Vector F-implicit complementarity problems in topological vector spaces

A.P. Farajzadeh ${ }^{\text {a,* }}$, J. Zafarani ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Razi University, Kermanshah, 67149, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, University of Isfahan, Isfahan 81745-163, Iran

Received 17 February 2006; received in revised form 9 June 2006; accepted 10 July 2006

Abstract

Recently, Huang and Li [J. Li, N.J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett. 19 (2006) 464-471] introduced and studied a new class of vector F-implicit complementarity problems and vector F-implicit variational inequality problems in Banach spaces. In this work, we study this class in topological vector spaces and drive some existence theorems for the vector F-implicit variational inequality and vector F-implicit complementarity problem. Also, their equivalence is presented under certain conditions.

© 2007 Elsevier Ltd. All rights reserved.
Keywords: Vector F-implicit complementarity problems; Vector F-implicit variational inequalities; KKM-map; Positively homogeneous map; Topological vector space

1. Introduction and preliminaries

Vector variational inequalities were first introduced and studied by Giannessi [4] in the setting of finite-dimensional Euclidean spaces. There are generalizations of scalar variational to the vector case. Vector variational inequalities have many applications in vector optimization, approximate vector optimization, and other areas (see [5]).

In 2001, Yin et al. [12] introduced a class of F-complementarity problems ($F-\mathrm{CP}$), which consist in finding $x \in K$ such that

$$
\langle T x, x\rangle+F(x)=0, \quad\langle T x, y\rangle+F(y) \geq 0, \quad \forall y \in K,
$$

where X is a Banach space with topological dual X^{*}, and $\langle\cdot, \cdot\rangle$ duality pairing between them, K a closed convex cone of X, and $T: K \rightarrow X^{*}, F: K \rightarrow \mathbb{R}$. They obtained an existence theorem for solving $(F-\mathrm{CP})$ and also proved that if F is positively homogeneous (i.e. $F(t x)=t F(x)$ for all $t>0$ and $x \in K$) and convex, the problem ($F-\mathrm{CP}$) is equivalent to the following generalized variational inequality problem (GVIP) which consists in finding $x \in K$ such that

$$
\langle T x, y-x\rangle+F(y)-F(x) \geq 0, \quad \forall y \in K .
$$

[^0]In 2003, Fang and Huang [3] introduced a new class of vector F-complementarity problems with demipseudomonotone mappings in Banach spaces. They presented the solvability of this class of vector F complementary problems with demipseudomonotone mappings and finite-dimensional continuous mappings in reflexive Banach spaces. Later, Huang and Li [6] introduced and studied a new class of (scalar) F-implicit complementarity problems and F-implicit variational inequality problems in Banach spaces. They obtained some existence theorems for F-implicit complementarity and F -variational problems. Also, under special assumptions, they established the equivalence between F-implicit complementarity and F-variational problems. Recently, in [7], they extended those problems to a vector valued setting.

In this work our aim is to generalize some results of [7] to topological vector spaces under certain weaker conditions. We first consider the following vector F-implicit variational inequality (in short, VF-IVIP). Find $x \in K$ such that

$$
\text { (VF-IVIP) } \quad\langle T x, y-x\rangle+F(y)-F(x) \in C(x), \quad \forall y \in K,
$$

and the second problem which we study, is called vector F-implicit complementarity problem (in short, VF-ICP) which consists of finding $x \in K$ such that

$$
\text { (VF-ICP) } \quad\langle T x, x\rangle=0, \quad\langle T x, y\rangle+F(y) \in C(x), \quad \forall y \in K,
$$

where X, Y are topological vector spaces, K is a nonempty convex subset of $X, C: K \rightarrow 2^{Y}$ a multi-valued map with convex cone values, $T: K \rightarrow L(X, Y)$, and $F: K \rightarrow Y$.

