

Available online at www.sciencedirect.com

Applied Mathematics Letters

Applied Mathematics Letters 20 (2007) 1075-1081

www.elsevier.com/locate/aml

Vector *F*-implicit complementarity problems in topological vector spaces

A.P. Farajzadeh^{a,*}, J. Zafarani^b

^a Department of Mathematics, Razi University, Kermanshah, 67149, Iran ^b Department of Mathematics, University of Isfahan, Isfahan 81745-163, Iran

Received 17 February 2006; received in revised form 9 June 2006; accepted 10 July 2006

Abstract

Recently, Huang and Li [J. Li, N.J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett. 19 (2006) 464–471] introduced and studied a new class of vector F-implicit complementarity problems and vector F-implicit variational inequality problems in Banach spaces. In this work, we study this class in topological vector spaces and drive some existence theorems for the vector F-implicit variational inequality and vector F-implicit complementarity problem. Also, their equivalence is presented under certain conditions.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Vector F-implicit complementarity problems; Vector F-implicit variational inequalities; KKM-map; Positively homogeneous map; Topological vector space

1. Introduction and preliminaries

Vector variational inequalities were first introduced and studied by Giannessi [4] in the setting of finite-dimensional Euclidean spaces. There are generalizations of scalar variational to the vector case. Vector variational inequalities have many applications in vector optimization, approximate vector optimization, and other areas (see [5]).

In 2001, Yin et al. [12] introduced a class of *F*-complementarity problems (*F*-CP), which consist in finding $x \in K$ such that

$$\langle Tx, x \rangle + F(x) = 0, \qquad \langle Tx, y \rangle + F(y) \ge 0, \quad \forall y \in K,$$

where X is a Banach space with topological dual X^* , and $\langle \cdot, \cdot \rangle$ duality pairing between them, K a closed convex cone of X, and $T : K \to X^*$, $F : K \to \mathbb{R}$. They obtained an existence theorem for solving (*F*-CP) and also proved that if F is positively homogeneous (i.e. F(tx) = tF(x) for all t > 0 and $x \in K$) and convex, the problem (*F*-CP) is equivalent to the following generalized variational inequality problem (GVIP) which consists in finding $x \in K$ such that

$$\langle Tx, y - x \rangle + F(y) - F(x) \ge 0, \quad \forall y \in K.$$

* Corresponding author.

E-mail address: ali-ff@sci.ui.ac.ir (A.P. Farajzadeh).

In 2003, Fang and Huang [3] introduced a new class of vector F-complementarity problems with demipseudomonotone mappings in Banach spaces. They presented the solvability of this class of vector F-complementary problems with demipseudomonotone mappings and finite-dimensional continuous mappings in reflexive Banach spaces. Later, Huang and Li [6] introduced and studied a new class of (scalar) F-implicit complementarity problems and F-implicit variational inequality problems in Banach spaces. They obtained some existence theorems for F-implicit complementarity and F-variational problems. Also, under special assumptions, they established the equivalence between F-implicit complementarity and F-variational problems. Recently, in [7], they extended those problems to a vector valued setting.

In this work our aim is to generalize some results of [7] to topological vector spaces under certain weaker conditions. We first consider the following vector *F*-implicit variational inequality (in short, VF-IVIP). Find $x \in K$ such that

(VF-IVIP)
$$\langle Tx, y - x \rangle + F(y) - F(x) \in C(x), \quad \forall y \in K,$$

and the second problem which we study, is called vector *F*-implicit complementarity problem (in short, VF-ICP) which consists of finding $x \in K$ such that

(VF-ICP)
$$\langle Tx, x \rangle = 0$$
, $\langle Tx, y \rangle + F(y) \in C(x)$, $\forall y \in K$,

where X, Y are topological vector spaces, K is a nonempty convex subset of X, $C : K \to 2^Y$ a multi-valued map with convex cone values, $T : K \to L(X, Y)$, and $F : K \to Y$.

In the rest of this section, we recall some definitions and preliminary results which are used in next sections.

We shall denote by 2^A the family of all subsets of A and by $\mathcal{F}(A)$ the family of all nonempty finite subsets of A. Let X be a real Hausdorff topological vector space (in short, t.v.s.). A nonempty subset P of X is called convex cone if (i) P + P = P, (ii) $\lambda P \subset P$, for all $\lambda \ge 0$. Let Y be a t.v.s. and $P \subset Y$ be a cone. The cone P induces an order in Y (in this case the pair (Y, P) is called an ordered t.v.s.) which is defined as follows:

$$x \leq y \Leftrightarrow y - x \in P$$
.

