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Abstract

Recently, Huang and Li [J. Li, N.J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett.
19 (2006) 464–471] introduced and studied a new class of vector F-implicit complementarity problems and vector F-implicit
variational inequality problems in Banach spaces. In this work, we study this class in topological vector spaces and drive some
existence theorems for the vector F-implicit variational inequality and vector F-implicit complementarity problem. Also, their
equivalence is presented under certain conditions.
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1. Introduction and preliminaries

Vector variational inequalities were first introduced and studied by Giannessi [4] in the setting of finite-dimensional
Euclidean spaces. There are generalizations of scalar variational to the vector case. Vector variational inequalities have
many applications in vector optimization, approximate vector optimization, and other areas (see [5]).

In 2001, Yin et al. [12] introduced a class of F-complementarity problems (F-CP), which consist in finding x ∈ K
such that

〈T x, x〉 + F(x) = 0, 〈T x, y〉 + F(y) ≥ 0, ∀y ∈ K ,

where X is a Banach space with topological dual X∗, and 〈·, ·〉 duality pairing between them, K a closed convex cone
of X , and T : K → X∗, F : K → R. They obtained an existence theorem for solving (F-CP) and also proved that
if F is positively homogeneous (i.e. F(t x) = t F(x) for all t > 0 and x ∈ K ) and convex, the problem (F-CP) is
equivalent to the following generalized variational inequality problem (GVIP) which consists in finding x ∈ K such
that

〈T x, y − x〉 + F(y) − F(x) ≥ 0, ∀y ∈ K .
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In 2003, Fang and Huang [3] introduced a new class of vector F-complementarity problems with
demipseudomonotone mappings in Banach spaces. They presented the solvability of this class of vector F-
complementary problems with demipseudomonotone mappings and finite-dimensional continuous mappings in
reflexive Banach spaces. Later, Huang and Li [6] introduced and studied a new class of (scalar) F-implicit
complementarity problems and F-implicit variational inequality problems in Banach spaces. They obtained some
existence theorems for F-implicit complementarity and F-variational problems. Also, under special assumptions,
they established the equivalence between F-implicit complementarity and F-variational problems. Recently, in [7],
they extended those problems to a vector valued setting.

In this work our aim is to generalize some results of [7] to topological vector spaces under certain weaker
conditions. We first consider the following vector F-implicit variational inequality (in short, VF-IVIP). Find x ∈ K
such that

(VF-IVIP) 〈T x, y − x〉 + F(y) − F(x) ∈ C(x), ∀y ∈ K ,

and the second problem which we study, is called vector F-implicit complementarity problem (in short, VF-ICP)
which consists of finding x ∈ K such that

(VF-ICP) 〈T x, x〉 = 0, 〈T x, y〉 + F(y) ∈ C(x), ∀y ∈ K ,

where X, Y are topological vector spaces, K is a nonempty convex subset of X , C : K → 2Y a multi-valued map
with convex cone values, T : K → L(X, Y ), and F : K → Y .

In the rest of this section, we recall some definitions and preliminary results which are used in next sections.
We shall denote by 2A the family of all subsets of A and by F(A) the family of all nonempty finite subsets of A.

Let X be a real Hausdorff topological vector space (in short, t.v.s.). A nonempty subset P of X is called convex cone
if (i) P + P = P , (ii) λP ⊂ P , for all λ ≥ 0. Let Y be a t.v.s. and P ⊂ Y be a cone. The cone P induces an order in
Y (in this case the pair (Y, P) is called an ordered t.v.s.) which is defined as follows:

x ≤ y ⇔ y − x ∈ P.

This ordering is anti-symmetrical if P is pointed. Let X and Y be two t.v.s., K a nonempty subset of X , and
C : K → 2Y a multi-valued map with nonempty convex cone values.

We say that f : K × K → Y is vector C-upper semicontinuous (C-u.s.c.) in the first variable, if the set
{x ∈ K : f (x, y) ∈ C(x)} is closed in K , for every y ∈ K . This definition reduces to vector 0-u.s.c., if C(x) = P for
every x ∈ K , where P is a constant convex cone.

Let X be a nonempty set, Y a topological space, and Γ : X → 2Y a multi-valued map. Then, Γ is called transfer
closed-valued if, for every y 6∈ Γ (x), there exists x ′

∈ X such that y 6∈ clΓ (x ′), where cl denotes the closure of a set.
It is clear that, Γ : X → 2Y is transfer closed-valued if and only if⋂

x∈X

Γ (x) =

⋂
x∈X

clΓ (x).

If B ⊆ Y and A ⊆ X , then Γ : A → 2B is called transfer closed-valued if the multi-valued mapping x → Γ (x) ∩ B
is transfer closed-valued. In this case where X = Y and A = B, Γ is called transfer closed-valued on A.

