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We give a new combinatorial model of the Kirillov–Reshetikhin
crystals of type A(1)

n in terms of non-negative integral matrices
based on the classical RSK algorithm, which has a simple descrip-
tion of the affine crystal structure without using the promotion
operator. We have a similar description of the Kirillov–Reshetikhin
crystals associated to exceptional nodes in the Dynkin diagrams
of classical affine or non-exceptional affine type, which are called
classically irreducible together with those of type A(1)

n .
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1. Introduction

The Robinson–Schensted–Knuth (simply RSK) correspondence is a weight preserving bijection from
the set Mm×n of m ×n non-negative integral matrices to the set Tm×n of pairs of semistandard Young
tableaux of the same shape with entries from m and n letters, respectively [1].

The RSK map κ has nice representation theoretic interpretations from a viewpoint of the Kashi-
wara’s crystal base theory [2]. In [3], Lascoux shows that Mm×n has a glm ⊕ gln-crystal structure and
κ is an isomorphism of crystals, where one can define a glm ⊕ gln-crystal structure on Tm×n in an
obvious way following [4]. As an application, a non-symmetric Cauchy kernel expansion into a sum
of product of Demazure characters is obtained. In [5], the author shows that κ can be extended to an
isomorphism of glm+n-crystals. Here Mm×n or Tm×n can be regarded as a crystal associated to a gen-
eralized Verma module over glm+n . As an application, a weight generating function of plane partitions
in a bounded region is given as a Demazure character of glm+n . (See also [6] for another application
of RSK to the crystal base of a modified quantized enveloping algebra of type A+∞ and A∞ .)
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The purpose of this paper is to study the RSK correspondence further in this direction and discuss
its connection with affine crystals. It is motivated by the observation that Mr×(n−r) has a natural
affine crystal structure of type A(1)

n−1 for n � 2 and 1 � r � n − 1 by [5] and the symmetry of the
Dynkin diagram of A(1)

n−1. For s � 1, we let Ms
r×(n−r) be the set of matrices in Mr×(n−r) such that the

length of a maximal decreasing subsequence of its row or column word is no more than s. Then as
the main result in this paper, we show (Theorem 3.8) that as an affine crystal of type A(1)

n−1,

Ms
r×(n−r) ⊗ Tsωr

∼= Br,s, (1.1)

where Br,s is a perfect crystal [7] with highest weight sωr or the rectangular partition (sr) as a
classical gln-crystal, and Tsωr = {tsωr } is a crystal with wt(tsωr ) = sωr , εi(tsωr ) = ϕi(tsωr ) = −∞ for
all i.

To prove (1.1), two RSK maps κ↖ and κ↘ are considered, which map a matrix in Ms
r×(n−r) to a

pair of semistandard Young tableaux of normal and anti-normal shape, respectively. They turn out to
be the projections of Ms

r×(n−r) to a classical crystal of type An−1 corresponding to maximal parabolic

subalgebras obtained from A(1)
n−1 by removing the simple roots α0 and αr respectively. These two

RSK maps play an important role in proving the regularity of Ms
r×(n−r) ⊗ Tsωr and constructing the

isomorphism in (1.1). Note that Mr×(n−r) can be regarded as a limit of the crystals Br,s ⊗ T−sωr as s
goes to infinity.

Let g be an affine Kac–Moody algebra and let U ′
q(g) be the quantized enveloping algebra associated

to the derived subalgebra g′ = [g,g]. The finite dimensional irreducible U ′
q(g)-modules do not have

crystal bases in general. But it was conjectured by Hatayama et al. [8,9] that a certain family of finite
dimensional irreducible U ′

q(g)-modules W r,s called Kirillov–Reshetikhin modules (simply KR modules)
[10] have crystal bases, where r denotes a simple root index of g except 0 and s is an arbitrary
positive integer. The conjectured crystals Br,s are now called KR crystals.

For type A(1)
n−1, the KR crystals Br,s are the perfect crystals in (1.1). In this case, a combinatorial

description of Br,s was given by Shimozono [11] using semistandard Young tableaux of a rectangular
shape and the Schützenberger’s promotion operator [12]. But, the main advantage of our model using
r × (n − r) integral matrices is that the description of its crystal structure is remarkably simple, where
the crystal operators or Kashiwara operators corresponding to α0 and αr are given as adding ±1 at
the entries at southeast and northwest corners of a matrix, respectively (see Fig. 1).

