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1 Introduction

Superstring theory is a good candidate for the unified theory of the gauge and gravitational

interactions, and quark, lepton and Higgs fields. Indeed, there have been several approaches

to derive the realistic string vacua by comparing the theoretical predictions with the data

of the cosmological observations as well as the collider experiments which are known as the

subjects of string cosmology and phenomenology.

Beginning with the work of ref. [1], there are much progresses to find the standard-like

models from the E8 × E8 heterotic string theory instead of the SO(32) heterotic string

theory. (See for a review, e.g. [2].) This is because E8 gauge group involves several

candidates of the grand unified groups such as E6, SO(10) and SU(5) as the subgroups of

E8 and the E8 adjoint representation includes matter representations such as 27 of E6, 16

of SO(10) and 10 and 5̄ of SU(5). However, in SO(32) heterotic string theory, for example,

the 16 spinor representation of SO(10) is not involved in the adjoint representation of

SO(32). (In the framework of toroidal ZN orbifold, there are some possibilities to obtain

the spinor representation of SO groups as discussed in ref. [3, 4].) Therefore, as one of the

procedures to find the realistic string vacua, we try to derive the (non-)supersymmetric

standard-like models from the SO(32) heterotic string theory without going through the

grand unified groups. This approach might be useful to search for the realistic standard

model, because the standard-like model given through the decomposition of GUT groups
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have the extra matters which should be decoupled from the low-energy dynamics in terms

of some non-trivial mechanisms.

The standard model is a chiral theory. Thus, the key point to realize the standard

model is how to realize a chiral theory. Toroidal compactification is simple, but it can not

realize a chiral theory unless introducing additional backgrounds. Orbifold and Calabi-

Yau compactifications can lead to a chiral theory. Toroidal compactification with magnetic

fluxes can also lead to a chiral theory. Here, we study such a background. That is, our key

ingredients are the multiple U(1) magnetic fluxes inserted into SO(32) gauge group. These

magnetic fluxes are first discussed in ref. [1], where the SU(5) grand unified groups can be

realized from the SO(32) heterotic string theory. Furthermore, there are much progresses

on the resolved toroidal orbifold in [5] and on more general Calabi-Yau manifolds for E8×E8

and/or SO(32) heterotic string theory via the spectral cover construction [6, 7] and the

extension of it [8] (see e.g., refs. [9–12]).1

In this paper, we study SO(32) heterotic string theory on six-dimensional (6D) torus

with magnetic fluxes, which is one of the simplest compactifications leading to a chiral

theory. Then, we search the models, where the unbroken gauge group includes SU(3) ×
SU(2)× U(1)Y and massless spectra correspond to three chiral generations of quarks and

leptons.

The paper is organized as follows. In section 2, we show our set-up and typical theo-

retical constraints which are required from the consistency of heterotic string theory. For

example, in the standard embedding scenario of the Calabi-Yau compacfitication, the inter-

nal gauge backgrounds are set to be equal to spin connections of the Calabi-Yau manifolds.

On the other hand, in the non-standard embedding scenario, the gauge fields are not al-

ways identified as the spin connections of the internal manifold due to the existence of the

fluxes. We discuss the consistency conditions for such fluxes on 6D torus in section 2.1.

In addition, the U(1)Y gauge boson should be massless, even if the consistent fluxes are

inserted into SO(32) gauge groups in order to derive the standard-like model gauge groups.

Generically, U(1) gauge bosons appeared in the low-energy effective theory couple to the

universal and Kähler axions through the ten-dimensional (10D) Green-Schwarz term [15]

which implies that the linear combination of U(1) gauge bosons may absorb these axions

by their Stueckelberg couplings and become massive. Thus the axionic couplings of U(1)Y
gauge boson should be absent, otherwise U(1)Y gauge boson would become massive as

discussed in section 2.2. In addition to the merits of gauge symmetry breaking, the fluxes

are important tools to realize the degenerate zero-modes, i.e., three generations of the el-

ementary particles. In fact, in section 2.3, the chiral theory with degenerate zero-modes

can be obtained from the considerations of zero-mode wavefunctions on tori. At the same

time, the existence of four-dimensional (4D) N = 1 supersymmetry (SUSY) depends on

the ansatz of U(1) fluxes due to the flux-induced Fayet-Iliopoulos terms.

In section 3.1, we discuss the concrete embeddings of the standard model gauge groups

into SO(32) gauge group in terms of the multiple U(1) fluxes. The correct matter contents

1Also the low-energy massless spectra were studied within the ten-dimensional E8 ×E8 theory on torus

with magnetic fluxes from the field-theoretical viewpoint [13, 14].
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of the standard model are then derived from the adjoint and vector representations of

SO(12) given by the subgroup of SO(32). Since the number of generations corresponds to

the number of U(1) fluxes, we search for the desired matter contents of the standard model

satisfying the U(1)Y massless conditions as well as the SUSY conditions as can be seen

in section 3.2. In section 3.3, we further constrain the models by imposing the so-called

K theory constraints. Finally, section 4 is devoted to the conclusion. The normalization

of SO(32) generators and useful trace identities of SO(32) gauge group are summarized in

appendices A and B, respectively.

2 SO(32) heterotic string theory on tori with U(1) magnetic fluxes

2.1 Low-energy description of SO(32) heterotic string theory

We briefly review the SO(32) heterotic string theory on a general complex manifold with

multiple U(1) magnetic fluxes. The notation is based on refs. [16–19]. The low-energy

effective action of SO(32) heterotic string theory is given by

Sbos =
1

2κ210

∫

M(10)

e−2φ10

[

R+ 4dφ10 ∧ ∗dφ10 −
1

2
H ∧ ∗H

]

− 1

2g210

∫

M(10)

e−2φ10 tr(F ∧ ∗F ) , (2.1)

which is the bosonic part of the action at the string frame in the notation of [16]. The grav-

itational and Yang-Mills couplings are set by 2κ210 = (2π)7(α′)4 and g210 = 2(2π)7(α′)3 and

φ10 denotes the ten-dimensional dilaton. Here the field-strength of SO(32) gauge groups

F has the index of vector-representation. In what follows, “tr” and “Tr” represent for the

trace in the vector and adjoint representation of the SO(32) gauge group, respectively. In

addition, H denotes the heterotic three-form field strength defined by

H = dB(2) − α′

4
(wYM − wL) , (2.2)

where wYM and wL are the gauge and gravitational Chern-Simons three-forms, respectively.

From the action given by eq. (2.1), the kinetic term of the B-field is extracted as

Skin + SWZ = − 1

4κ210

∫

M(10)

dB(2) ∧ ∗dB(2) −
∑

a

NaT5

∫

Γa

B(6)

= − 1

4κ210

∫

M(10)

dB(2) ∧ ∗dB(2) −
∑

a

NaT5

∫

M(10)

B(6) ∧ δ(Γa) , (2.3)

where we add the Wess-Zumino term which describes the magnetic sources for the Kalb-

Ramond field B(6). Such sources correspond to the non-perturbative objects, i.e., the stacks

of Na five-branes which wrap the holomorphic two-cycles Γa and their tensions are given by

T5 =
(

(2π)5(α′)3
)

−1
. Here, δ(Γa) denote the Poincaré dual four-form of the two-cycles Γa.

By employing the ten-dimensional Hodge duality, the Kalb-Ramond two-form B(2) and

six-form B(6) are related as

∗ dB(2) = e2φ10dB(6), (2.4)
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and then the kinetic term of Kalb-Ramond field and Wess-Zumino term (2.3) are rewrit-

ten as

Skin + SWZ = − 1

4κ210

∫

M(10)

e2φ10dB(6) ∧ ∗dB(6)

+
α′

8κ210

∫

M(10)

B(6) ∧
(

trF 2 − trR2 − 4(2π)2
∑

a

Naδ(Γa)

)

, (2.5)

where Na = ±1 represent for the contributions of heterotic and anti-heterotic five-brane,

respectively. The equation of motion of B(6) leads to the following tadpole condition of the

NS-NS fluxes in the presence of five-branes,

d(e2φ10 ∗ dB(6)) = −α
′

4

(

tr F̄ 2 − tr R̄2 − 4(2π)2
∑

a

Naδ(Γa)

)

= 0 , (2.6)

in cohomology and where F̄ stand for the gauge field strengths of the internal gauge fields

whose gauge groups are embedded in SO(32). When the extra-dimension is compactified on

the flat space such as three 2-tori, (T 2)1 × (T 2)2 × (T 2)3, the tadpole cancellation requires

the following consistency conditions,
∫

(T 2)i×(T 2)j

(

tr F̄ 2 − 4(2π)2
∑

a

Naδ(Γa)

)

= 0 , (2.7)

which should be satisfied on (T 2)i×(T 2)j with i 6= j, i, j = 1, 2, 3. Thus if the nonvanishing

fluxes are not canceled by themselves, the non-perturbative objects would contribute to

the cancellation of anomalies. It suggests that the modular invariance of heterotic string

theory is recovered by the existence of these non-perturbative objects [20, 21] which can

be also realized in the framework of heterotic orbifold [22].2

2.2 Generalized Green-Schwarz mechanism

In addition to the consistency condition as discussed in section 2.1, it must be ensured

that our models do not have gauge and gravitational anomalies. In heterotic string theory,

it is known that some gauge and gravitational anomalies are canceled by considering the

following one-loop Green-Schwarz term at the string frame [15],

SGS =
1

24(2π)5α′

∫

B(2) ∧X8 , (2.8)

whose normalization factor is determined by the S-dual type I theory as shown in appendix

of [25] and the eight-form X8 reads,

X8 =
1

24
TrF 4 − 1

7200
(TrF 2)2 − 1

240
(TrF 2)(trR2) +

1

8
trR4 +

1

32
(trR2)2. (2.9)