In the rest of this section, we recall some definitions and preliminary results which are used in next sections.
We shall denote by 2^{A} the family of all subsets of A and by $\mathcal{F}(A)$ the family of all nonempty finite subsets of A. Let X be a real Hausdorff topological vector space (in short, t.v.s.). A nonempty subset P of X is called convex cone if (i) $P+P=P$, (ii) $\lambda P \subset P$, for all $\lambda \geq 0$. Let Y be a t.v.s. and $P \subset Y$ be a cone. The cone P induces an order in Y (in this case the pair (Y, P) is called an ordered t.v.s.) which is defined as follows:

$$
x \leq y \Leftrightarrow y-x \in P .
$$

This ordering is anti-symmetrical if P is pointed. Let X and Y be two t.v.s., K a nonempty subset of X, and $C: K \rightarrow 2^{Y}$ a multi-valued map with nonempty convex cone values.

We say that $f: K \times K \rightarrow Y$ is vector C-upper semicontinuous (C-u.s.c.) in the first variable, if the set $\{x \in K: f(x, y) \in C(x)\}$ is closed in K, for every $y \in K$. This definition reduces to vector 0 -u.s.c., if $C(x)=P$ for every $x \in K$, where P is a constant convex cone.

Let X be a nonempty set, Y a topological space, and $\Gamma: X \rightarrow 2^{Y}$ a multi-valued map. Then, Γ is called transfer closed-valued if, for every $y \notin \Gamma(x)$, there exists $x^{\prime} \in X$ such that $y \notin \mathrm{cl} \Gamma\left(x^{\prime}\right)$, where cl denotes the closure of a set. It is clear that, $\Gamma: X \rightarrow 2^{Y}$ is transfer closed-valued if and only if

$$
\bigcap_{x \in X} \Gamma(x)=\bigcap_{x \in X} \operatorname{cl} \Gamma(x) .
$$

If $B \subseteq Y$ and $A \subseteq X$, then $\Gamma: A \rightarrow 2^{B}$ is called transfer closed-valued if the multi-valued mapping $x \rightarrow \Gamma(x) \cap B$ is transfer closed-valued. In this case where $X=Y$ and $A=B, \Gamma$ is called transfer closed-valued on A.

Let K be a nonempty convex subset of a t.v.s. X and let K_{0} be a subset of K. A multi-valued map $\Gamma: K_{0} \rightarrow 2^{K}$ is said to be a KKM map if

$$
\operatorname{co} A \subseteq \bigcup_{x \in A} \Gamma(x), \quad \forall A \in \mathcal{F}\left(K_{0}\right)
$$

where co denotes the convex hull.
In the next section, we need the following theorem.
Theorem 1.1 ([2]). Let X be a t.v.s. and K be a nonempty convex subset of X. Suppose that $\Gamma, \widehat{\Gamma}: K \rightarrow 2^{K}$ are two multivalued mappings such that:
(i) $\widehat{\Gamma}(x) \subseteq \Gamma(x), \forall x \in K$;
(ii) $\widehat{\Gamma}$ is a KKM map;
(iii) for each $A \in \mathcal{F}(K), \Gamma$ is transfer closed-valued on $\operatorname{co} A$;
(iv) for each $A \in \mathcal{F}(K), \mathrm{cl}_{K}\left(\bigcap_{x \in \cos A} \Gamma(x)\right) \bigcap \operatorname{co} A=\left(\bigcap_{x \in \operatorname{coA} A} \Gamma(x)\right) \bigcap \operatorname{coA} A$;
(v) there is a nonempty compact convex set $B \subseteq K$ such that $\mathrm{cl}_{K}\left(\bigcap_{x \in B} \Gamma(x)\right)$ is compact.

Then, $\bigcap_{x \in K} \Gamma(x) \neq \emptyset$.

2. Main results

Throughout this section, let X and Y be real Hausdorff t.v.s. and K be a nonempty convex subset of X. Denote by $L(X, Y)$ the space of all continuous linear mappings from X into Y, and $\langle t, x\rangle$ be the value of the linear continuous mapping $t \in L(X, Y)$ at x. Suppose that $C: K \rightarrow 2^{Y}$ is a multivalued map with nonempty convex cone values, $f: K \rightarrow L(X, Y), g: K \rightarrow K$ and $F: K \rightarrow Y$. We consider the following vector F-implicit complementarity problem (VF-ICP).