Recently, the existence of KR crystals Br,s for the other classical affine or non-exceptional affine
type was proved by Okado and Schilling [13], and its combinatorial construction was given in [13,14],
where the Kashiwara–Nakashima tableaux [4] were used to describe the classical crystal structure
on Br,s .

We use (1.1) to obtain a new description of the KR crystals associated to so-called exceptional nodes
in the Dynkin diagrams of classical affine type (see [14, Table 1]). These crystals together with Br,s of
type A(1)

n−1 are called classically irreducible [15] since they are connected as a classical crystal, and they
are also perfect crystals [7].

We use the Kashiwara’s method of folding crystals [16] to construct Bn,s of type D(2)
n+1 and C (1)

n in
terms of symmetric non-negative integral matrices (Theorem 4.4), and we describe Bn−1,s and Bn,s of
type D(1)

n in terms of semistandard Young tableaux of type An−1 (Theorem 5.4). (See Figs. 2 and 3.)
In both cases, the affine crystal structures are given explicitly as in A(1)

n−1.
It would be nice to have a similar description of arbitrary KR crystals of classical affine type, but

we do not know how to generalize the method here in a natural way.

2. Preliminary

2.1. Quantum groups and crystals

Let us give a brief review on crystals (cf. [17,18]). Let A = (aij)i, j∈I be a generalized Cartan matrix
with an index set I . Consider a quintuple (A, P∨, P ,Π∨,Π) called a Cartan datum, where P∨ is a
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Fig. 1. The KR crystal B2,2 of type A(1)
3 where the vertices are given in terms of non-negative integral 2 × 2 matrices with the

length of column or row words no more than 2. This graph was implemented by SAGE.

free Z-module of finite rank, P = HomZ(P∨,Z), Π∨ = {hi | i ∈ I} ⊂ P∨ , and Π = {αi | i ∈ I} ⊂ P such
that 〈α j,hi〉 = aij for i, j ∈ I .

A crystal associated to (A, P∨, P ,Π∨,Π) is a set B together with the maps wt : B → P , εi,ϕi : B →
Z∪ {−∞} and ẽi, f̃ i : B → B ∪ {0} (i ∈ I) such that for b ∈ B and i ∈ I

(1) ϕi(b) = 〈wt(b),hi〉 + εi(b),
(2) εi (̃eib) = εi(b) − 1, ϕi (̃eib) = ϕi(b) + 1, wt(̃eib) = wt(b) + αi if ẽib �= 0,
(3) εi( f̃ ib) = εi(b) + 1, ϕi( f̃ ib) = ϕi(b) − 1, wt( f̃ ib) = wt(b) − αi if f̃ ib �= 0,
(4) f̃ ib = b′ if and only if b = ẽib′ for b,b′ ∈ B ,
(5) ẽib = f̃ ib = 0 if ϕi(b) = −∞,
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where 0 is a formal symbol. Here we assume that −∞ + n = −∞ for all n ∈ Z. Note that B is

equipped with an I-colored oriented graph structure, where b
i→ b′ if and only if b′ = f̃ ib for b,b′ ∈ B

and i ∈ I . We call B connected if it is connected as a graph, and normal if εi(b) = max{k | ẽk
i b �= 0}

and ϕi(b) = max{k | f̃ k
i b �= 0} for b ∈ B and i ∈ I . The dual crystal B∨ of B is defined to be the set

{b∨ | b ∈ B} with wt(b∨) = −wt(b), εi(b∨) = ϕi(b), ϕi(b∨) = εi(b), ẽi(b∨) = ( f̃ ib)∨ and f̃ i(b∨) = (̃eib)∨
for b ∈ B and i ∈ I . We assume that 0∨ = 0.