Although the gauge and gravitational anomalies for the non-Abelian gauge groups are

canceled by the above Green-Schwarz term (2.8) and the tadpole condition (2.6) as shown

2Even if the consistency condition is satisfied at the non-perturbative level, we have to care about the

anomaly on heterotic five-branes and the global Witten anomaly is absent if the number of chiral fermions

on the heterotic five branes is even [23, 24].
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in ref. [1], the anomalies relevant to the multiple Abelian gauge groups, which appear in

low-energy effective theory, can be also canceled by same Green-Schwarz mechanism, for

more details see refs. [17, 18]. In fact, since we derive just the three-generation standard-

like models, our phenomenological models do not receive these anomalies. However, as

pointed out in refs. [17, 18], even if the Abelian gauge symmetries are anomaly-free, the

Abelian gauge bosons may become massive due to the Green-Schwarz coupling given by

eq. (2.8). In order to ensure that the hypercharge gauge boson is massless, they should not

couple to the axions which is hodge dual to the Kalb-Ramond field.

For completeness, we define the hypercharge gauge group as the subgroup of SO(32)

as follows. The decomposition of the SO(32) gauge group can be realized by inserting the

multiple U(1) constant magnetic fluxes as those satisfying

SO(32) → SU(3)C ⊗ SU(2)L ⊗13
a=1 U(1)a . (2.10)

Totally, SO(32) has 16 Cartan elements, Hi (i = 1, · · · , 16). We take the Cartan elements

of SU(3) along H1 −H2, H1 +H2 − 2H3 and Cartan element of SU(2) as H5 −H6. The

other Cartan directions of SO(32) are chosen as,

U(1)1 : (0, 0, 0, 0, 1, 1; 0, 0, · · · , 0) ,
U(1)2 : (1, 1, 1, 1, 0, 0; 0, 0, · · · , 0) ,
U(1)3 : (1, 1, 1,−3, 0, 0; 0, 0, · · · , 0) ,
U(1)4 : (0, 0, 0, 0, 0, 0; 1, 0, · · · , 0) ,
U(1)5 : (0, 0, 0, 0, 0, 0; 0, 1, · · · , 0) ,

...

U(1)13 : (0, 0, 0, 0, 0, 0; 0, 0, · · · , 1) , (2.11)

in the basis Hi. Then, we use the basis that non-zero roots have charge

(±1,±1, 0, · · · , 0) , (2.12)

under Hi (i = 1, · · · , 16), where the underline means any possible permutations. The

normalization of the Abelian gauge groups are discussed in the appendix A and the concrete

identification of standard model gauge groups and its representations are shown in section 3.

Note that some gauge groups would be enhanced to the larger one if any of U(1) fluxes are

absent or degenerate.

When the U(1) fluxes are inserted along the Cartan direction of SO(32), the field

strengths of U(1)s, f are decomposed into the four-dimensional parts f and extra-dimen-

sional parts f̄ ,

f → f + f̄ , (2.13)
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and then we can dimensionally reduce the one-loop Green-Schwarz term (2.8) to

SGS =
1

(2π)3l2s

∫

M(10)

B(2) ∧ 1

144
(TrF f̄3) (2.14)

− 1

(2π)3l2s

∫

M(10)

B(2) ∧ 1

2880
(TrF f̄) ∧

(

1

15
Tr f̄2 + tr R̄2

)

(2.15)

+
1

(2π)3l2s

∫

M(10)

B(2) ∧
[

1

96
(TrF 2f̄2)− 1

43200
(TrF f̄)2

]

(2.16)

− 1

(2π)3l2s

∫

M(10)

B(2) ∧ 1

5760
(TrF 2) ∧

(

1

15
Tr f̄2 + tr R̄2

)

(2.17)

+
1

(2π)3l2s

∫

M(10)

B(2) ∧ 1

384
(trR2) ∧

(

tr R̄2 − 1

15
Tr f̄2

)

(2.18)

where ls = 2π
√
α′, F denote the field strengths of SU(3)C , SU(2)L, U(1)Y . The explicit

forms of traces appeared in eqs. (2.14)–(2.18) are shown in appendix B.

Before evaluating the mass term of U(1) gauge bosons, for completeness, we show the

definition of three 2-tori (T 2)i ≃ C/Λi with i = 1, 2, 3, where the lattices Λi are generated

by two vectors ei = 2πRi and ei = 2πRiτi. Here, Ri and τi are the radii and complex

structure moduli of (T 2)i, respectively. The metrics of three 2-tori are then given by

ds26 = gmndx
mdxn = 2hij̄dz

idzj̄ , (2.19)

gmn =







g(1) 0 0

0 g(2) 0

0 0 g(3)






, hij̄ =







h(1) 0 0

0 h(2) 0

0 0 h(3)






, (2.20)

where xm are the coordinates of T 2 with m,n = 4, 5, 6, 7, 8, 9, zi = x2+2i + τ ix3+2i and the

rank 2 diagonal matrices g(i) and h(i) are given by

g(i) = (2πRi)
2

(

1 Re τi
Re τi |τi|2

)

, h(i) = (2πRi)
2

(

0 1/2

1/2 0

)

. (2.21)

From this expression, we expand the Kalb-Ramond field B(2) and internal U(1)a field

strengths f̄a, (a = 1, · · · , 13) in the basis of Kähler forms, wi = idzi ∧ dz̄i/(2 Im τ (i)) on

tori (T 2)i derived from the metrics (2.21),

B(2) = b
(2)
S + l2s

3
∑

i=1

b
(0)
i wi ,

f̄a = 2π
3

∑

i=1

m(i)
a wi , (2.22)

where m
(i)
a are the integers or half-integers determined by Dirac quantization condition.

Since Dirac quantization is satisfied in the adjoint representation of SO(32), the factional

numbers of m
(i)
a can be allowed as pointed out in ref. [1]. From the eqs. (2.14) and (2.15),

– 6 –
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we can extract the Stueckelberg couplings,

1

3(2π)3l2s

∫

b
(2)
S ∧

[

trT 4
1 f̄

3
1 f1 +

(

trT 4
2 f̄

3
2 + 3(trT 2

2 T
2
3 )f̄2f̄

2
3 + (trT2T

3
3 )f̄

3
3

)

f2

+
(

trT 4
3 f̄

3
3 + 3(trT2T

3
3 )f̄2f̄

2
3 + 3(trT 2

2 T
2
3 )f̄

2
2 f̄3

)

f3 +
13
∑

c=4

trT 4
c f̄

3
c fc

]

,

(2.23)

where the trace identities are employed as shown in appendix B. If the U(1) gauge fields

couple to the universal axion b
(0)
S which is the hodge dual of the tensor field b

(2)
S , one of the

multiple U(1) gauge fields absorbs the universal axion and become massive. In our model,

since the hypercharge U(1)Y is identified as the linear combinations of multiple U(1)s, i.e.,

U(1)Y = 1
6(U(1)3 + 3

∑

cU(1)c) as shall be discussed in section 3,3 the U(1)Y gauge field

becomes massless under the condition

6 tr(T 4
3 )m

(1)
3 m

(2)
3 m

(3)
3 + 3 tr(T2T

3
3 )dijkm

(i)
2 m

(j)
3 m

(k)
3 + 3 tr(T 2

2 T
2
3 )dijkm

(i)
2 m

(j)
2 m

(k)
3

+18
∑

c

tr(T 4
c )m

(1)
c m(2)

c m(3)
c = 0 ,

(2.24)

which means no interaction between U(1)Y and the universal axion b
(0)
S . Here the following

formulas are satisfied
∫

T 2
×T 2

×T 2 f̄
3
a = (2π)3dijkm

(i)
a m

(j)
a m

(k)
a = 6(2π)3m

(1)
a m

(2)
a m

(3)
a with

the non-vanishing intersection numbers of 2-tori, dijk = 1 (i 6= j 6= k).

Except for the universal axion, there are other axions associated with the internal

cycles, that is, Kähler axions which couple to the U(1) gauge bosons originated from the

action given by eq. (2.5). Along with the Kalb-Ramond field B(2), we expand the dual field

B(6) as

B(6) = l6sb
(0)
0 vol6 + l4s

3
∑

k=1

b
(2)
k ŵk , (2.25)

where ŵk are the Hodge dual four-forms of the Kähler forms,

ŵk =
dkij
2
i
dzi ∧ dz̄i
2 Im τ (i)

∧ idz
j ∧ dz̄j

2 Im τ (j)
, (2.26)

which are defined as those satisfying
∫

T 2
×T 2

×T 2 wi∧ ŵj = δij . After inserting these expres-

sions into the action given by eq. (2.5), we can extract the mass terms of the U(1) gauge

bosons,

1

l2s

∫

b
(2)
i ∧

13
∑

a=1

tr(T 2
a )fam

(i)
a . (2.27)

In the same way as the case of universal axion, the U(1)Y gauge field should not couple to

the Kähler axions, otherwise it becomes massive. Thus the U(1)Y gauge boson is massless

under the following condition,

tr(T 2
3 )m

(i)
3 + 3

13
∑

c=4

tr(T 2
c )m

(i)
c = 0 , (2.28)

with i = 1, 2, 3.