Find $x \in K$ such that

$$
\langle f(x), g(x)\rangle+F(g(x))=0 \quad \text { and } \quad\langle f(x), y\rangle+F(y) \in C(x), \quad \forall y \in K .
$$

The above problem reduces to vector F-implicit complementarity problem considered in [7] for the case $C(x)=P$, where (Y, P) is an ordered t.v.s. and P is a convex cone subset of K.
Examples of (VF-ICP) in t.v.s.
(1) If g is an identity mapping on K, then (VF-ICP) reduces to the vector F-complementary problem (in short VF-CP) which consists in finding $x \in K$ such that:

$$
\langle f(x), x\rangle+F(x)=0 \quad \text { and } \quad\langle f(x), y\rangle+F(y) \in C(x), \quad \forall y \in K .
$$

(2) If $F=0$, then (VF-CP) reduces to the vector complementary problem (in short, VCP) which consists in finding $x \in K$ such that:

$$
\langle f(x), x\rangle=0 \quad \text { and } \quad\langle f(x), y\rangle \in C(x), \quad \forall y \in K,
$$

which has been studied by Chen and Yang [1], and Yang [11] in particular case $C(x)=P, \forall x \in K$.
(3) If $L(X, Y)=X^{*}$ and $F: K \rightarrow \mathbb{R}$, then (VF-ICP) reduces to the F-implicit complementary problems (in short, F-ICP) which consists of finding $x \in K$ such that:

$$
\langle f(x), g(x)\rangle+F(g(x))=0 \quad \text { and } \quad\langle f(x), y\rangle+F(y) \in C(x), \quad \forall y \in K
$$

which were considered by Huang and Li [6] in the particular case, where $C(x)=P, \forall x \in K$.
(4) If g is the identity mapping, then (F-ICP) reduces to the F-complementary problem (in short, F-CP) which consists in finding $x \in K$ such that:

$$
\langle f(x), x\rangle+F(x)=0 \quad \text { and } \quad\langle f(x), y\rangle+F(y) \in C(x), \quad \forall y \in K,
$$

which was studied by Yin et al. [12] in the particular case, where $C(x)=P, \forall x$.
(5) If $F=0$, then (F-ICP) reduces to the implicit complementary problem (in short ICP) which consists in finding $x \in K$ such that:

$$
\langle f(x), g(x)\rangle=0 \quad \text { and } \quad\langle f(x), y\rangle \in C(x), \quad \forall y \in K
$$

which has been studied by Isac $[9,10]$.
(6) If g is the identity mapping and $F=0$, then ($F-\mathrm{ICP}$) reduces to the complementary problem (in short, CP) which consists in finding $x \in K$ such that:

$$
\langle f(x), x\rangle=0 \quad \text { and } \quad\langle f(x), y\rangle \in C(x), \quad \forall y \in K,
$$

which has been studied by many authors, (for instance, see [10]). If $X=X^{*}=\mathbb{R}^{n}$, then (CP) becomes the classical complementary problem.

We also introduce the following vector F-implicit variational inequality problem (in short VF-IVIP) which consists in finding $x \in K$ such that

$$
\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \in C(x), \quad \forall y \in K .
$$

This problem is a generalization of the problem (VF-IVIP) introduced in [7] in a Banach space setting.
Remark 2.1. Any solution of (VF-ICP) is a solution of (VF-IVIP). The following theorem says that the converse holds if F is positively homogeneous; the proof is similar to Theorem 3.1 in [7] and thus will be omitted.

Theorem 2.2. If $F: K \rightarrow Y$ is positively homogeneous, then (VF-IVIP) and (VF-ICP) are equivalent.
The following example shows that if F is not positively homogenous, the conclusion of Theorem 2.2 may be incorrect:

Example 2.3. Let $X=Y=\mathbb{R}, K=[0,+\infty), g(x)=0, F(x)=1$, and $C(x)=[0,+\infty)$, for all $x \in K$. Define $f: K \rightarrow \mathbb{R}$ (note that $L(\mathbb{R}, \mathbb{R}) \equiv \mathbb{R}$) by

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ -1 & \text { otherwise }\end{cases}
$$

Obviously, $x=0$ is a solution of (VF-IVIP) but is not a solution of (VF-ICP).
In Theorem 2.2, if g is the identity mapping, then we have the following corollary:
Corollary 2.4. Let $F: K \rightarrow Y$ be positively homogeneous. Then any solution of (VF-VIP) is a solution for (VF-CP).
The following theorem provides an existence result for the (VF-IVIP) in t.v.s. which improves Theorem 3.2. in [7].