Let K be a nonempty convex subset of a t.v.s. X and let K0 be a subset of K . A multi-valued map Γ : K0 → 2K

is said to be a KKM map if

coA ⊆

⋃
x∈A

Γ (x), ∀A ∈ F(K0),

where co denotes the convex hull.
In the next section, we need the following theorem.

Theorem 1.1 ([2]). Let X be a t.v.s. and K be a nonempty convex subset of X. Suppose that Γ , Γ̂ : K → 2K are two
multivalued mappings such that:

(i) Γ̂ (x) ⊆ Γ (x), ∀x ∈ K ;
(ii) Γ̂ is a KKM map;
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(iii) for each A ∈ F(K ),Γ is transfer closed-valued on coA;
(iv) for each A ∈ F(K ), clK (

⋂
x∈coA Γ (x))

⋂
coA = (

⋂
x∈coA Γ (x))

⋂
coA;

(v) there is a nonempty compact convex set B ⊆ K such that clK (
⋂

x∈B Γ (x)) is compact.

Then,
⋂

x∈K Γ (x) 6= ∅.

2. Main results

Throughout this section, let X and Y be real Hausdorff t.v.s. and K be a nonempty convex subset of X . Denote by
L(X, Y ) the space of all continuous linear mappings from X into Y , and 〈t, x〉 be the value of the linear continuous
mapping t ∈ L(X, Y ) at x . Suppose that C : K → 2Y is a multivalued map with nonempty convex cone values,
f : K → L(X, Y ), g : K → K and F : K → Y . We consider the following vector F-implicit complementarity
problem (VF-ICP).

Find x ∈ K such that

〈 f (x), g(x)〉 + F(g(x)) = 0 and 〈 f (x), y〉 + F(y) ∈ C(x), ∀y ∈ K .

The above problem reduces to vector F-implicit complementarity problem considered in [7] for the case C(x) = P ,
where (Y, P) is an ordered t.v.s. and P is a convex cone subset of K .

Examples of (VF-ICP) in t.v.s.
(1) If g is an identity mapping on K , then (VF-ICP) reduces to the vector F-complementary problem (in short VF-CP)
which consists in finding x ∈ K such that:

〈 f (x), x〉 + F(x) = 0 and 〈 f (x), y〉 + F(y) ∈ C(x), ∀y ∈ K .

(2) If F = 0, then (VF-CP) reduces to the vector complementary problem (in short, VCP) which consists in finding
x ∈ K such that:

〈 f (x), x〉 = 0 and 〈 f (x), y〉 ∈ C(x), ∀y ∈ K ,

which has been studied by Chen and Yang [1], and Yang [11] in particular case C(x) = P, ∀x ∈ K .
(3) If L(X, Y ) = X∗ and F : K → R, then (VF-ICP) reduces to the F-implicit complementary problems (in short,
F-ICP) which consists of finding x ∈ K such that:

〈 f (x), g(x)〉 + F(g(x)) = 0 and 〈 f (x), y〉 + F(y) ∈ C(x), ∀y ∈ K

which were considered by Huang and Li [6] in the particular case, where C(x) = P, ∀x ∈ K .
(4) If g is the identity mapping, then (F-ICP) reduces to the F-complementary problem (in short, F-CP) which
consists in finding x ∈ K such that:

〈 f (x), x〉 + F(x) = 0 and 〈 f (x), y〉 + F(y) ∈ C(x), ∀y ∈ K ,

which was studied by Yin et al. [12] in the particular case, where C(x) = P, ∀x .
(5) If F = 0, then (F-ICP) reduces to the implicit complementary problem (in short ICP) which consists in finding
x ∈ K such that:

〈 f (x), g(x)〉 = 0 and 〈 f (x), y〉 ∈ C(x), ∀y ∈ K ,

which has been studied by Isac [9,10].
(6) If g is the identity mapping and F = 0, then (F-ICP) reduces to the complementary problem (in short, CP) which
consists in finding x ∈ K such that:

〈 f (x), x〉 = 0 and 〈 f (x), y〉 ∈ C(x), ∀y ∈ K ,

which has been studied by many authors, (for instance, see [10]). If X = X∗
= Rn , then (CP) becomes the classical

complementary problem.
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We also introduce the following vector F-implicit variational inequality problem (in short VF-IVIP) which consists
in finding x ∈ K such that

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ∈ C(x), ∀y ∈ K .

This problem is a generalization of the problem (VF-IVIP) introduced in [7] in a Banach space setting.

Remark 2.1. Any solution of (VF-ICP) is a solution of (VF-IVIP). The following theorem says that the converse
holds if F is positively homogeneous; the proof is similar to Theorem 3.1 in [7] and thus will be omitted.