3In the definition of U(1)Y , the summation over c depends on the models as shown in section 3.
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As a step to realize the realistic models, the massless conditions for U(1)Y gauge boson

given by eqs. (2.24) and (2.28) should be satisfied. It is remarkable that these U(1) fluxes

are sensitive to the consistency condition given by eq. (2.7) as shown in the section 2.1.

When the heterotic five-branes are absent in our system, the following conditions,

13
∑

a=1

tr(T 2
a )m

(i)
a m(j)

a = 0 , i 6= j , (i, j = 1, 2, 3) , (2.29)

are required from the consistencies of heterotic string theory, otherwise the NS-NS tadpole

could be canceled by the existence of heterotic five-branes.

2.3 The chiral fermions and degenerate zero-modes

The heterotic string theory on three 2-tori has N = 4 supersymmetry in the language of

4D supercharges which have to be broken to at least N = 1 supersymmetry in the four-

dimension, otherwise the chiral matters do not appear in the low-energy effective theory.

Although it is known that there are much progresses in the framework of toroidal orbifold,

in this paper, we focus on the realization of chiral fermions by employing the multiple U(1)

fluxes as discussed in this section.4

First we define the 10D Majorana-Weyl spinor λ which satisfies the Majorana-Weyl

condition,

Γλ = λ , (2.30)

where Γ is the 10D chirality matrix. The following analysis is based on ref. [26]. In order

to discuss the 4D chirality, we decompose the 10D Majorana-Weyl spinor λ into four 4D

Weyl spinors λ0 and λi with i = 1, 2, 3 as the representation of SU(4) ≃ SO(6). The 10D

chirality matrix Γ is also decomposed into the product of three 2D chirality operators,

Γi = −iΓ1
iΓ

2
i on (T 2)i, where

Γ1
i =

(

0 1

1 0

)

, Γ2
i =

(

0 −i
i 0

)

, (2.31)

satisfying the Clifford algebra. Then the 4D chirality is fixed as

Γiλ0 = λ0 , Γiλj =

{

+λj (i = j) ,

−λj (i 6= j) ,
(2.32)

which lead to the following 4D Weyl spinors,

λ0 = λ+++ , λ1 = λ+−− , λ2 = λ−+− , λ3 = λ−−+ , (2.33)

where the subscript indexes denote the eigenvalues of Γi with i = 1, 2, 3. When we insert

the magnetic fluxes on three 2-tori, one of the four 4D Weyl spinors would be chosen.

4Although the gauge sector still remains 4D N = 4 SUSY, it could be broken to N = 1 SUSY by

extending our system to the toroidal orbifold with trivial gauge embedding. The (anti-) heterotic five-

branes would break (all) partial SUSY. It is then expected that the heterotic five branes compensate the

moduli invariance even if the moduli invariance is violated at the string tree-level.
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In order to prove the above statements, we show the zero-mode wavefunction of fermions

originating from the 10D gaugino field by solving their Dirac equations.

The zero-modes of 10D gaugino field λ and gauge field AM are defined through the

following decompositions,

λ(xµ, zi) =
∑

n

χn(x
µ)⊗ ψ(1)

n (z1)⊗ ψ(2)
n (z2)⊗ ψ(3)

n (z3) ,

AM (xµ, zi) =
∑

n

ϕn,M (xµ)⊗ φ
(1)
n,M (z1)⊗ φ

(2)
n,M (z2)⊗ φ

(3)
n,M (z3) , (2.34)

where M = 0, 1, · · · , 9 and xµ, µ = 0, 1, 2, 3 are the coordinates of the 4D spacetime. The

zero-modes of gaugino fields, ψ
(i)
0 (zi) are expressed as

ψ
(i)
0 (zi) =

(

ψ
(i)
+ (zi)

ψ
(i)
−
(zi)

)

, (2.35)

where hereafter we omit the subscript 0 of the zero-modes, that is, ψ(i)(zi) = ψ
(i)
0 (zi). On

the other hand, the extra dimensional components of U(1)a gauge backgrounds A
(i)
a (zi)

(a = 1, 2, · · · , 13) are given by

A(i)
a (zi) =

πm
(i)
a

Im τi
Im(z̄idzi) , (2.36)

which lead to the magnetic fluxes given by eq. (2.22) along the Cartan direction of SO(32).

Here and hereafter, we multiply the U(1)a magnetic fluxes m
(i)
a by their corresponding

normalization factors.

Then the zero-mode equations of fermions ψ(i)(zi) with the U(1)a charge qa are given by

6Diψ
(i)(zi) = (Γzi∇zi + Γz̄i∇z̄i)ψ

(i)(zi) = 0 (2.37)

where the Gamma matrices and covariant derivatives in terms of the complex coordinates,

(zi, z̄i) are defined as

Γzi =
1

2πRi

(

0 2

0 0

)

, Γz̄i =
1

2πRi

(

0 0

2 0

)

, (2.38)

which can be derived from the Gamma matrices in flat space (2.31) and the metric of

torus (2.21) and

∇zi = ∂zi − iqa(A
(i)
a )zi ,

∇z̄i = ∂z̄i − iqa(A
(i)
a )z̄i . (2.39)

The spin connections are vanishing due to the topology of tori. Thus the Dirac equations

on (T 2)i are rewritten as
(

∂̄z̄i +
πqami

a

2 Im τi
zi
)

ψ
(i)
+ (zi, z̄i) = 0 ,

(

∂zi −
πqami

a

2 Im τi
z̄i
)

ψ
(i)
−
(zi, z̄i) = 0 . (2.40)
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Then ψ
(i)
+ (zi, z̄i) has zero-modes only if M i = qam

i
a > 0, whereas ψ

(i)
−
(zi, z̄i) has zero-

modes only if M i < 0. In both cases, the wavefunctions have |M i| independent solutions

as the solution of Dirac equations (2.40). Hence the number of generations of zero-modes,

M is given by the product of |M i|, that is, M = |M1||M2||M3|. (This result is consistent
with that of the index theorem.) Since the nonvanishing fluxes |M i| select one of the two

chiralities on (T 2)i, i.e., ψ
(i)
+ or ψ

(i)
−
, non vanishing fluxes on three 2-tori lead to the chiral

spectrum as can be seen in eq. (2.33).

However, such magnetic fluxes may break all N = 4 SUSY through the D-terms or

Fayet-Iliopoulos terms in the language of 4DN = 1 SUSY. WhenN = 1 SUSY is preserved

in the system, the vanishing D-terms imply that the hermitian Yang-Mills equations for

the U(1)a field strengths should be satisfied at the vacuum,

gij̄(f̄a)ij̄ = 0 . (2.41)

In our set-up, these conditions are equal to

3
∑

i=1

mi
a

Ai
= 0 , (2.42)

where Ai = (2πRi)
2 Im τi are the areas of tori, (T 2)i. Indeed, when these conditions

are satisfied, massless scalar fields appear for AM (M = 4, · · · , 9), and they correspond

to superpartners of the above massless fermions. At the perturbative level, the D-term

conditions receive at most one-loop corrections [27] which have the dilaton dependence.

Finally, we comment on the Wilson lines which play a role of breaking the gauge group

into its subgroups without changing the rank of gauge groups. In fact, when we introduce

the Wilson lines ζ
(i)
a , along the U(1)a directions, the internal components of U(1)a gauge

fields take the following shifts compared to eq. (2.36),

Aa(z
i) =

πm
(i)
a

Im τi
Im

(

(z̄i + ζ̄(i)a )dzi
)

, (2.43)

which modify the zero-mode wavefunctions determined by the Dirac equations (2.40),

whereas the number of zero-modes and U(1) fluxes are not modified. When we evalu-

ate the values of Yukawa couplings, such Wilson lines would give significant effects.

3 Three-generation models in the SO(32) heterotic string theory

3.1 Matter content

In this section, we show the concrete decomposition of SO(32) gauge group into the stan-

dard model gauge groups and then the parts of adjoint representation of SO(32) are identi-

fied as the matter contents of the standard model. As the first step to obtain the standard

model gauge groups, we consider the decomposition of SO(32) illustrated as

SO(32) → SO(12)⊗ SO(20) ,

496 → (1, 190)⊕ (12v, 20v)⊕ (66, 1) , (3.1)

where the multiple U(1) fluxes are assumed along the Cartan directions of SO(32).
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In order to derive the matter contents of the standard model, we examine whether

the adjoint representation of SO(12) involves the candidates of elementary particles or not.