Theorem 2.5. Assume that:

(a) the function $G: \operatorname{co} A \times \operatorname{co} A \rightarrow Y$ where,

$$
G(x, y)=\langle f(x), y-g(x)\rangle+F(y)-F(g(x))
$$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;
(b) let $A \in \mathcal{F}(K), x, y \in \operatorname{co} A$. If $\left(x_{\alpha}\right)$ is any net on K converging to x then,

$$
\left\langle f\left(x_{\alpha}\right), t x+(1-t) y-g\left(x_{\alpha}\right)\right\rangle+F(t x+(1-t) y)-F\left(g\left(x_{\alpha}\right)\right) \in C\left(x_{\alpha}\right), \quad \forall t \in[0,1]
$$

implies

$$
\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \in C(x) .
$$

(c) There exists a mapping $h: K \times K \rightarrow Y$ such that:
(i) $h(x, x) \in C(x), \forall x \in K$;
(ii) $\langle f(x), y-g(x)\rangle+F(y)-F(g(x))-h(x, y) \in C(x), \forall x \in K, \forall y \in K$;
(iii) the set $\{y \in K: h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;
(d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \backslash B$, there exists $y \in D$ such that $\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \notin C(x)$.
Then (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.
Proof. We define $\Gamma, \widehat{\Gamma}: K \rightarrow 2^{K}$ as follows:

$$
\begin{aligned}
& \Gamma(y)=\{x \in K:\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \in C(x)\}, \\
& \widehat{\Gamma}(y)=\{x \in K: h(x, y) \in C(x)\} .
\end{aligned}
$$

We show that $\Gamma, \widehat{\Gamma}$ satisfy conditions of Theorem 1.1. From assumption (ii) of (c), $\widehat{\Gamma}(y) \subseteq \Gamma(y)$, for all $y \in K$. If $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq K, z \in \operatorname{co} A$ and $z \notin \cup_{i \in\{1,2, \ldots, n\}} \widehat{\Gamma}\left(x_{i}\right)$, then $h\left(z, x_{i}\right) \notin C(z)$ for $i=1,2,3, \ldots, n$. It follows by (c)(iii) that, $h(z, z) \notin C(z)$ contradicting (c)(i). So $\widehat{\Gamma}$ is a KKM map. Let $A \in \mathcal{F}(K), x \in \operatorname{co} A$ and
$\left(x_{\alpha}\right) \in \Gamma(x) \cap \operatorname{co} A$ converges to z. Then, $\left\langle f\left(x_{\alpha}\right), x-g\left(x_{\alpha}\right)\right\rangle+F(y)-F\left(g\left(x_{\alpha}\right)\right) \in C\left(x_{\alpha}\right)$. By (a), we conclude that $z \in \Gamma(x) \cap \operatorname{co} A$. Since x is an arbitrary element of $\operatorname{co} A$, we obtain:

$$
\bigcap_{x \in \operatorname{co} A} \Gamma(x) \cap \operatorname{co} A=\bigcap_{x \in \operatorname{co} A} \operatorname{cl}(\Gamma(x) \cap \operatorname{co} A)
$$

Similarly, using (b) we get:

$$
\bigcap_{x \in \operatorname{co} A} \Gamma(x) \cap \operatorname{co} A=\operatorname{cl}_{K}\left(\bigcap_{x \in \operatorname{co} A} \Gamma(x)\right) \cap \operatorname{co} A, \quad A \in \mathcal{F}(K)
$$

From (d) we deduce that $\operatorname{cl}\left(\bigcap_{x \in D} \Gamma(x)\right) \subseteq B$. Hence, $\Gamma, \widehat{\Gamma}$ satisfy the conditions of Theorem 1.1. Then

$$
\bigcap_{x \in K} \Gamma(x) \neq \emptyset
$$

which shows that the problem (VF-IVIP) has a solution. Now, let $\left(x_{\alpha}\right)$ be a net of solutions of (VF-IVIP) which converges to x. Then, for all $y \in K$ and all $t \in[0,1]$, we have

$$
\left\langle f\left(x_{\alpha}\right), t x+(1-t) y-g\left(x_{\alpha}\right)\right\rangle+F(t x+(1-t) y)-F\left(g\left(x_{\alpha}\right)\right) \in C\left(x_{\alpha}\right)
$$

Thus, from assumption (b) we obtain

$$
\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \in C(x)
$$

Therefore, the solution set of (VF-IVIP) is closed and thanks to (d), it is a subset of B and consequently is compact. Thus the proof is completed.

