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a b s t r a c t

The aim of this letter is to construct the analytic solution for unsteady Couette flow in
the presence of an arbitrary non-uniform applied magnetic field. The flow is induced by
a generalized velocity given to the lower plate. The perturbed eigenfunction expansion
method is employed to develop a series solution for small magnetic field.
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1. Introduction

There has been increasing interest from researchers in the flows of an electrically conducting fluid during the past few
decades. Interest in such flows arises because of their occurrence in many branches of science and engineering. These
fluids are specifically encountered in magnetohydrodynamic (MHD) generators, plasma flows, nuclear reactor dynamics,
geothermal energy extraction, electromagnetic propulsion, boundary layer control in aerodynamics,metallurgical processes
etc. The MHD flow in a channel is thus studied extensively and we would like to refer to a few recent studies [1–6]. A good
survey of relevant studies in magnetohydrodynamics can be found in Moreau [7].

In the literature, much attention has been devoted to the flow problems in the presence of a uniform applied magnetic
field. But this assumption is not appropriate in several engineering applications. Therefore, it is desirable to discuss
magnetohydrodynamic (MHD) flow in the presence of variable magnetic field. Abdel-Malek [8] examined the Rayleigh
problem for a power law fluid in the presence of an arbitrary time dependent magnetic field and presented an analytic
solution for when the magnetic field strength is proportional to t and t−1/2. Arbitrary time dependent magnetic fields were
addressed by Wafo-Soh [9]. Hayat and Kara [10] examined the flow of a third-grade fluid with a variable time dependent
magnetic field. It is apparent that MHD flow in the presence of a non-uniform space dependent magnetic field has received
less attention. To our knowledge, Chiam [11] has addressed the steady stagnation point flow near a stretching sheet in the
presence of a non-uniform applied magnetic field. He successfully obtained the similarity solution by adopting a special
form of the space dependent magnetic field. Nadeem and Akbar [12] discussed peristaltic flow with heat and mass transfer
in an annulus influenced by a radially varying magnetic field.

The main objective of the present letter is to move further on MHD flows under a non-uniform applied magnetic field.
For that, we choose to present the analytical solution for unsteady Couette flow in the presence of an arbitrary non-uniform
space dependent applied magnetic field. Further generalization is achieved by giving arbitrary velocity to one of the plates.
An analytical solution is obtained using a novel application of the perturbed eigenfunction expansion method for small
magnetic parameter.
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2. The problem definition

We consider an electrically conducting viscous fluid between two plates a distance L apart. The fluid is electrically
conducting and a non-uniformmagnetic field is applied in the direction transverse to the flow. The upper plate is stationary
while the lower plate suddenly starts moving with a generalized velocity kf (t), where k is the dimensional constant. The
problem statement can be written as

∂u
∂t

= υ
∂2u

∂y2
−

σ

ρ
B2(y)u (1)

u

L, t


= 0, t ≥ 0,

u

0, t


= kf (t), t ≥ 0, (2)

u (y, 0) = 0, 0 ≤ y ≤ L.

We define the non-dimensional variables

u =
u
u0

, y =
y
L

and t = ct. (3)

Eqs. (1) and (2) in the new variables are

∂u
∂t

= υ
∂2u
∂y2

−
σ

cρ
B2(y)u (4)

u (1, t) = 0 t ≥ 0,
u (0, t) = Kf (t) t ≥ 0, (5)
u (y, 0) = 0 0 ≤ y ≤ 1,

where υ =
υ

cL2
and σ

ρc B
2(y) are non-dimensional viscosity and magnetic field parameters. Writing B2(y) = B2

0r(y), where
r(y) is a non-dimensional function, Eq. (4) can be rewritten as

∂u
∂t

= υ
∂2u
∂y2

− εr(y)u (6)

where ε =
σB20
ρc is a small parameter (for small magnetic parameter). We decompose the function u(y, t) as

u (y, t) = V (y, t) + W (y, t) , (7)

whereW (y, t) satisfies

∂2W
∂y2

= 0, (8)

W (1, t) = 0 t ≥ 0,
W (0, t) = Kf (t) t ≥ 0.