When we put three U(1)1,2,3 fluxes along the Cartan directions of SO(12) gauge group, it

is found that SO(12) involves the candidates of SU(3)C and SU(2)L,

SO(12) → SO(8)⊗ SU(2)L ⊗U(1)1 → SU(4)⊗U(1)2 ⊗ SU(2)L ⊗U(1)1

→ SU(3)C ⊗U(1)3 ⊗U(1)2 ⊗ SU(2)L ⊗U(1)1 , (3.2)

where the Cartan directions of U(1)1,2,3 are given by eq. (2.11). Then the adjoint repre-

sentation of SO(12) is decomposed as

66























































































































































































































(28, 1)0















































































(15, 1)0,0



























(8, 1)0,0,0

(3, 1)0,0,4

(3̄, 1)0,0,−4

(1, 1)0,0,0

(6, 1)0,2

{

(3, 1)0,2,−2

(3̄, 1)0,2,2

(6̄, 1)0,−2

{

(3, 1)0,−2,−2

(3̄, 1)0,−2,2

(1, 1)0,0,0

(8v, 2)1



























(4, 2)1,1

{

(3, 2)1,1,1

(1, 2)1,1,−3

(4̄, 2)1,−1

{

(3̄, 2)1,−1,−1

(1, 2)1,−1,3

(8v, 2)−1



























(4, 2)−1,1

{

(3, 2)−1,1,1

(1, 2)−1,1,−3

(4̄, 2)−1,−1

{

(3̄, 2)−1,−1,−1

(1, 2)−1,−1,3

(1, 3)0,0,0

(1, 1)2,0,0

(1, 1)−2,0,0

(1, 1)0,0,0

, (3.3)

which are singlets of SO(20), where the subscript indices denote the U(1)1,2,3 charge q1,2,3.

The normalization of U(1) generators are given by appendix A. Thus when we identify

the hypercharge as U(1)Y = U(1)3/6, we can extract the candidates of the quarks, charged
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leptons and/or Higgs,

Q :

{

Q1 = (3, 2)1,1,1

Q2 = (3, 2)−1,1,1

, L :

{

L1 = (1, 2)1,1,−3

L2 = (1, 2)−1,1,−3

, ucR :
{

ucR1
= (3̄, 1)0,0,−4 ,

dcR :

{

dcR1
= (3̄, 1)0,2,2

dcR2
= (3̄, 1)0,−2,2

, n1 = (1, 1)2,0,0 . (3.4)

As shown in the above analysis, the adjoint representation of SO(12), 66 does not involve

the candidate of right-handed leptons. Therefore, we further decompose the SO(20) gauge

group into U(1)4,5,··· ,13 gauge groups,

SO(20) → U(1)4 ⊗ · · · ⊗U(1)13 , (3.5)

where the nonvanishing U(1) fluxes along all U(1)4,··· ,13 directions are inserted shown in

eq. (2.11). Now SO(2) is identified as U(1). The vector representation and the singlet of

SO(12), 12v and 1 give the suitable matter contents, i.e., right-handed quarks and leptons,

charged-leptons and/or Higgs,

(12v, 20v) →















































La
3 = (1, 2)1,0,0;−1,0,··· ,0

La
4 = (1, 2)−1,0,0;−1,0,··· ,0

uc a
R2

= (3̄, 1)0,−1,−1;−1,0,··· ,0

dc a
R3

= (3̄, 1)0,−1,−1;1,0,··· ,0

ec a
R1

= (1, 1)0,−1,3;1,0,··· ,0

nc a
2 = (1, 1)0,−1,3;−1,0,··· ,0

, (a = 4, 5, · · · , 13) ,

(1, 190) →
{

ec ab
R2

= (1, 1)0,0,0;1,1,0,··· ,0

nc ab
3 = (1, 1)0,0,0;1,−1,0,··· ,0

, (a, b = 4, 5, · · · , 13, a 6= b) , (3.6)

where the underlines for U(1)4,5,··· ,13 charge q4,5,··· ,13 denote all the possible permutations.

It is remarkable that the correct U(1)Y charge can be also realized as

U(1)Y =
1

6

(

U(1)3 + 3

13
∑

c=4

U(1)c

)

. (3.7)

3.2 Three-generation models

Since the matter contents of the standard model are correctly identified in the previous

section, we show the number of generations for each representation in this section.

As discussed in section 2.3, the U(1) fluxes generate the degenerate zero-modes if

these zero-modes have U(1) charges. It implies that the number of generations for the

representations embedded in the adjoint and vector representations of SO(12), 66 and 12v
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are determined by the following formulas,

mQ1 =
3
∏

i=1

mi
Q1

=
3
∏

i=1

(mi
1 +mi

2 +mi
3) , mQ2 =

3
∏

i=1

mi
Q2

=
3
∏

i=1

(−mi
1 +mi

2 +mi
3) ,

mL1 =
3
∏

i=1

mi
L1

=
3
∏

i=1

(mi
1 +mi

2 − 3mi
3) , mL2 =

3
∏

i=1

mi
L2

=
3
∏

i=1

(−mi
1 +mi

2 − 3mi
3) ,

muc
R1

=

3
∏

i=1

mi
uc
R1

=

3
∏

i=1

(−4mi
3) , mn1 =

3
∏

i=1

mi
n1

=

3
∏

i=1

(2mi
1) ,

mdc
R1

=
3
∏

i=1

mi
dc
R1

=
3
∏

i=1

(2mi
2 + 2mi

3) , mdc
R2

=
3
∏

i=1

mi
dc
R2

=
3
∏

i=1

(−2mi
2 + 2mi

3) ,

(3.8)

and

mLa
3
=

3
∏

i=1

mi
La
3
=

3
∏

i=1

(mi
1 −mi

a) , mLa
4
=

3
∏

i=1

mi
La
4
=

3
∏

i=1

(−mi
1 −mi

a) ,

muc a
R2

=
3
∏

i=1

mi
uc a
R2

=
3
∏

i=1

(−mi
2 −mi

3 −mi
a) , mdc a

R3
=

3
∏

i=1

mi
dc a
R3

=
3
∏

i=1

(−mi
2 −mi

3 +mi
a) ,

mec a
R1

=
3
∏

i=1

mi
ec a
R1

=
3
∏

i=1

(−mi
2 + 3mi

3 +mi
a) , mna

2
=

3
∏

i=1

mi
na
2
=

3
∏

i=1

(−mi
2 + 3mi

3 −mi
a) ,

(3.9)

respectively.

Now we are ready to search for the realistic three-generation models in the frame-

work of SO(32) heterotic string theory. In the light of U(1)Y massless conditions given

by eqs. (2.24) and (2.28), the nonvanishing U(1)3 fluxes seem to violate these massless

conditions. Therefore, in this paper, we restrict ourselves to the case that U(1)3 fluxes are

absent in our system, which lead to no chiral generations of right-handed quarks, ucR and

dcR from the adjoint representation of SO(12) as can be seen in eq. (3.8). Only left-handed

quarks Q and charged-leptons L are then generated from the adjoint representation of

SO(12). As for the left-handed quarks, Q, there are two possibilities to reproduce the

three generations of Q,

Type A: (mQ1 ,mQ2) = (2, 1) , Type B: (mQ1 ,mQ2) = (3, 0) , (3.10)

without loss of generality, because we can exchange mQ1 and mQ2 under flipping the sign of

mi
1 with i = 1, 2, 3. In both cases, the possible U(1) fluxes are summarized in tables 1 and 2

and in the case of Type B, it is restricted within the range of −2 ≤ mi
Q2

≤ 2, i = 1, 2, 3, for

simplicity. In both tables, possible permutations among the first, second and third 2-tori

are omitted. Also, when we flip signs of magnetic fluxes in two of three 2-tori, we obtain

the same generation number. For example the magnetic fluxes, (m1
1,m

2
1,m

3
1) = (−3/2, 0, 1)

(m1
2,m

2
2,m

3
2) = (−1/2,−1, 0), are obtained by flipping the signs of magnetic fluxes in the

first and second 2-tori from ones in table 1 and they lead to the same generation numbers.

We omit such possibilities in both tables.
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(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
)

(

1

2
, 0, 0

) (

3

2
, 1, 1

)

(

1, 1, 1
2

) (

0, 0, 3
2

)

(

3

2
, 1, 0

) (

1

2
, 0, 1

)

Table 1. The possible magnetic fluxes in Type A. Possible permutations among the three 2-tori

are omitted. Certain types of sign flipping are also omitted.