This ordering is anti-symmetrical if P is pointed. Let X and Y be two t.v.s., K a nonempty subset of X, and $C: K \to 2^Y$ a multi-valued map with nonempty convex cone values.

We say that $f : K \times K \to Y$ is vector *C*-upper semicontinuous (*C*-u.s.c.) in the first variable, if the set $\{x \in K : f(x, y) \in C(x)\}$ is closed in *K*, for every $y \in K$. This definition reduces to vector 0-u.s.c., if C(x) = P for every $x \in K$, where *P* is a constant convex cone.

Let X be a nonempty set, Y a topological space, and $\Gamma : X \to 2^Y$ a multi-valued map. Then, Γ is called transfer closed-valued if, for every $y \notin \Gamma(x)$, there exists $x' \in X$ such that $y \notin cl\Gamma(x')$, where cl denotes the closure of a set. It is clear that, $\Gamma : X \to 2^Y$ is transfer closed-valued if and only if

$$\bigcap_{x \in X} \Gamma(x) = \bigcap_{x \in X} \operatorname{cl} \Gamma(x)$$

If $B \subseteq Y$ and $A \subseteq X$, then $\Gamma : A \to 2^B$ is called transfer closed-valued if the multi-valued mapping $x \to \Gamma(x) \cap B$ is transfer closed-valued. In this case where X = Y and A = B, Γ is called transfer closed-valued on A.

Let K be a nonempty convex subset of a t.v.s. X and let K_0 be a subset of K. A multi-valued map $\Gamma : K_0 \to 2^K$ is said to be a KKM map if

$$\operatorname{co} A \subseteq \bigcup_{x \in A} \Gamma(x), \quad \forall A \in \mathcal{F}(K_0),$$

where co denotes the convex hull.

In the next section, we need the following theorem.

Theorem 1.1 ([2]). Let X be a t.v.s. and K be a nonempty convex subset of X. Suppose that $\Gamma, \widehat{\Gamma} : K \to 2^K$ are two multivalued mappings such that:

(i) $\widehat{\Gamma}(x) \subseteq \Gamma(x), \forall x \in K;$ (ii) $\widehat{\Gamma}$ is a KKM map; (iii) for each $A \in \mathcal{F}(K)$, Γ is transfer closed-valued on coA;

(iv) for each $A \in \mathcal{F}(K)$, $\operatorname{cl}_{K}(\bigcap_{x \in \operatorname{coA}} \Gamma(x)) \bigcap \operatorname{coA} = (\bigcap_{x \in \operatorname{coA}} \Gamma(x)) \bigcap \operatorname{coA};$

(v) there is a nonempty compact convex set $B \subseteq K$ such that $cl_K(\bigcap_{x \in B} \Gamma(x))$ is compact.

Then, $\bigcap_{x \in K} \Gamma(x) \neq \emptyset$.

2. Main results

Throughout this section, let X and Y be real Hausdorff t.v.s. and K be a nonempty convex subset of X. Denote by L(X, Y) the space of all continuous linear mappings from X into Y, and $\langle t, x \rangle$ be the value of the linear continuous mapping $t \in L(X, Y)$ at x. Suppose that $C : K \to 2^Y$ is a multivalued map with nonempty convex cone values, $f : K \to L(X, Y), g : K \to K$ and $F : K \to Y$. We consider the following vector F-implicit complementarity problem (VF-ICP).

Find $x \in K$ such that

 $\langle f(x), g(x) \rangle + F(g(x)) = 0$ and $\langle f(x), y \rangle + F(y) \in C(x), \forall y \in K.$

The above problem reduces to vector *F*-implicit complementarity problem considered in [7] for the case C(x) = P, where (Y, P) is an ordered t.v.s. and *P* is a convex cone subset of *K*.

Examples of (VF-ICP) in t.v.s.

(1) If g is an identity mapping on K, then (VF-ICP) reduces to the vector F-complementary problem (in short VF-CP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle + F(x) = 0$$
 and $\langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K.$