(9)

The solution of Eqs. (8) and (9) is

W (y, t) = Kf (t)(1 − y). (10)

Now, using Eq. (10) in Eqs. (6) and (7) and writing the resulting equation for V (y, t) we obtain

∂V
∂t

= υ
∂2V
∂y2

− εr(y)V − H(y, t), (11)

V (1, t) = 0 t ≥ 0,
V (0, t) = 0 t ≥ 0, (12)
V (y, 0) = −W (y, 0) − 1 < y < 1

where

H(y, t) =
∂W
∂t

+ εr(y)W . (13)
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3. Perturbative eigenvalues and eigenfunctions

To proceed further, we define the related Sturm–Liouville (S–L) boundary value problem as

∂2φ

∂y2
+ (λ − εr(y)) φ = 0, (14)

ϕ(1) = 0, ϕ(0) = 0. (15)

It is important to note that the above boundary value problem constitutes a perturbed eigenvalue problem. We expand φ
and λ in power series in ε:

φ = φ0 + εφ1 + ε2φ2 + · · ·

λ = λ0 + ελ1 + ε2λ2 + · · · .
(16)

Substituting Eq. (16) in Eqs. (14) and (15), the leading order eigenvalue problem is

∂2φ0

∂y2
+ λ0φ0 = 0,

φ0(0) = 0, φ0(1) = 0.
(17)

The corresponding eigenvalues and eigenfunction are

λ0n = (nπ)2 with ϕ0n (y) = sin (nπy) for n = 1, 2, 3, . . . . (18)

The first-order system is given by

∂2φ1

∂y2
− r(y)φ0 + λ0φ1 + λ1φ0 = 0

φ1(0) = 0, φ1(1) = 0.
(19)

Now let us expand φ1 in terms of the eigenfunctions {φ0n} of the S–L problem (17)

φ1n =

∞
m=1

amnφ0n. (20)

Using Eq. (20) in Eq. (19) yields

−

∞
m=1

amnφ0mλ0m + −λ0n

∞
m=1

amnφ0n + λ1nφ0n − r(y)φ0n = 0. (21)

Multiplying both sides of Eq. (21) by φ0k and integrating from 0 to 1, we get

− aknλ0k + λ0nakn + λ1nδnk − Fnk = 0, (22)

where

Fnk =

 1

0
r(y)φ0nφ0kdy (23)

δnk =

 1

0
φ0nφ0kdy. (24)

Eq. (22) gives

λ1n = Fnn for n = k, (25)

akn =
Fkn

λ0n − λ0k
for n ≠ k. (26)

Eq. (20) together with Eqs. (25) and (26) yields

φ1n =


k≠n


Fkn

λ0n − λ0k


φ0k + annφ0n. (27)

To find ann, we normalize φ as 1

0
(φ0n + εφ1n + · · ·)2 dy = 1 (28)
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which at the O(ε) gives 1

0
φ0nφ1ndy = 0. (29)

Using (27) and the property of orthogonality of the eigenfunctions, we find
ann = 0. (30)

Using Eq. (30) in Eq. (27), we get

φ1n =


k≠n


Fkn

λ0n − λ0k


φ0k. (31)

From Eqs. (18) and (31), the two-term perturbation expansion for the eigenfunctions {φn} is expressed as
φn = φ0n + εφ1n

= sin (nπy) + ε

∞
k≠n
k=1


Fkn

λ0n − λ0k


φ0k + O(ε2). (32)

4. The solution of the problem

Having found the eigenfunctions (Eq. (31)) of the related eigenvalue problem, we revert back to Eq. (11). The function
H(y, t) and V (y, t) can be expanded as

H(y, t) =

∞
n=1

bn(t)ϕn(y), (33)

V (y, t) =

∞
n=1

An(t)ϕn(y). (34)

The coefficients in Eqs. (33) and (34) are conveniently written as

bn(t) = b0n(t) + εb1n(t) + O(ε2) (35)