Under the constrained magnetic fluxes in tables 1 and 2, we further search for the realis-

tic three generations of ucR, d
c
R and ecR satisfying the U(1)Y massless conditions (2.24), (2.28)

as well as the SUSY conditions (2.42).5 As a result, within the range of −10 ≤ mi
uc a
R2

≤ 10,

there are three choices for the U(1) fluxes as follows,

Case I mi
4 = mi

5 = mi
6 = −mi

7 = −mi
8 = −mi

9 ,

mi
10 = mi

11 = −mi
12 = −mi

13 ,

(muc a
R2
,mdc a

R3
,mec a

R
,mna

2
) = (1, 0, 0, 1) , (a = 4, 5, 6) , (3.11)

(muc b
R2

,mdc b
R3

,mec b
R
,mnb

2
) = (0, 1, 1, 0) , (b = 7, 8, 9) ,

(muc d
R2

,mdc d
R3

,mec d
R
,mnd

2
) = (0, 0, 0, 0) , (d = 10, 11, 12, 13) ,

Case II mi
4 = −mi

5 ,

mi
6 = mi

7 = mi
8 = mi

9 = −mi
10 = −mi

11 = −mi
12 = −mi

13 ,

(muc 4
R2
,mdc 4

R3
,mec 4

R
,mn4

2
) = (3, 0, 0, 3) , (3.12)

(muc 5
R2
,mdc 5

R3
,mec 5

R
,mn5

2
) = (0, 3, 3, 0) ,

(muc a
R2
,mdc a

R3
,mec a

R
,mna

2
) = (0, 0, 0, 0) , (a = 6, 7, 8, 9, 10, 11, 12, 13) .

and

Case III mi
4 = −mi

5 , mi
6 = −mi

7 ,

mi
8 = mi

9 = mi
10 = −mi

11 = −mi
12 = −mi

13 ,

(muc 4
R2
,mdc 4

R3
,mec 4

R
,mn4

2
) = (2, 0, 0, 2) ,

(muc 5
R2
,mdc 5

R3
,mec 5

R
,mn5

2
) = (0, 2, 2, 0) , (3.13)

(muc 6
R2
,mdc 6

R3
,mec 6

R
,mn6

2
) = (1, 0, 0, 1) ,

(muc 7
R2
,mdc 7

R3
,mec 7

R
,mn7

2
) = (0, 1, 1, 0) ,

(muc a
R2
,mdc a

R3
,mec a

R
,mna

2
) = (0, 0, 0, 0) , (a = 8, 9, 10, 11, 12, 13) .

In the case of Type A, only “Case I” is allowed as the realistic three-generation models.

The typical U(1) fluxes and the number of generations of matters are given by tables 3

and 4. Under the U(1) gauge symmetries, the following Yukawa couplings of quarks and

5Here we do not constrain the number of charged-leptons, L, because some of them may be identified

as higgsino fields.
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(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
)

(

1

2
, 1
2
,− 1

2

) (

5

2
, 1
2
, 3
2

)

(

1

2
, 1
2
, 0
) (

5

2
, 1
2
, 1
)

(

1

2
, 1
2
, 1
2

) (

5

2
, 1
2
, 1
2

)

(

1, 1
2
,− 1

2

) (

2, 1
2
, 3
2

)

(

1, 1
2
, 0
) (

2, 1
2
, 1
)

(

1, 1
2
, 1
2

) (

0, 5
2
, 1
2

)

(

1, 1
2
, 1
2

) (

2, 1
2
, 1
2

)

(

1, 1, 1
2

) (

2, 0, 1
2

)

(

3

2
, 0,− 1

2

) (

3

2
, 1, 3

2

)

(

3

2
, 0, 0

) (

3

2
, 1, 1

)

(

3

2
, 1
2
,− 1

2

) (

3

2
, 1
2
, 3
2

)

(

3

2
, 1
2
, 0
) (

3

2
, 1
2
, 1
)

(

3

2
, 1
2
, 1
2

) (

− 1

2
, 5
2
, 1
2

)

(

3

2
, 1
2
, 1
2

) (

3

2
,− 3

2
,− 3

2

)

(

3

2
, 1
2
, 1
2

) (

3

2
, 1
2
, 1
2

)

(

3

2
, 1,− 1

2

) (

3

2
, 0, 3

2

)

(

3

2
, 1, 0

) (

3

2
, 0, 1

)

(

3

2
, 1, 1

2

) (

− 1

2
, 2, 1

2

)

(

3

2
, 1, 1

2

) (

3

2
, 0, 1

2

)

(

3

2
, 1, 1

) (

3

2
, 0, 0

)

(

3

2
, 3
2
,− 1

2

) (

3

2
,− 1

2
, 3
2

)

(

3

2
, 3
2
, 0
) (

3

2
,− 1

2
, 1
)

(

3

2
, 3
2
, 1
2

) (

3

2
,− 1

2
, 1
2

)

(

3

2
, 3
2
, 1
) (

3

2
,− 1

2
, 0
)

(

3

2
, 3
2
, 3
2

) (

3

2
,− 1

2
,− 1

2

)

(

2, 1
2
,− 1

2

) (

1, 1
2
, 3
2

)

(

2, 1
2
, 0
) (

1, 1
2
, 1
)

(

2, 1
2
, 1
2

) (

1, 1
2
, 1
2

)

(

2, 1, 1
2

) (

1, 0, 1
2

)

(

2, 3
2
, 1
2

) (

1,− 1

2
, 1
2

)

(

5

2
, 1
2
,− 1

2

) (

1

2
, 1
2
, 3
2

)

(

5

2
, 1
2
, 0
) (

1

2
, 1
2
, 1
)

(

5

2
, 1
2
, 1
2

) (

1

2
, 1
2
, 1
2

)

(

5

2
, 1, 1

2

) (

1

2
, 0, 1

2

)

(

5

2
, 3
2
, 1
2

) (

1

2
,− 1

2
, 1
2

)

Table 2. The possible magnetic fluxes in Type B within the range of −2 ≤ mi
Q2

≤ 2, i = 1, 2, 3.

Possible permutations among the three 2-tori are omitted. Certain types of sign flipping are also

omitted.
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(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

10
,m2

10
,m3

10
)

(

3

2
, 0, 1

) (

1

2
, 1, 0

)

(0, 0, 0)
(

1

2
,−2, 1

) (

1

2
, 1, 0

)

Table 3. The typical values of U(1) fluxes in the model of type A and “Case I” given by eqs. (3.10)

and (3.11).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (2, 1, 2, 1, 0, 0, 0, 0)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (0, 8, 1, 0, 0, 1)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (0, 8, 1, 0, 0, 1)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (0, 8, 1, 0, 0, 1)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (−8, 0, 0, 1, 1, 0)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (−8, 0, 0, 1, 1, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (−8, 0, 0, 1, 1, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (−1,−2, 0, 0, 0, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (−1,−2, 0, 0, 0, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (2, 1, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (2, 1, 0, 0, 0, 0)

Table 4. The number of generations for the representations defined in the model of type A and

“Case I” given by eqs. (3.10) and (3.11).

leptons are allowed in terms of the renormalizable operators,

(Q1, L̄
4
3, u

c 4
R2

) , (Q2, L̄
4
4, u

c 4
R2

) , (L1, L̄
4
3, n

4
2) , (L2, L̄

4
4, n

4
2) ,

(Q1, L̄
5
3, u

c 5
R2

) , (Q2, L̄
5
4, u

c 5
R2

) , (L1, L̄
5
3, n

5
2) , (L2, L̄

5
4, n

5
2) ,

(Q1, L̄
6
3, u

c 6
R2

) , (Q2, L̄
6
4, u

c 6
R2

) , (L1, L̄
6
3, n

6
2) , (L2, L̄

6
4, n

6
2) ,

(Q1, L
7
4, d

c 7
R3

) , (Q2, L
7
3, d

c 7
R3

) , (L1, L
7
4, e

c 7
R1

) , (L2, L
7
3, e

c 7
R1

) ,

(Q1, L
8
4, d

c 8
R3

) , (Q2, L
8
3, d

c 8
R3

) , (L1, L
8
4, e

c 8
R1

) , (L2, L
8
3, e

c 8
R1

) ,

(Q1, L
9
4, d

c 9
R3

) , (Q2, L
9
3, d

c 9
R3

) , (L1, L
9
4, e

c 9
R1

) , (L2, L
9
3, e

c 9
R1

) .

(3.14)

These include useful Yukawa couplings to give all of the quarks and leptons masses when

L̄a
3, L̄

a
4, L

b
3, L

b
4 with a = 4, 5, 6 and b = 7, 8, 9 are identified as Higgs doublets and L̄a

3,4

denote conjugate representations of La
3,4.

Next, we consider the case of Type B. As the supersymmetric three-generation models,

both “Case I” and “Case II” are allowed and they are then categorized as the four types

of models,

BI : “Case I” in type B ,

BII : “Case II” in type B with mn1 = 0 ,

BIII : “Case II” in type B with mn1 6= 0 ,

BIV : “Case III” in type B .

(3.15)

For each model, the typical U(1) fluxes and the number of generations of matters are

summarized in tables 5, 6, 7, 8, 9 and 10. In the type BI model summarized in tables 5

and 6, the following Yukawa couplings of quarks and leptons are allowed in terms of the
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2
,m3
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) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

10
,m2

10
,m3

10
)

(

1, 0, 1
2

) (

2, 1, 1
2

)

(0, 0, 0)
(

− 1,−2, 1
2

) (

0, 1,− 1

2

)

Table 5. The typical values of U(1) fluxes in the type BI model given by eq. (3.15).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 8,−8, 0)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (0, 0, 1, 0, 0, 1)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (0, 0, 1, 0, 0, 1)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (0, 0, 1, 0, 0, 1)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (0, 0, 0, 1, 1, 0)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (0, 0, 0, 1, 1, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (0, 0, 0, 1, 1, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (−1, 0, 0, 0, 0, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (−1, 0, 0, 0, 0, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (0, 1, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (0, 1, 0, 0, 0, 0)

Table 6. The number of generations for the representations in the type BI model given by eq. (3.15).

renormalizable operators,

(Q1, L̄
4
3, u

c 4
R2

) , (Q1, L̄
5
3, u

c 5
R2

) , (Q1, L̄
6
3, u

c 6
R2

) , (L1, L̄
4
3, n

4
2) , (L1, L̄

5
3, n

5
2) , (L1, L̄

6
3, n

6
2) ,

(Q1, L
7
4, d

c 7
R3

) , (Q1, L
8
4, d

c 8
R3

) , (Q1, L
9
4, d

c 9
R3

) , (L1, L
7
4, e

c 7
R1

) , (L1, L
8
4, e

c 8
R1

) , (L1, L
9
4, e

c 9
R1

) .