Theorem 2.2. If F : K → Y is positively homogeneous, then (VF-IVIP) and (VF-ICP) are equivalent.

The following example shows that if F is not positively homogenous, the conclusion of Theorem 2.2 may be
incorrect:

Example 2.3. Let X = Y = R, K = [0, +∞), g(x) = 0, F(x) = 1, and C(x) = [0, +∞), for all x ∈ K . Define
f : K → R (note that L(R, R) ≡ R) by

f (x) =

{
0 if x = 0,

−1 otherwise.

Obviously, x = 0 is a solution of (VF-IVIP) but is not a solution of (VF-ICP).
In Theorem 2.2, if g is the identity mapping, then we have the following corollary:

Corollary 2.4. Let F : K → Y be positively homogeneous. Then any solution of (VF-VIP) is a solution for (VF-CP).

The following theorem provides an existence result for the (VF-IVIP) in t.v.s. which improves Theorem 3.2. in [7].

Theorem 2.5. Assume that:

(a) the function G : coA × coA → Y where,

G(x, y) = 〈 f (x), y − g(x)〉 + F(y) − F(g(x))

is C-u.s.c. in the first variable, ∀A ∈ F(K );
(b) let A ∈ F(K ), x, y ∈ coA. If (xα) is any net on K converging to x then,

〈 f (xα), t x + (1 − t)y − g(xα)〉 + F(t x + (1 − t)y) − F(g(xα)) ∈ C(xα), ∀t ∈ [0, 1]

implies

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ∈ C(x).

(c) There exists a mapping h : K × K → Y such that:
(i) h(x, x) ∈ C(x), ∀x ∈ K ;

(ii) 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) − h(x, y) ∈ C(x), ∀x ∈ K , ∀y ∈ K ;
(iii) the set {y ∈ K : h(x, y) 6∈ C(x)} is convex, ∀x ∈ K ;

(d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each
x ∈ K \ B, there exists y ∈ D such that 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) 6∈ C(x).

Then (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

Proof. We define Γ , Γ̂ : K → 2K as follows:

Γ (y) = {x ∈ K : 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ∈ C(x)},

Γ̂ (y) = {x ∈ K : h(x, y) ∈ C(x)}.

We show that Γ , Γ̂ satisfy conditions of Theorem 1.1. From assumption (ii) of (c), Γ̂ (y) ⊆ Γ (y), for all y ∈ K .
If A = {x1, x2, . . . , xn} ⊆ K , z ∈ coA and z 6∈ ∪i∈{1,2,...,n} Γ̂ (xi ), then h(z, xi ) 6∈ C(z) for i = 1, 2, 3, . . . , n.
It follows by (c)(iii) that, h(z, z) 6∈ C(z) contradicting (c)(i). So Γ̂ is a KKM map. Let A ∈ F(K ), x ∈ coA and
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(xα) ∈ Γ (x) ∩ coA converges to z. Then, 〈 f (xα), x − g(xα)〉 + F(y) − F(g(xα)) ∈ C(xα). By (a), we conclude that
z ∈ Γ (x) ∩ coA. Since x is an arbitrary element of coA, we obtain:⋂

x∈coA

Γ (x) ∩ coA =

⋂
x∈coA

cl(Γ (x) ∩ coA).

Similarly, using (b) we get:⋂
x∈coA

Γ (x) ∩ coA = clK

( ⋂
x∈coA

Γ (x)

)
∩ coA, A ∈ F(K ).

From (d) we deduce that cl(
⋂

x∈D Γ (x)) ⊆ B. Hence, Γ , Γ̂ satisfy the conditions of Theorem 1.1. Then⋂
x∈K

Γ (x) 6= ∅,

which shows that the problem (VF-IVIP) has a solution. Now, let (xα) be a net of solutions of (VF-IVIP) which
converges to x . Then, for all y ∈ K and all t ∈ [0, 1], we have

〈 f (xα), t x + (1 − t)y − g(xα)〉 + F(t x + (1 − t)y) − F(g(xα)) ∈ C(xα).

Thus, from assumption (b) we obtain

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ∈ C(x).

Therefore, the solution set of (VF-IVIP) is closed and thanks to (d), it is a subset of B and consequently is compact.
Thus the proof is completed. �

Remark 2.6. Let us endow L(X, Y ) with the following topology. We say that a net Fα ∈ L(X, Y ) converges to
F ∈ L(X, Y ) if, for each convergent net xα → x we have 〈Fα, xα〉 → 〈F, x〉. Now if, f, g, F are continuous and C is
a map with the closed graph then, the assumptions (a) and (b) are satisfied. Also, if K is compact then, the condition
(d) trivially holds.