(2) If F = 0, then (VF-CP) reduces to the vector complementary problem (in short, VCP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle = 0$$
 and $\langle f(x), y \rangle \in C(x), \quad \forall y \in K,$

which has been studied by Chen and Yang [1], and Yang [11] in particular case $C(x) = P, \forall x \in K$. (3) If $L(X, Y) = X^*$ and $F : K \to \mathbb{R}$, then (VF-ICP) reduces to the *F*-implicit complementary problems (in short, *F*-ICP) which consists of finding $x \in K$ such that:

$$\langle f(x), g(x) \rangle + F(g(x)) = 0$$
 and $\langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K$

which were considered by Huang and Li [6] in the particular case, where $C(x) = P, \forall x \in K$. (4) If g is the identity mapping, then (*F*-ICP) reduces to the *F*-complementary problem (in short, *F*-CP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle + F(x) = 0$$
 and $\langle f(x), y \rangle + F(y) \in C(x), \quad \forall y \in K,$

which was studied by Yin et al. [12] in the particular case, where $C(x) = P, \forall x$. (5) If F = 0, then (*F*-ICP) reduces to the implicit complementary problem (in short ICP) which consists in finding $x \in K$ such that:

$$\langle f(x), g(x) \rangle = 0$$
 and $\langle f(x), y \rangle \in C(x), \quad \forall y \in K$.

which has been studied by Isac [9,10].

(6) If g is the identity mapping and F = 0, then (*F*-ICP) reduces to the complementary problem (in short, CP) which consists in finding $x \in K$ such that:

$$\langle f(x), x \rangle = 0$$
 and $\langle f(x), y \rangle \in C(x), \quad \forall y \in K,$

which has been studied by many authors, (for instance, see [10]). If $X = X^* = \mathbb{R}^n$, then (CP) becomes the classical complementary problem.

We also introduce the following vector *F*-implicit variational inequality problem (in short VF-IVIP) which consists in finding $x \in K$ such that

 $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x), \quad \forall y \in K.$

This problem is a generalization of the problem (VF-IVIP) introduced in [7] in a Banach space setting.

Remark 2.1. Any solution of (VF-ICP) is a solution of (VF-IVIP). The following theorem says that the converse holds if F is positively homogeneous; the proof is similar to Theorem 3.1 in [7] and thus will be omitted.

Theorem 2.2. If $F : K \to Y$ is positively homogeneous, then (VF-IVIP) and (VF-ICP) are equivalent.

The following example shows that if F is not positively homogenous, the conclusion of Theorem 2.2 may be incorrect:

Example 2.3. Let $X = Y = \mathbb{R}$, $K = [0, +\infty)$, g(x) = 0, F(x) = 1, and $C(x) = [0, +\infty)$, for all $x \in K$. Define $f : K \to \mathbb{R}$ (note that $L(\mathbb{R}, \mathbb{R}) \equiv \mathbb{R}$) by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ -1 & \text{otherwise.} \end{cases}$$

Obviously, x = 0 is a solution of (VF-IVIP) but is not a solution of (VF-ICP). In Theorem 2.2, if g is the identity mapping, then we have the following corollary:

Corollary 2.4. Let $F : K \to Y$ be positively homogeneous. Then any solution of (VF-VIP) is a solution for (VF-CP).

The following theorem provides an existence result for the (VF-IVIP) in t.v.s. which improves Theorem 3.2. in [7].

Theorem 2.5. Assume that:

(a) the function $G : coA \times coA \rightarrow Y$ where,

 $G(x, y) = \langle f(x), y - g(x) \rangle + F(y) - F(g(x))$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;

(b) let $A \in \mathcal{F}(K)$, $x, y \in coA$. If (x_{α}) is any net on K converging to x then,

$$\langle f(x_{\alpha}), tx + (1-t)y - g(x_{\alpha}) \rangle + F(tx + (1-t)y) - F(g(x_{\alpha})) \in C(x_{\alpha}), \quad \forall t \in [0, 1]$$

implies

$$\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x).$$

(c) There exists a mapping $h : K \times K \rightarrow Y$ such that:

(i) $h(x, x) \in C(x), \forall x \in K$;

(ii) $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) - h(x, y) \in C(x), \forall x \in K, \forall y \in K;$

(iii) the set $\{y \in K : h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;

(d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \notin C(x)$.

Then (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

Proof. We define $\Gamma, \widehat{\Gamma}: K \to 2^K$ as follows:

$$\Gamma(y) = \{x \in K : \langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x)\},$$

$$\widehat{\Gamma}(y) = \{x \in K : h(x, y) \in C(x)\}.$$

We show that Γ , $\widehat{\Gamma}$ satisfy conditions of Theorem 1.1. From assumption (ii) of (c), $\widehat{\Gamma}(y) \subseteq \Gamma(y)$, for all $y \in K$. If $A = \{x_1, x_2, \dots, x_n\} \subseteq K, z \in \text{co}A$ and $z \notin \bigcup_{i \in \{1, 2, \dots, n\}} \widehat{\Gamma}(x_i)$, then $h(z, x_i) \notin C(z)$ for $i = 1, 2, 3, \dots, n$. It follows by (c)(iii) that, $h(z, z) \notin C(z)$ contradicting (c)(i). So $\widehat{\Gamma}$ is a KKM map. Let $A \in \mathcal{F}(K), x \in \text{co}A$ and $(x_{\alpha}) \in \Gamma(x) \cap coA$ converges to z. Then, $\langle f(x_{\alpha}), x - g(x_{\alpha}) \rangle + F(y) - F(g(x_{\alpha})) \in C(x_{\alpha})$. By (a), we conclude that $z \in \Gamma(x) \cap coA$. Since x is an arbitrary element of coA, we obtain:

$$\bigcap_{x \in \operatorname{co}A} \Gamma(x) \cap \operatorname{co}A = \bigcap_{x \in \operatorname{co}A} \operatorname{cl}(\Gamma(x) \cap \operatorname{co}A).$$

Similarly, using (b) we get:

$$\bigcap_{x \in \operatorname{coA}} \Gamma(x) \cap \operatorname{coA} = \operatorname{cl}_K \left(\bigcap_{x \in \operatorname{coA}} \Gamma(x) \right) \cap \operatorname{coA}, \quad A \in \mathcal{F}(K).$$

From (d) we deduce that $cl(\bigcap_{x \in D} \Gamma(x)) \subseteq B$. Hence, $\Gamma, \widehat{\Gamma}$ satisfy the conditions of Theorem 1.1. Then

$$\bigcap_{x \in K} \Gamma(x) \neq \emptyset$$

which shows that the problem (VF-IVIP) has a solution. Now, let (x_{α}) be a net of solutions of (VF-IVIP) which converges to x. Then, for all $y \in K$ and all $t \in [0, 1]$, we have

$$\langle f(x_{\alpha}), tx + (1-t)y - g(x_{\alpha}) \rangle + F(tx + (1-t)y) - F(g(x_{\alpha})) \in C(x_{\alpha})$$

Thus, from assumption (b) we obtain

 $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x).$

Therefore, the solution set of (VF-IVIP) is closed and thanks to (d), it is a subset of *B* and consequently is compact. Thus the proof is completed. \Box

Remark 2.6. Let us endow L(X, Y) with the following topology. We say that a net $F_{\alpha} \in L(X, Y)$ converges to $F \in L(X, Y)$ if, for each convergent net $x_{\alpha} \to x$ we have $\langle F_{\alpha}, x_{\alpha} \rangle \to \langle F, x \rangle$. Now if, f, g, F are continuous and C is a map with the closed graph then, the assumptions (a) and (b) are satisfied. Also, if K is compact then, the condition (d) trivially holds.

Corollary 2.7. Assume that:

(a) the function $G : coA \times coA \rightarrow Y$ where,

$$G(x, y) = \langle f(x), y - x \rangle + F(y) - F(x)$$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;

(b) Let $A \in \mathcal{F}(K)$, $x, y \in coA$. If (x_{α}) be any net on K converging to x then

$$\langle f(x_{\alpha}), tx + (1-t)y - g(x_{\alpha}) \rangle + F(tx + (1-t)y) - F(g(x_{\alpha})) \in C(x_{\alpha}), \quad \forall t \in [0, 1]$$

implies

$$\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x).$$

(c) there exists a mapping $h: K \times K \to Y$ such that

- (i) $h(x, x) \in C(x), \forall x \in K;$
- (ii) $\langle f(x), y x \rangle + F(y) F(x) h(x, y) \in C(x), \forall x \in K, \forall y \in K;$
- (iii) the set $\{y \in K : h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;
- (d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $\langle f(x), y x \rangle + F(y) F(x) \notin C(x)$.

Then, (VF-VIP) has a solution. Moreover, the solution set of (VF-VIP) is compact.

By slight modifications of the proof of Corollary 2.4, we can obtain the following existence theorems.

Theorem 2.8. Assume that:

(a) the function $G : coA \times coA \rightarrow Y$ where

$$G(x, y) = \langle f(x), y - g(x) \rangle + F(y) - F(g(x))$$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;

(b) Let $A \in \mathcal{F}(K)$, $x, y \in coA$. If (x_{α}) be any net on K converging to x then, for all $t \in [0, 1]$ the following implication holds:

$$\langle f(x_{\alpha}), tx + (1-t)y - g(x_{\alpha}) \rangle + F(tx + (1-t)y) - F(g(x_{\alpha})) \in C(x_{\alpha})$$

then $\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) \in C(x).$

- (c) $\langle f(x), x g(x) \rangle + F(x) F(g(x)) \in C(x), \forall x \in K;$
- (d) the set $\{y \in K : \langle f(x), y g(x) \rangle + F(y) F(g(x)) \notin C(x) \}$ is convex, $\forall x \in K$;
- (e) there exist a nonempty compact set $B \subseteq K$ and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $\langle f(x), y g(x) \rangle + F(y) F(g(x)) \notin C(x)$.