(3.16)

These also include useful Yukawa couplings when L̄a
3, L

b
4 with a = 4, 5, 6 and b = 7, 8, 9

are identified as Higgs doublets. In both type BII and type BIII models summarized in

tables 7, 8, 9 and 10, the useful Yukawa couplings of quarks and leptons are allowed in

terms of the renormalizable operators,

(Q1, L̄
4
3, u

c 4
R2

) , (Q1, L
5
4, d

c 5
R3

) , (L1, L̄
4
3, n

4
2) , (L1, L

5
4, e

c 5
R1

) , (3.17)

where L̄4
3, L

5
4 are identified as Higgs doublets. Finally, in type BIV model summarized in

tables 11 and 12, the useful Yukawa couplings of quarks and leptons are allowed in terms

of the renormalizable operators,

(Q1, L̄
4
3, u

c 4
R2

) , (Q1, L̄
6
3, u

c 6
R2

) , (L1, L̄
4
3, n

4
2) , (L1, L̄

6
3, n

6
2) ,

(Q1, L
5
4, d

c 5
R3

) , (Q1, L
7
4, d

c 7
R3

) , (L1, L
5
4, e

c 5
R1

) , (L1, L
,
4e

c 7
R1

) ,
(3.18)

where L̄4,6
3 , L5,7

4 are identified as Higgs doublets.

Note that in our models, the consistency conditions given by eq. (2.7) are not satisfied

without introducing the heterotic five-branes. In this case, we have to take care of the

Witten anomaly [23, 24] on the heterotic five-branes with Sp(2N) gauge groups which

is the case that the number of heterotic five-branes is N . In order to avoid the Witten

anomaly, the number of chiral fermions under the fundamental representations of Sp(2N)

are even [23, 24]. These fundamental representations of (32, 2N) under SO(32) ⊗ Sp(2N)

– 17 –



J
H
E
P
0
9
(
2
0
1
5
)
0
5
6

(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

6
,m2

6
,m3

6
)

(

5

2
, 0, 1

2

) (

1

2
, 1, 1

2

)
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2
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2

)

Table 7. The typical values of U(1) fluxes in the type BII model given by eq. (3.15).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 2,−2, 0)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (0,−2, 3, 0, 0, 3)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (2, 0, 0, 3, 3, 0)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (0, 7, 0, 0, 0, 0)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (0, 7, 0, 0, 0, 0)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (0, 7, 0, 0, 0, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (0, 7, 0, 0, 0, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (−7, 0, 0, 0, 0, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (−7, 0, 0, 0, 0, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (−7, 0, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (−7, 0, 0, 0, 0, 0)

Table 8. The number of generations for the representations in the type BII model given by

eq. (3.15).

(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

6
,m2

6
,m3

6
)

(

1,− 1

2
, 1
2

) (

2, 3
2
, 1
2

)

(0, 0, 0)
(

− 1,− 9

2
, 1
2

) (

2, 13
2
,− 1

2

)

Table 9. The typical values of U(1) fluxes in the type BIII model given by eq. (3.15).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 12,−12, 2)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (0, 0, 3, 0, 0, 3)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (0, 0, 0, 3, 3, 0)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (7, 0, 0, 0, 0, 0)

...
...

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (7, 0, 0, 0, 0, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (0,−7, 0, 0, 0, 0)

...
...

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (0,−7, 0, 0, 0, 0)

Table 10. The number of generations for the representations in the type BIII model given by

eq. (3.15).

can be read in the type I string with D5-and D9-brane system which is expected as the

S-dual of the SO(32) heterotic string. The generations of the chiral fermions included in

(12, 2N) under SO(12) ⊗ Sp(2N) and (20, 2N) under SO(20) ⊗ Sp(2N) are determined

by ±∏3
i=1m

(i)
a for a = 1, 2, 4, · · · , 13, in the case m

(i)
3 = 0 with i = 1, 2, 3. In our most

supersymmetric models, the chiral fermions arise from (32, 2N) under SO(32) ⊗ Sp(2N).

Thus we require the non-trivial mechanism to obtain the even number of chiral fermions

such as U(1) fluxes on the heterotic five-branes in order to avoid the Witten anomaly.
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, 1
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2
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, 1
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2
, 1
2
, 1
2

)

Table 11. The typical values of U(1) fluxes in the type BIV model given by eq. (3.15).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 1,−1, 5)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (0, 0, 2, 0, 0, 2)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (0, 0, 0, 2, 2, 0)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (0,−1, 1, 0, 0, 1)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (0,−1, 1, 0, 0, 1)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (0,−2, 0, 0, 0, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (0,−2, 0, 0, 0, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (0,−2, 0, 0, 0, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (2, 0, 0, 0, 0, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (2, 0, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (2, 0, 0, 0, 0, 0)

Table 12. The number of generations for the representations in the type BIV model given by

eq. (3.15).

Finally we comment on the gauge enhancements induced by vanishing fluxes. In this

paper, we focus on the case mi
3 = 0, i = 1, 2, 3 in the light of U(1)Y massless conditions

given by eqs. (2.24) and (2.28). These vanishing fluxes cause the gauge enhancement,

SU(3)C×U(1)3 → SU(4). Moreover it requires the Wilson-lines into the internal component

of U(1)3 to break down SU(4) into SU(3). Our models have other gauge enhancements.

The realistic three-generation models are summarized in three cases, “Case I”, “Case II”

and “Case III” in eqs. (3.11), (3.12) and (3.13), respectively. In both cases, most magnetic

fluxes are related to each other due to the U(1)Y massless conditions given by eqs. (2.24)

and (2.28). For example, the invariant simple roots under the existences of fluxes read

Case I α1 = (0, 0, 0, 0, 0, 0; 1,−1, 0, · · · , 0) ,
α2 = (0, 0, 0, 0, 0, 0; 0, 1,−1, 0, · · · , 0) ,
α3 = (0, 0, 0, 0, 0, 0; 0, 0, 0, 1,−1, 0, · · · , 0) ,
α4 = (0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1,−1, 0, · · · , 0) ,
α5 = (0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 1, 0, · · · , 0) ,

Case II α1 = (0, 0, 0, 0, 0, 0; 1, 1, 0, · · · , 0) ,

Case III α1 = (0, 0, 0, 0, 0, 0; 1, 1, 0, · · · , 0) ,
α2 = (0, 0, 0, 0, 0, 0; 0, 0, 1, 1, 0, · · · , 0) ,

(3.19)

which implies the SU(6), SU(2) and SU(2)× SU(2) gauge symmetries, respectively. All of

them include SU(2)R. Furthermore, SU(3) of SU(6) is a flavor symmetry of right-handed

matter fields, and the three right-handed matter generations is a triplet under SU(3) flavor
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symmetry, while the left-handed matter fields are singlets. We introduce Wilson lines to

break theses symmetries.

3.3 Three-generation models with K-theory constraints

So far, we have not considered the so-called K-theory constraints which are formulated in

the S-dual to the SO(32) heterotic string theory, i.e., Type I string theory. In the SO(32)

heterotic string theory, the total number of magnetic fluxes is further constrained as

13
∑

a=1

mi
a = 0 (mod 2) , (3.20)

for i = 1, 2, 3, as stated in ref. [17, 18]. Such a condition allows for the well-defined spinor

representation of the gauge bundle, otherwise its wavefunction is not single-valued.

When we assume that the SO(32) heterotic string theory on our gauge background

is described as its S-dual theory, i.e., Type I string theory, the above condition (3.20)

may correspond to the K-theory constraints [31] which cannot be classified in terms of

a homology. These constraints can be understood by introducing all the possible probe

D-branes [32], and then they show the existence of several stable non-BPS branes with the

discrete K-theory charge, i.e., Z2-charge. In the case of N stacks of heterotic five-brane

with Sp(2N) gauge group, they require the condition (3.20) in order to avoid the Witten

anomaly [23, 24].6 Furthermore, in type I string, the fractional fluxes are allowed due to

multiple wrapping numbers of D-branes. Although such a degree of freedom is expected to

appear in the heterotic string side, we do not consider these possibilities, which we leave

for future works. Since all the models discussed in section 3.2 do not satisfy the K-theory

condition, in this section, we further search for the possibilities of three-generation models

under these assumptions.