Remark 2.6. Let us endow $L(X, Y)$ with the following topology. We say that a net $F_{\alpha} \in L(X, Y)$ converges to $F \in L(X, Y)$ if, for each convergent net $x_{\alpha} \rightarrow x$ we have $\left\langle F_{\alpha}, x_{\alpha}\right\rangle \rightarrow\langle F, x\rangle$. Now if, f, g, F are continuous and C is a map with the closed graph then, the assumptions (a) and (b) are satisfied. Also, if K is compact then, the condition (d) trivially holds.

Corollary 2.7. Assume that:
(a) the function $G: \operatorname{co} A \times \operatorname{co} A \rightarrow Y$ where,

$$
G(x, y)=\langle f(x), y-x\rangle+F(y)-F(x)
$$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;
(b) Let $A \in \mathcal{F}(K), x, y \in \operatorname{co} A$. If $\left(x_{\alpha}\right)$ be any net on K converging to x then

$$
\left\langle f\left(x_{\alpha}\right), t x+(1-t) y-g\left(x_{\alpha}\right)\right\rangle+F(t x+(1-t) y)-F\left(g\left(x_{\alpha}\right)\right) \in C\left(x_{\alpha}\right), \quad \forall t \in[0,1]
$$

implies

$$
\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \in C(x)
$$

(c) there exists a mapping $h: K \times K \rightarrow Y$ such that
(i) $h(x, x) \in C(x), \forall x \in K$;
(ii) $\langle f(x), y-x\rangle+F(y)-F(x)-h(x, y) \in C(x), \forall x \in K, \forall y \in K$;
(iii) the set $\{y \in K: h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;
(d) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \backslash B$, there exists $y \in D$ such that $\langle f(x), y-x\rangle+F(y)-F(x) \notin C(x)$.
Then, (VF-VIP) has a solution. Moreover, the solution set of (VF-VIP) is compact.
By slight modifications of the proof of Corollary 2.4, we can obtain the following existence theorems.
Theorem 2.8. Assume that:
(a) the function $G: \operatorname{co} A \times \operatorname{co} A \rightarrow Y$ where

$$
G(x, y)=\langle f(x), y-g(x)\rangle+F(y)-F(g(x))
$$

is C-u.s.c. in the first variable, $\forall A \in \mathcal{F}(K)$;
(b) Let $A \in \mathcal{F}(K), x, y \in \operatorname{coA}$. If $\left(x_{\alpha}\right)$ be any net on K converging to x then, for all $t \in[0,1]$ the following implication holds:

$$
\begin{aligned}
& \left\langle f\left(x_{\alpha}\right), t x+(1-t) y-g\left(x_{\alpha}\right)\right\rangle+F(t x+(1-t) y)-F\left(g\left(x_{\alpha}\right)\right) \in C\left(x_{\alpha}\right) \\
& \quad \text { then }\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \in C(x) .
\end{aligned}
$$

(c) $\langle f(x), x-g(x)\rangle+F(x)-F(g(x)) \in C(x), \forall x \in K$;
(d) the set $\{y \in K:\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \notin C(x)\}$ is convex, $\forall x \in K$;
(e) there exist a nonempty compact set $B \subseteq K$ and a nonempty convex compact subset D of K such that, for each $x \in K \backslash B$, there exists $y \in D$ such that $\langle f(x), y-g(x)\rangle+F(y)-F(g(x)) \notin C(x)$.
Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.
Theorem 2.9. Suppose that:
(a) the function h is C-u.s.c. in the first variable on $\operatorname{co} A, \forall A \in \mathcal{F}(K)$;
(b) for each $A \in \mathcal{F}(K)$, let $x, y \in \operatorname{co} A$ and $\left(x_{\alpha}\right)$ be a net on K converging to x, then, the following implication holds,

$$
\text { if } h\left(x_{\alpha}, t x+(1-t) y\right) \in C\left(x_{\alpha}\right), \quad \text { for all } t \in[0,1] \text {, then } h(x, y) \in C(x)
$$

