = 1 - e -KO-b), I >1 b, (B.I 1) 

/z' =~-, (B.12) 
c 
I I 

b = -  - ~ .  (B.13) 
P P 

Then, the first two moments of the distribution of the interdeparture times from an M / M ' / 1 / K  queuing system are 

n o 1 
-D*'(0) = ~- +~+ b, (B.14) 

D ..... 2n o 2n o / 1  "~ 2 2b b2 ' 
* ~o~=~+-ZIc:+b)+7+~+ (B.15) 

where no is obtained from Proposition 1, and 

Proof Directly obtained Proposition I. 

Proposition 3 

Let 

0 ~< i ~< K. (B. 16) 

A ( t ) = l - e  -:'t, t i>0, (B.17) 

B(t )=H2(T,  f l ; t ) = l - z e - a ' t - ( l - r ) e  -av, t />0 ,  (B.18) 

F( 'c '2-1Y '2 ]/ 
= L\(~)~VL I + l 2, ( , .19)  

fit = 2~#, (B.20) 

f12 = 2(1 - Q#.  (a.21) 

Then, the first two moments  of the distribution of the interdeparture times from an M / H J 1 / K  queuing system are 

n o z (! - z )  (B.22) - D * ' ( O ) = ~ + ~ 4  /~2 ' 

2% 2 n o ( r  1 - ~ ' ~  2T 2 ( I - ~ )  
D*"(°)=~+T ~+-E)+~ + #---T-' (B.23) 

where n o is obtained from Proposition 1, and 

Till ~i (1 -- z)f122 i 
- -  0 ~< i~<K.  (B.24) k, (~ + /~0  i÷~ ~ (2 +/~2y +~' 

Proof Directly obtained from Proposition 1. 