First of all, in the light of U(1)Y massless condition, we impose the constraints for

U(1) fluxes as,

mi
3 = 0 , mi

a+3 = −mi
a+8 (a = 1, 2, 3, 4, 5) , (3.21)

with i = 1, 2, 3, which simplify the K-theory condition as

2
∑

a=1

mi
a = 0 (mod 2) . (3.22)

From the fact that all the possible candidates for left-handed quarks Q and charged leptons

L are involved in the adjoint representation of SO(12), three generations of Q and L have

to be realized from such a representation. Then, their fluxes are constrained as

Type A: (mQ1 ,mQ2) = (2, 1) , TypeA’ : (mQ1 ,mQ2) = (1, 2) ,

Type B: (mQ1 ,mQ2) = (3, 0) , Type B’ : (mQ1 ,mQ2) = (0, 3) , (3.23)

6In the heterotic string, the K-theory may be understood in terms of closed string tachyon [33] based

on supercritical string [34].
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)

(
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(
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Table 13. The possible magnetic fluxes in Type B’ within the range of −2 ≤ mi
Q1

≤ 2 for mi
Q2

= 0

and −2 ≤ mi
Q2

≤ 2 for mi
Q1

= 0, where i = 1, 2, 3.

where mi
Q1,2

, and hereafter we focus on the case that the right-handed quarks dcR are

generated from the vector representation of SO(12), for simplicity. In such cases, we find

that only Type B’ in eq. (3.23) satisfies the K-theory condition (3.22) and the SUSY

condition (2.42) yielding three generations of Q and L. The possible U(1)1,2 fluxes are

summarized in table 13.

Next, we consider the remaining matter contents in the standard model, that is, ucR,

dcR and ecR. Among the constrained magnetic fluxes listed in table 13, we further search

for those yield three generations of ucR, d
c
R and ecR, satisfying the U(1)Y massless condi-

tion (3.21) as well as the SUSY condition (2.42). Note that the K-theory condition is

already satisfied under the constraints (3.21) and (3.22). As a result, within the range of

−5 ≤ mi
uc a
R2

≤ 5, there are three allowed choices for the U(1) fluxes as follows,

“Case I’ ” (muc 4
R2
,muc 5

R2
, . . . ,muc 13

R2
) = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) ,

(mdc 4
R2
,mdc 5

R2
, . . . ,mdc 13

R2
) = (0, 0, 0, 0, 0, 1, 1, 1, 0, 0) ,

(3.24)

“Case II’ ” (muc 4
R2
,muc 5

R2
, . . . ,muc 13

R2
) = (3, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(mdc 4
R2
,mdc 5

R2
, . . . ,mdc 13

R2
) = (0, 0, 0, 0, 0, 3, 0, 0, 0, 0) ,

(3.25)

and
“Case III’ ” (muc 4

R2
,muc 5

R2
, . . . ,muc 13

R2
) = (2, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

(mdc 4
R2
,mdc 5

R2
, . . . ,mdc 13

R2
) = (0, 0, 0, 0, 0, 2, 1, 0, 0, 0) .

(3.26)

For each model, the typical U(1) fluxes and the number of generations of matters are sum-

marized in tables 14, 15, 16, 17, 18 and 19. In the “Case I’ ” summarized in tables 14 and 15,

non-vanishing Yukawa coupling terms involving the following combinations of quarks and
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(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

7
,m2

7
,m3

7
)

(

− 3

2
,− 1

2
,− 1

2

) (

3

2
, 1
2
, 1
2

)

(0, 0, 0)
(

− 1

2
, 1
2
,− 3

2

) (

1

2
, 1
2
,− 1

2

)

Table 14. The typical values of U(1) fluxes in the “Case I’ ” given by eq. (3.24). The other U(1)

fluxes are constrained to be mi
4
= mi

5
= mi

6
= −mi

9
= −mi

10
= −mi

11
and mi

7
= mi

8
= −mi

12
=

−mi
13

with i = 1, 2, 3.

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (0, 3, 0, 3, 0, 3,−3, 3)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (1, 0, 1, 0, 0, 1)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (1, 0, 1, 0, 0, 1)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (1, 0, 1, 0, 0, 1)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (0, 0, 0, 0, 0, 0)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (0, 0, 0, 0, 0, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (0,−1, 0, 1, 1, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (0,−1, 0, 1, 1, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (0,−1, 0, 1, 1, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (0, 0, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (0, 0, 0, 0, 0, 0)

Table 15. The number of generations for the representations in the “Case I’ ” given by eq. (3.24).

leptons are allowed as the renormalizable operators,

(Q2, L̄
4

4
, uc 4R2

) , (Q2, L̄
5

4
, uc 5R2

) , (Q2, L̄
6

4
, uc 6R2

) , (L2, L̄
4

4
, n4

2
) , (L2, L̄

5

4
, n5

2
) , (L2, L̄

6

4
, n6

2
) ,

(Q2, L
9

3
, dc 9R3

) , (Q2, L
10

3
, dc 10R3

) , (Q2, L
11

3
, dc 11R3

) , (L2, L
9

3
, ec 9R1

) , (L2, L
10

3
, ec 10R1

) , (L2, L
11

3
, ec 11R1

) .
(3.27)

These include useful Yukawa couplings to give masses of all the quarks and leptons when

L̄a
4, L

b
3 with a = 4, 5, 6 and b = 9, 10, 11 are identified as Higgs doublets.

As for the “Case II’ ” summarized in tables 16 and 17, the following combinations of

quarks and leptons have renormalizable Yukawa coupling,

(Q2, L̄
4
4, u

c 4
R2

) , (Q2, L
9
3, d

c 9
R3

) , (L2, L̄
4
4, n

4
2) , (L2, L

9
3, e

c 9
R1

) , (3.28)

where L̄4
4, L

9
3 are identified as Higgs doublets in order to be phenomenologically viable.

Next, in the “Case III’ ” summarized in tables 18 and 19, the renormalizable Yukawa

couplings are allowed for the following combinations of quarks and leptons,

(Q2, L̄
4
4, u

c 4
R2

) , (Q2, L̄
5
4, u

c 5
R2

) , (L2, L̄
4
4, n

4
2) , (L2, L̄

5
4, n

5
2) ,

(Q2, L
9
3, d

c 9
R3

) , (Q2, L
10
3 , d

c 10
R3

) , (L2, L
9
3, e

c 9
R1

) , (L2, L
10
3 , e

c 10
R1

) ,
(3.29)

where L̄4,5
4 , L9,10

3 can be identified as Higgs doublets. Note that in the same way as in sec-

tion 3.2, the consistency conditions given by eq. (2.7) are not satisfied without introducing

the heterotic five-branes, in the supersymmetric case.

Finally we comment on the gauge enhancements induced by vanishing fluxes. As

discussed in section 3.2, vanishing U(1)3 fluxes require the existence of Wilson-lines for

the internal component of U(1)3 to break SU(4) down to SU(3). There are other gauge

enhancements in three realistic models, “Case I’ ”, “Case II’ ” and “Case III’ ”, where most
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(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

5
,m2

5
,m3

5
)

(

− 1

2
,− 1

2
,− 1

2

) (

5

2
, 1
2
, 1
2

)

(0, 0, 0)
(

− 11

2
, 1
2
, 1
2

) (

5

2
,− 1

2
,− 1

2

)

Table 16. The typical values of U(1) fluxes in the “Case II’ ” given by eq. (3.25). The other U(1)

fluxes are constrained to be mi
4
= −mi

9
and mi

5
= mi

6
= mi

7
= mi

8
= −mi

10
= −mi

11
= −mi

12
=

−mi
13

with i = 1, 2, 3.

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (0, 3, 0, 3, 0, 5,−5, 1)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (5, 0, 3, 0, 0, 3)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (0,−2, 0, 0, 0, 0)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (0,−2, 0, 0, 0, 0)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (0,−2, 0, 0, 0, 0)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (0,−2, 0, 0, 0, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (0,−5, 0, 3, 3, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (2, 0, 0, 0, 0, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (2, 0, 0, 0, 0, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (2, 0, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (2, 0, 0, 0, 0, 0)

Table 17. The number of generations for the representations in the “Case II’ ” given by eq. (3.25).

(m1

1
,m2

1
,m3

1
) (m1

2
,m2

2
,m3

2
) (m1

3
,m2

3
,m3

3
) (m1

4
,m2

4
,m3

4
) (m1

5
,m2

5
,m3

5
) (m1

6
,m2

6
,m3

6
)

(

− 3

2
,− 1

2
,− 1

2

) (

3

2
, 1
2
, 1
2

)

(0, 0, 0)
(

− 7

2
, 1
2
, 1
2

) (

− 5

2
, 1
2
, 1
2

) (

3

2
,− 1

2
,− 1

2

)

Table 18. The typical values of U(1) fluxes in the “Case III’ ” given by eq. (3.26). The other U(1)

fluxes are constrained to be mi
6
= mi

7
= mi

8
= −mi

11
= −mi

12
= −mi

13
with i = 1, 2, 3.