(c) $h(x, x) \in C(x), \forall x \in K$;
(d) the set $\{y \in K: h(x, y) \notin C(x)\}$ is convex, $\forall x \in K$;
(e) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \backslash B$, there exists $y \in D$ such that $h(x, y) \notin C(x)$.
If, for every $y \in K$, the following implication holds:

$$
\langle f(x), y-g(x)\rangle+F(y)-F(g(x))-h(x, y) \in C(x), \quad \forall x \in K .
$$

Then, (VF-IVIP) has a solution. Moreover, the solution set of (VF-IVIP) is compact.
The following theorem improves Theorem 3.3. in [7].
Theorem 2.10. Suppose that all assumptions of one of the Theorems 2.5 and 2.8 or 2.9 are satisfied. If F is positively homogeneous, then, (VF-ICP) has a solution. Moreover, the solution set of (VF-ICP) is compact.
Proof. The result follows by Theorems 2.2 and 2.5 .
Remark 2.11. Consider the following vector F-implicit complementarity problems in t.v.s. which was studied in the special case $F(x)=0$ and $g(x)=x$ in [8].
(Weak) vector F-implicit complementarity problem (W-VF-ICP): Find $x \in K$ such that:

$$
\langle f(x), g(x)\rangle+F(g(x)) \notin \operatorname{int} C(x), \quad\langle f(x), y\rangle+F(g(x)) \notin-\operatorname{int} C(x), \quad \forall y \in K .
$$

(Positive) vector F-implicit complementarity problem (P-VF-ICP): Find $x \in K$ such that:

$$
\langle f(x), g(x)\rangle+F(g(x)) \notin \operatorname{int} C(x), \quad\langle f(x), y\rangle+F(g(x)) \in C(x), \quad \forall y \in K .
$$

It is clear that the solution set of (VF-ICP), is a subset of the solution sets of (P-VF-ICP) and (W-VF-ICP). Thus, Theorems $2.5,2.8$ and 2.9 provide existence results for (W-VF-ICP) and (P-VF-ICP). If we take $F=0$, which is obviously positively homogenous, then Theorem 2.8 gives a solution for the problems considered in [8].

Acknowledgments

The authors are very thankful to the referees for their careful reading and helpful suggestions to make this paper in its present form.

References

[1] G.Y. Chen, X.Q. Yang, The vector complementary problem and its equivalence with the weak minimal elements in ordered space, J. Math. Anal. 153 (1990) 136-158.
[2] M. Fakhar, J. Zafarani, Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions, J. Optim. Theory Appl. 126 (2005) 109-124.
[3] Y.P. Fang, N.J. Huang, The vector F-complementarity problems with demipseudomonotone mappings in Banach spaces, Appl. Math. Lett. 16 (2003) 1019-1024.
[4] F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problems, in: R.W. Cottle, F. Giannessi, J.L. Lions (Eds.), Variational Inequality and Complementarity Problems, John Wiley and Sons, Chichester, UK, 1980, pp. 151-186.
[5] F. Giannessi, Vector Variational Inequalities and Vector Equilibrium, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
[6] N.J. Huang, J. Li, F-implicit complementarity problems in Banach spaces, Z. Anal. Anwendungen. 23 (2004) 293-302.
[7] J. Li, N.J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett. 19 (2006) 464-471.
[8] N.J. Huang, X.Q. Yang, W.K. Chan, Vector complementarity problems with a variable ordering relation, European J. Oper. Res. 176 (2007) 15-26.
[9] G. Isac, A special variational inequality and the implicit complementarity problem, J. Fac. Sci. Univ. Tokyo 37 (1990) $109-127$.
[10] G. Isac, Topological Methods in Complementarity Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
[11] X.Q. Yang, Vector complementarity and minimal problems, J. Optim. Theory Appl. 77 (1993) 483-495.
[12] H. Yin, C.X. Xu, Z.X. Zhang, The F-complementarity problems and its equivalence with the least element problem, Acta Math. Sinica. 44 (2001) 679-686.

[^0]: * Corresponding author.

 E-mail address: ali-ff@sci.ui.ac.ir (A.P. Farajzadeh).