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

Theorem 2.9. Suppose that:

- (a) the function h is C-u.s.c. in the first variable on coA, $\forall A \in \mathcal{F}(K)$;
- (b) for each $A \in \mathcal{F}(K)$, let $x, y \in coA$ and (x_{α}) be a net on K converging to x, then, the following implication holds,

if $h(x_{\alpha}, tx + (1 - t)y) \in C(x_{\alpha})$, for all $t \in [0, 1]$, then $h(x, y) \in C(x)$;

- (c) $h(x, x) \in C(x), \forall x \in K;$
- (d) the set $\{y \in K : h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;
- (e) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that $h(x, y) \notin C(x)$.

If, for every $y \in K$, the following implication holds:

$$\langle f(x), y - g(x) \rangle + F(y) - F(g(x)) - h(x, y) \in C(x), \quad \forall x \in K.$$

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

The following theorem improves Theorem 3.3. in [7].

Theorem 2.10. Suppose that all assumptions of one of the Theorems 2.5 and 2.8 or 2.9 are satisfied. If *F* is positively homogeneous, then, (VF-ICP) has a solution. Moreover, the solution set of (VF-ICP) is compact.

Proof. The result follows by Theorems 2.2 and 2.5. \Box

Remark 2.11. Consider the following vector *F*-implicit complementarity problems in t.v.s. which was studied in the special case F(x) = 0 and g(x) = x in [8].

(Weak) vector *F*-implicit complementarity problem (W-VF-ICP): Find $x \in K$ such that:

$$\langle f(x), g(x) \rangle + F(g(x)) \notin \operatorname{int} C(x), \qquad \langle f(x), y \rangle + F(g(x)) \notin \operatorname{-int} C(x), \quad \forall y \in K.$$

(Positive) vector F-implicit complementarity problem (P-VF-ICP): Find $x \in K$ such that:

 $\langle f(x), g(x) \rangle + F(g(x)) \notin \operatorname{int} C(x), \quad \langle f(x), y \rangle + F(g(x)) \in C(x), \quad \forall y \in K.$

It is clear that the solution set of (VF-ICP), is a subset of the solution sets of (P-VF-ICP) and (W-VF-ICP). Thus, Theorems 2.5, 2.8 and 2.9 provide existence results for (W-VF-ICP) and (P-VF-ICP). If we take F = 0, which is obviously positively homogenous, then Theorem 2.8 gives a solution for the problems considered in [8].

Acknowledgments

The authors are very thankful to the referees for their careful reading and helpful suggestions to make this paper in its present form.

References

 G.Y. Chen, X.Q. Yang, The vector complementary problem and its equivalence with the weak minimal elements in ordered space, J. Math. Anal. 153 (1990) 136–158.

1080

- [2] M. Fakhar, J. Zafarani, Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions, J. Optim. Theory Appl. 126 (2005) 109–124.
- [3] Y.P. Fang, N.J. Huang, The vector *F*-complementarity problems with demipseudomonotone mappings in Banach spaces, Appl. Math. Lett. 16 (2003) 1019–1024.
- [4] F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problems, in: R.W. Cottle, F. Giannessi, J.L. Lions (Eds.), Variational Inequality and Complementarity Problems, John Wiley and Sons, Chichester, UK, 1980, pp. 151–186.
- [5] F. Giannessi, Vector Variational Inequalities and Vector Equilibrium, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
- [6] N.J. Huang, J. Li, *F*-implicit complementarity problems in Banach spaces, Z. Anal. Anwendungen. 23 (2004) 293–302.
- [7] J. Li, N.J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett. 19 (2006) 464–471.
- [8] N.J. Huang, X.Q. Yang, W.K. Chan, Vector complementarity problems with a variable ordering relation, European J. Oper. Res. 176 (2007) 15–26.
- [9] G. Isac, A special variational inequality and the implicit complementarity problem, J. Fac. Sci. Univ. Tokyo 37 (1990) 109–127.
- [10] G. Isac, Topological Methods in Complementarity Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
- [11] X.Q. Yang, Vector complementarity and minimal problems, J. Optim. Theory Appl. 77 (1993) 483-495.
- [12] H. Yin, C.X. Xu, Z.X. Zhang, The F-complementarity problems and its equivalence with the least element problem, Acta Math. Sinica. 44 (2001) 679–686.