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (0, 3, 0, 3, 0, 3,−3, 3)

(L4

3
, L4

4
, uc 4R2

, dc 4R3
, ec 4R1

, n4
2
) (2, 0, 2, 0, 0, 2)

(L5

3
, L5

4
, uc 5R2

, dc 5R3
, ec 5R1

, n5
2
) (1, 0, 1, 0, 0, 1)

(L6

3
, L6

4
, uc 6R2

, dc 6R3
, ec 6R1

, n6
2
) (0, 0, 0, 0, 0, 0)

(L7

3
, L7

4
, uc 7R2

, dc 7R3
, ec 7R1

, n7
2
) (0, 0, 0, 0, 0, 0)

(L8

3
, L8

4
, uc 8R2

, dc 8R3
, ec 8R1

, n8
2
) (0, 0, 0, 0, 0, 0)

(L9

3
, L9

4
, uc 9R2

, dc 9R3
, ec 9R1

, n9
2
) (0,−2, 0, 2, 2, 0)

(L10

3
, L10

4
, uc 10R2

, dc 10R3
, ec 10R1

, n10
2
) (0,−1, 0, 1, 1, 0)

(L11

3
, L11

4
, uc 11R2

, dc 11R3
, ec 11R1

, n11
2
) (0, 0, 0, 0, 0, 0)

(L12

3
, L12

4
, uc 12R2

, dc 12R3
, ec 12R1

, n12
2
) (0, 0, 0, 0, 0, 0)

(L13

3
, L13

4
, uc 13R2

, dc 13R3
, ec 13R1

, n13
2
) (0, 0, 0, 0, 0, 0)

Table 19. The number of generations for the representations in the “Case III’ ” given by eq. (3.26).

magnetic fluxes are related to each other due to the U(1)Y massless conditions (2.24), (2.28)

and the K-theory condition (3.20). For example, there are invariant simple roots under

the existences of fluxes such as SU(6), SU(2) and SU(2)× SU(2) gauge symmetries for the

– 23 –



J
H
E
P
0
9
(
2
0
1
5
)
0
5
6

“Case I’ ”, “Case II’ ” and “Case III’ ”, respectively. We introduce Wilson-lines to break

these gauge symmetries.

4 Conclusion

In this paper, we have derived the realistic standard model gauge groups from the frame-

work of SO(32) heterotic string theory on three factorizable 2-tori with magnetic fluxes.

Introducing magnetic fluxes as well as Wilson lines into Cartan directions of SO(32) break

SO(32) to SU(3) × SU(2) × U(1)Y and extra symmetries. These U(1) fluxes also lead to

chiral fermions in the four dimensions if and only if the fluxes insert into all the three

2-tori. At the same time, the generations of chiral matters are determined by the numbers

of fluxes. We have derived three chiral generations of quarks and leptons. Our models also

include Higgs fields, which have Yukawa couplings to quarks and leptons at tree level.

Possible configurations of magnetic fluxes are severely constrained by the massless

condition of U(1)Y hypercharge gauge boson and the consistency condition of heterotic

string theory. It is remarkable that in general, the ten-dimensional Green-Schwarz term

induces the Stueckelberg couplings to multiple U(1) gauge bosons which might lead to

the mass term of U(1)Y hypercharge gauge boson. In this respect, the numbers of fluxes

have been constrained by the massless condition of U(1)Y gauge boson. Since the torus

is flat, our models requires the existence of heterotic five-branes in order to satisfy the

consistency conditions without introducing the extra Stueckelberg couplings to U(1) gauge

boson, in contrast to the E8×E8 heterotic string theory. At that time, the Witten anomaly

cancellation constrains the number of U(1) fluxes due to the nature of symplectic groups on

the heterotic five-branes. In fact, the chiral fermions under the fundamental representation

of symplectic gauge groups do not arise in the parts of our models, whereas the other parts

of our models requires the non-trivial mechanisms such as U(1) fluxes on heterotic five-

branes to cause even number of these chiral fermions to avoid theWitten anomaly. We listed

supersymmetric three-generation standard models with massless U(1)Y gauge bosons and

desirable Yukawa couplings of quarks, leptons and Higgs. The detailed phenomenological

analysis of our models such as mass matrices would be studied in a separate work and the

detail of this paper is applicable in the framework of type I string.

The unbroken gauge sector in our models has N = 4 supersymmetry, that is, three

adjoint scalar fields and four types of gaugino fields. However, the existence of (anti-

)heterotic five-branes would lead to the breaking of (all) partial breaking of supersymmetry

in our model. Orbifolding would be useful to reduce N = 4 supersymmetry to N = 1.

Zero-mode wavefuctions have been also studied on orbifolds with magnetic fluxes [35–37].

Such extensions would be also interesting.
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A Normalization of the SO(32) gauge group

In this appendix, we show the normalization of Abelian gauge groups embedded in SO(32)

gauge group. (For more details, see refs. [16, 28, 29].) First, we comment on the normal-

ization about the non-Abelian gauge groups in SO(32). The sum of each Coxeter labels

associated with the simple roots of SO(32) are called as the Coxeter number h(g) which is

related to the quadratic Casimir via the following relation,

∑

c,d

facdf bcd = h(g)ψ2δab, (A.1)

where h(g) = 30, fabc with a = 1, 2, · · · , 496 are the structure constants of SO(32) and ψ2

denotes the length of the root which is normalized as two.

The normalization of the Abelian gauge groups are estimated by the current algebra

or Kač-Moody algebra of SO(32) which is given by

[jam, j
b
n] = i

∑

c

fabcjcm+n +
2k

ψ2
mδabδm,−n , (A.2)

where k is the level of Kač-Moody algebra and jam are the Laurent coefficients of the current

ja(z),

ja(z) =
1

2
N(ψiT a

ijψ
j) =

∞
∑

m=−∞

jam
zm+1

, (A.3)

with ψi and (T a)ij (i = 1, 2, · · · , 32) being the 32 real fermions and generators in the vector

representation of SO(32), respectively. N(ψiT a
ijψ

j) stands for the normal ordering of the

operator, (ψiT a
ijψ

j). When the level of Kač-Moody algebra is equal to one, we obtain the

operator product expansion of the current

ja(z)jb(w) ∼ 2δab

ψ2(z − w)2
+
ifabc

z
jc(w) , (A.4)

and then we can extract the normalization of (T a)ij as tr(T aT b) = 2δab.
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In our model, the generators of U(1)a, Ta are normalized as

T1 =
1√
2
diag(0, 0, 0, 0, 1, 1, 0, 0, · · · , 0) ,

T2 =
1

2
diag(1, 1, 1, 1, 0, 0, 0, 0, · · · , 0) ,

T3 =
1√
12

diag(1, 1, 1,−3, 0, 0, 0, 0, · · · , 0) ,

T4 = diag(0, 0, 0, 0, 0, 0, 1, 0, · · · , 0) ,
T5 = diag(0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0) ,

...

T13 = diag(0, 0, 0, 0, 0, 0, 0, 0, · · · , 1) , (A.5)

on the basis of U(16) which is the maximal subgroup of SO(32). In general, the generators

of U(N) can be identified as the part of SO(2N) generators. (See e.g. ref. [30].)

B The trace identities

Here, we summarize the trace identities

TrF 2 = 30 trF 2 = 60F 2
SU(3)C

+ 60F 2
SU(2)L

+ 60

13
∑

a=1

f2a ,

Tr F̄ 2 = 30 tr F̄ 2 = 60
13
∑

a=1

f̄2a ,

TrFF̄ = 30 trFF̄ = 60
13
∑

a=1

faf̄a ,

trF 2F̄ 2 =

(

1

2
tr(T 2

2 )f̄
2
2 +

√

tr(T 2
2 ) tr(T

2
3 )

3
f̄2f̄3 +

1

6
tr(T 2

3 )f̄
2
3

)

tr(F 2
SU(3))

+ 2 tr(T 4
1 )f̄

2
1 f

2
1 + 2

13
∑

c=4

tr(T 4
c )f

2
c f̄

2
c

+ 2
(

tr(T 4
2 )f̄

2
2 + tr(T 2

2 T
2
3 )f̄

2
3

)

f22 + 4
(

2 tr(T 2
2 T

2
3 )f̄2f̄3 + tr(T2T

3
3 )f̄

2
3

)

f2f3

+ 2
(

tr(T 4
3 )f̄

2
3 + tr(T 2

2 T
2
3 )f̄

2
2 + 2 tr(T2T

3
3 )f̄2f̄3

)

f23 ,

trFF̄ 3 = 2 trT 4
1 f̄

3
1 f1 + 2

(

trT 4
2 f̄

3
2 + 3(trT 2

2 T
2
3 )f̄2f̄

2
3 + (trT2T

3
3 )f̄

3
3

)

f2

+
(

trT 4
3 f̄

3
3 + 3(trT2T

3
3 )f̄2f̄

2
3 + 3(trT 2

2 T
2
3 )f̄

2
2 f̄3

)

f3 + 2
13
∑

c=4

trT 4
c f̄

3
c fc , (B.1)
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where fa and f̄a denote the four-dimensional and extra-dimensional field strengths of U(1)a
and we employ the trace identities such as

TrF 2 = 30 trF 2,

TrF 4 = 24 trF 4 + 3(trF 2)2,

TrFF̄ 3 = 24 trFF̄ 3 + 3(trFF̄ )(tr F̄ 2) ,

TrF 2F̄ 2 = 24 trF 2F̄ 2 + 2(trFF̄ )2 + (trF 2)(tr F̄ 2) ,

trT 4
1 = 1/2 , trT 4

2 = 1/4 , trT 4
3 = 7/12 , trT 4

a = 1 (c=4, · · ·, 13) ,
trT 2

2 T
2
3 = 1/4 , trT 3

2 T3 = 0 , trT2T
3
3 = −1/2

√
3 . (B.2)
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