Corollary 2.7. Assume that:

(a) the function G : coA × coA → Y where,

G(x, y) = 〈 f (x), y − x〉 + F(y) − F(x)

is C-u.s.c. in the first variable, ∀A ∈ F(K );
(b) Let A ∈ F(K ), x, y ∈ coA. If (xα) be any net on K converging to x then

〈 f (xα), t x + (1 − t)y − g(xα)〉 + F(t x + (1 − t)y) − F(g(xα)) ∈ C(xα), ∀t ∈ [0, 1]

implies

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ∈ C(x).

(c) there exists a mapping h : K × K → Y such that
(i) h(x, x) ∈ C(x), ∀x ∈ K ;

(ii) 〈 f (x), y − x〉 + F(y) − F(x) − h(x, y) ∈ C(x), ∀x ∈ K , ∀y ∈ K ;
(iii) the set {y ∈ K : h(x, y) 6∈ C(x)} is convex, ∀x ∈ K ;

(d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each
x ∈ K \ B, there exists y ∈ D such that 〈 f (x), y − x〉 + F(y) − F(x) 6∈ C(x).

Then, (VF-VIP) has a solution. Moreover, the solution set of (VF-VIP) is compact.

By slight modifications of the proof of Corollary 2.4, we can obtain the following existence theorems.

Theorem 2.8. Assume that:

(a) the function G : coA × coA → Y where

G(x, y) = 〈 f (x), y − g(x)〉 + F(y) − F(g(x))

is C-u.s.c. in the first variable, ∀A ∈ F(K );
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(b) Let A ∈ F(K ), x, y ∈ coA. If (xα) be any net on K converging to x then, for all t ∈ [0, 1] the following
implication holds:

〈 f (xα), t x + (1 − t)y − g(xα)〉 + F(t x + (1 − t)y) − F(g(xα)) ∈ C(xα)

then 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) ∈ C(x).

(c) 〈 f (x), x − g(x)〉 + F(x) − F(g(x)) ∈ C(x), ∀x ∈ K ;
(d) the set {y ∈ K : 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) 6∈ C(x)} is convex, ∀x ∈ K ;
(e) there exist a nonempty compact set B ⊆ K and a nonempty convex compact subset D of K such that, for each

x ∈ K \ B, there exists y ∈ D such that 〈 f (x), y − g(x)〉 + F(y) − F(g(x)) 6∈ C(x).

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

Theorem 2.9. Suppose that:

(a) the function h is C-u.s.c. in the first variable on coA, ∀A ∈ F(K );
(b) for each A ∈ F(K ), let x, y ∈ coA and (xα) be a net on K converging to x, then, the following implication holds,

if h(xα, t x + (1 − t)y) ∈ C(xα), for all t ∈ [0, 1], then h(x, y) ∈ C(x);

(c) h(x, x) ∈ C(x), ∀x ∈ K ;
(d) the set {y ∈ K : h(x, y) 6∈ C(x)} is convex, ∀x ∈ K ;
(e) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each

x ∈ K \ B, there exists y ∈ D such that h(x, y) 6∈ C(x).

If, for every y ∈ K , the following implication holds:

〈 f (x), y − g(x)〉 + F(y) − F(g(x)) − h(x, y) ∈ C(x), ∀x ∈ K .

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.

The following theorem improves Theorem 3.3. in [7].

Theorem 2.10. Suppose that all assumptions of one of the Theorems 2.5 and 2.8 or 2.9 are satisfied. If F is positively
homogeneous, then, (VF-ICP) has a solution. Moreover, the solution set of (VF-ICP) is compact.

Proof. The result follows by Theorems 2.2 and 2.5. �

Remark 2.11. Consider the following vector F-implicit complementarity problems in t.v.s. which was studied in the
special case F(x) = 0 and g(x) = x in [8].

(Weak) vector F-implicit complementarity problem (W-VF-ICP): Find x ∈ K such that:

〈 f (x), g(x)〉 + F(g(x)) 6∈ intC(x), 〈 f (x), y〉 + F(g(x)) 6∈ −intC(x), ∀y ∈ K .

(Positive) vector F-implicit complementarity problem (P-VF-ICP): Find x ∈ K such that:

〈 f (x), g(x)〉 + F(g(x)) 6∈ intC(x), 〈 f (x), y〉 + F(g(x)) ∈ C(x), ∀y ∈ K .

It is clear that the solution set of (VF-ICP), is a subset of the solution sets of (P-VF-ICP) and (W-VF-ICP). Thus,
Theorems 2.5, 2.8 and 2.9 provide existence results for (W-VF-ICP) and (P-VF-ICP). If we take F = 0, which is
obviously positively homogenous, then Theorem 2.8 gives a solution for the problems considered in [8].
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