Let B1 and B2 be crystals. A morphism ψ : B1 → B2 is a map from B1 ∪ {0} to B2 ∪ {0} such that

(1) ψ(0) = 0,
(2) wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) = ϕi(b) if ψ(b) �= 0,
(3) ψ(̃eib) = ẽiψ(b) if ψ(b) �= 0 and ψ(̃eib) �= 0,
(4) ψ( f̃ ib) = f̃ iψ(b) if ψ(b) �= 0 and ψ( f̃ ib) �= 0,

for b ∈ B1 and i ∈ I . We call ψ an embedding and B1 a subcrystal of B2 when ψ is injective, and
call ψ strict if ψ : B1 ∪ {0} → B2 ∪ {0} commutes with ẽi and f̃ i for all i ∈ I , where we assume that
ẽi0 = f̃ i0 = 0. When ψ is a bijection, it is called an isomorphism. For bi ∈ Bi (i = 1,2), we say that b1
is equivalent to b2 if there exists an isomorphism of crystals C(b1) → C(b2) sending b1 to b2, where
C(bi) is the connected component in Bi including bi as an I-colored oriented graph.

A tensor product B1 ⊗ B2 of crystals B1 and B2 is defined to be B1 × B2 as a set with elements
denoted by b1 ⊗ b2, where

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
{
εi(b1), εi(b2) − 〈

wt(b1),hi
〉}

,

ϕi(b1 ⊗ b2) = max
{
ϕi(b1) + 〈

wt(b2),hi
〉
,ϕi(b2)

}
,

ẽi(b1 ⊗ b2) =
{

ẽib1 ⊗ b2, if ϕi(b1) � εi(b2),

b1 ⊗ ẽib2, if ϕi(b1) < εi(b2),

f̃ i(b1 ⊗ b2) =
{

f̃ ib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ f̃ ib2, if ϕi(b1) � εi(b2),

for i ∈ I . Here we assume that 0 ⊗ b2 = b1 ⊗ 0 = 0. Then B1 ⊗ B2 is a crystal.
Let g be a symmetrizable Kac–Moody algebra associated to A. Let P∨ be the dual weight lattice,

P = HomZ(P∨,Z) the weight lattice, Π∨ = {hi | i ∈ I} the set of simple coroots, and Π = {αi | i ∈ I}
the set of simple roots of g.

Let Uq(g) be the quantized enveloping algebra of g over Q(q) generated by ei , f i and qh for i ∈ I
and h ∈ P∨ . For a dominant integral weight Λ, let B(±Λ) be the crystal of an irreducible highest (re-
spectively lowest) weight Uq(g)-module with highest (respectively lowest) weight ±Λ. Then B(±Λ)

is a crystal associated to (A, P∨, P ,Π∨,Π). We say that a crystal B is regular if it is isomorphic to
the crystal of an integrable Uq(g J )-module for any J ⊂ I with | J | � 2, where g J is the Kac–Moody
algebra associated to A J = (aij)i, j∈ J . Note that a regular crystal is normal.

For Λ ∈ P , we denote by TΛ = {tΛ} a crystal with wt(tΛ) = Λ and εi(tΛ) = ϕi(tΛ) = −∞ for i ∈ I .

2.2. Quantum affine algebras

Assume that A is a generalized Cartan matrix of affine type with an index set I = {0,1, . . . ,n}
following [1, §4.8], and g is the associated affine Kac–Moody algebra with the Cartan subalgebra h.
Let P∨ = ⊕

i∈I Zhi ⊕ Zd ⊂ h be the dual weight lattice of g, where d is given by 〈α j,d〉 = δ0 j for
j ∈ I . Let δ = ∑

i∈I aiαi ∈ h∗ be the positive imaginary null root of g and let Λi ∈ h∗ (i ∈ I) be the i-th
fundamental weight such that 〈Λi,h j〉 = δi j for j ∈ I and 〈Λi,d〉 = 0. Then the weight lattice of g is
P = ⊕

i∈I ZΛi ⊕Z 1
a0

δ.
Let Pcl = P/(Qδ ∩ P ) = ⊕

i∈I ZΛi and (Pcl)
∨ = ⊕

i∈I Zhi , where we still denote the image of Λi in
Pcl by Λi . Then we define U ′

q(g) to be the subalgebra of Uq(g) generated by ei , f i and qh for i ∈ I and
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h ∈ (Pcl)
∨ . We regard Pcl as the weight lattice of U ′

q(g). For a proper subset J ⊂ I , let Π∨
J = {hi | i ∈ J }

and Π J = {αi | i ∈ J }, and let Uq(g J ) be the subalgebra of U ′
q(g) generated by ei , f i and qh for i ∈ J

and h ∈ (Pcl)
∨ .