An(t) = A0n(t) + εA1n(t) + O(ε2). (36)
Taking H (y, t) = H0(y, t) + εH1(y, t) and using Eqs. (32) and (35) in Eq. (33), we get

H0(y, t) + εH1(y, t) =

∞
n=1

(b0n(t) + εb1n(t))(ϕ0n(y) + εϕ1n(y))

=

∞
n=1

b0n(t)ϕ0n(y) + ε

∞
n=1

(b0n(t)ϕ1n(y) + b1n(t)ϕ0n(y)) + O(ε2). (37)

Comparing the coefficients of ε in Eq. (37), we have

H0(y, t) =

∞
n=1

b0n(t)ϕ0n(y) (38)

and

H1(y, t) =

∞
n=1

(b0n(t)ϕ1n(y) + b1n(t)ϕ0n(y)) . (39)

The coefficients in Eq. (35) can be determined using the orthogonality of the sets {ϕ0n} and {ϕ1n}:

b0n(t) =

 1
0 H0 (y, t) ϕ0n (y) dy 1

0 ϕ2
0n (y) dy

, (40)

b1n(t) =

 1
0 H2 (y, t) ϕ0n (y) dx 1

0 ϕ2
0n (y) dx

. (41)

In Eq. (41), H2(y, t) is

H2(y, t) = H1(y, t) +

∞
n=1

b0n(t)ϕ1n(y). (42)
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(a) Velocity profile for f (t) = sin(t), r(y) = e−y , K = 1, υ = 1
and n = 3.

(b) Velocity profile for f (t) = t , r(y) = y2 , K = 1, υ = 1 and
n = 3.

Fig. 1. Velocity profiles for different plate velocities and magnetic fields.

Expressing V (y, t) in terms of the eigenfunctions (Eq. (32)) gives

V =

∞
n=1

(A0n(t) + εA1n(t))(ϕ0n(y) + εϕ1n(y)). (43)

In what follows, we will calculate the constants appearing in Eq. (43) to reach the final destination V (y, t). Putting Eq. (43)
in Eq. (11), using Eqs. (17) and (19) in the resulting equation and taking the leading order term we arrive at

dA0n

dt
+ λ0nυA0n = b0n. (44)

The solution of Eq. (44) gives the coefficients A0n(t):

A0n(t) = e−λ0nυt

A0n(0) +

 t

0
b0n(τ )eλ0nυτdτ


(45)

where

A0n(0) = −2
 1

0
W (y, 0)φ0n(y)dy.

Following the same steps as for Eq. (45), the first-order term becomes
dA1n

dt
+ λ0nυA1n


φ0n = A0nυ(λ0nφ1n + λ1nφ0n) + b1nφ0n + b0nφ1n − φ1n

dA0n

dt
. (46)

Multiplying both sides of Eq. (46) by φ0n and integrating from 0 to 1, we get

dA1n

dt
+ λ0nυA1n = F(t) (47)

where

F(t) = A0nυλ1n + b1n. (48)

The solution of Eq. (38) gives

A1n(t) = −e−λ0nυt
 t

0
F(t)eλ0nυtdt. (49)

The solution V (y, t) can now be constructed from Eq. (43) with the help of Eqs. (45) and (49) which in turn gives the solution
u(y, t) through Eqs. (7) and (10). It is important to note that in the final solution all the functions are known once f (t) and
r(y) are specified. As an example, we draw the graph of u(y, t) by choosing two specific values of f (t) and r(y) in Fig. 1. The
plate velocity and the magnetic field being arbitrary, the other choices can be treated in a similar fashion.
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5. Closing remark

The perturbed eigenfunction method for small magnetic parameter is employed to develop an analytical solution for the
unsteady Couette flow. The fluid is subjected to an arbitrary space dependent magnetic field and the flow is generated by a
generalized velocity given to the lower plate. To our knowledge, the consideration of unsteady Couette flow for an arbitrary
space dependent magnetic field and the concept of perturbed eigenfunctions have not been addressed in the literature. We
hope that the idea of perturbed eigenfunctions will be useful in some future studies.
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