From now on, we mean by a U ′
q(g)-crystal (respectively Uq(g J )-crystal) a crystal associated to

(A, (Pcl)
∨, Pcl,Π

∨,Π) (respectively (A J , (Pcl)
∨, Pcl,Π

∨
J ,Π J )). For simplicity, we will often write the

type of the generalized Cartan matrix A (or A J ) instead of g (or g J ).
The following lemma plays an important role in this paper to have a combinatorial realization of

KR crystals.

Lemma 2.1. (See Lemma 2.6 in [15].) Let g be of classical affine or non-exceptional affine type. Fix r ∈ I \ {0}
and s � 1. Then any regular U ′

q(g)-crystal that is isomorphic to the KR crystal Br,s as a Uq(gI\{0})-crystal is
also isomorphic to Br,s as a U ′

q(g)-crystal.

2.3. RSK algorithm

Let us recall some necessary background on semistandard tableaux following [19,20]. Let P be
the set of partitions. We identify a partition λ = (λi)i�1 with a Young diagram. We denote the length
of λ by �(λ) and the conjugate of λ by λ′ = (λ′

i)i�1. We let λπ be the skew Young diagram obtained
by 180◦-rotation of λ. For example,

(5,3,2) = , (5,3,2)π = .

Let A be a linearly ordered set. For a skew Young diagram λ/μ, let SSTA(λ/μ) be the set of all
semistandard tableaux of shape λ/μ with entries in A. Let WA be the set of finite words in A. For
T ∈ SSTA(λ/μ), let w(T ) be a word in WA obtained by reading the entries of T row by row from top
to bottom, and from right to left in each row.

Let sh(T ) denote the shape of a tableau T . If sh(T ) = ν (respectively νπ ) for some ν ∈ P , then
we say that T is of normal (respectively anti-normal) shape. For T ∈ SSTA(λ/μ), let T

↖
(respectively

T ↘) be the unique semistandard tableau of normal (respectively anti normal) shape such that w(T ↖)

(respectively w(T ↘)) is Knuth equivalent to w(T ). Note that if sh(T ↖) = ν , then sh(T ↘) = νπ .
For T ∈ SSTA(λ) and a ∈ A, let a → T be the tableau obtained by applying the Schensted’s column

insertion of a into T . For w = w1 · · · wr ∈WA , we define P(w) = (wr → (· · · (w2 → w1) · · ·)).
Let B be another linearly ordered set. Let

MA,B =
{

M = (mab)a∈A,b∈B
∣∣∣ mab ∈ Z�0,

∑
a,b

mab < ∞
}
. (2.1)

Let ΩA,B be the set of biwords (a,b) ∈ WA × WB such that (1) a = a1 · · ·ar and b = b1 · · ·br for
some r � 0, (2) (a1,b1) � · · · � (ar,br), where for (a,b) and (c,d) ∈ A × B, (a,b) < (c,d) if and
only if (b < d) or (b = d and a > c). Then we have a bijection from ΩA,B to MA,B , where (a,b)

is mapped to M(a,b) = (mab) with mab = |{k | (ak,bk) = (a,b)}|. Note that the pair of empty words
(∅,∅) corresponds to zero matrix. Let M ∈MA,B be given. Suppose that M = M(a,b) and it transpose
Mt = M(c,d) with (c,d) ∈ ΩB,A . Let P(M) = P(a) and Q(M) = P(c). Then we have a bijection called
the RSK correspondence:

κ :MA,B →
⊔
λ

SSTA(λ) × SSTB(λ),

where M is mapped to (P(M),Q(M)), and the union is over all λ with SSTA(λ) �= ∅ and SSTB(λ) �= ∅.
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3. KR crystals of type A(1)
n−1

3.1. Affine algebra of type A(1)
n−1

Assume that g = A(1)
n−1 (n � 2) with I = {0,1, . . . ,n − 1}. We put Ir = I \ {r} for r ∈ I , and I0,r =

I0 ∩ Ir for r ∈ I0. Note that gI0
∼= gIr = An−1 and gI0,r = Ar−1 ⊕ An−r−1.

Let εk = Λk − Λk−1 for k = 1, . . . ,n − 1 and εn = Λ0 − Λn−1. Then ε1 + · · · + εn = 0 and
⊕n

i=1 Zεi
forms a weight lattice of gI0 . Note that αi = εi − εi+1 for i ∈ I0 and α0 = εn − ε1 in Pcl. The funda-
mental weights for gI0 are ωi = Λi − Λ0 = ∑i

k=1 εk for i ∈ I0.
We regard [n] = {1 < · · · < n} as a Uq(gI0)-crystal B(ω1) with wt(k) = εk , and [n] = {n < · · · < 1} as

its dual crystal with wt(k) = −εk . Then W[n] and W[n] are regular Uq(gI0)-crystals, where we identify
w = w1 · · · wr with w1 ⊗ · · · ⊗ wr .

The fundamental weights for gIr are ω′
i = Λi − Λr for i ∈ Ir . Note that ωr = −ω′

0. In this case,
we may identify a Uq(gIr )-crystal B(ω′

r+1), the crystal of the natural representation of Uq(gIr ), with
[n]+r = {r + 1 ≺ · · · ≺ n ≺ 1 ≺ · · · ≺ r}.

3.2. Affine crystal Mr×(n−r)

For 1 � r � n − 1, let

Mr×(n−r) = M[r],[n]\[r] (3.1)

(see (2.1)). First note that Mr×(n−r) is a Uq(Ar−1)-crystal with respect to ẽi , f̃ i (1 � i � r − 1), where
x̃i M = M (̃xia,b) for x = e, f and M ∈ Mr×(n−r) with M = M(a,b). Here, we assume that x̃i M = 0
if x̃ia = 0. In a similar way, we may view Mr×(n−r) as a Uq(An−r−1)-crystal with respect to ẽi , f̃ i
(r + 1 � i � n − 1) by considering the transpose of M ∈ Mr×(n−r) as an element in M[n]\[r],[r] . Since
gI0,r = Ar−1 ⊕ An−r−1, Mr×(n−r) is a regular Uq(gI0,r )-crystal with wt(M) = ∑

i, j mi j(ε j − εi) for M =
(mi j) ∈Mr×(n−r) .

Now, let us define two more operators x̃0 and x̃r (x = e, f ) to make Mr×(n−r) a U ′
q(A(1)

n−1)-crystal.
For M = (mi j) ∈Mr×(n−r) , we define

ẽr M =
{

M − Err+1, if mrr+1 � 1,

0, otherwise,
f̃ r M = M + Err+1,

f̃0M =
{

M − E1n, if m1n � 1,

0, otherwise,
ẽ0M = M + E1n, (3.2)

where Ei j ∈ Mr×(n−r) denotes the elementary matrix with 1 at the position (i, j) and 0 elsewhere.
Put

εr(M) = max
{
k

∣∣ ẽk
r M �= 0

}
, ϕr(M) = εr(M) + 〈

wt(M),hr
〉
,

ϕ0(M) = max
{
k

∣∣ f̃ k
0 M �= 0

}
, ε0(M) = ϕ0(M) − 〈

wt(M),h0
〉
.

Then we have

Proposition 3.1. Mr×(n−r) is a U ′
q(A(1)

n−1)-crystal with respect to wt, εi , ϕi and ẽi, f̃ i (i ∈ I).

3.3. Young tableau description of Mr×(n−r) as a Uq(An−1)-crystal

Let us give another description of Mr×(n−r) in terms of semistandard tableaux. Consider

T ↘
r×(n−r) =

⊔
�(λ)�r,n−r

SST[r]
(
λπ

) × SST[n]\[r]
(
λπ

)
. (3.3)

By [4], SST[r](λπ ) × SST[n]\[r](λπ ) is a regular Uq(gI0,r )-crystal and so is T ↘
r×(n−r) .
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We will define ẽr, f̃ r on T ↘
r×(n−r) to make T ↘

r×(n−r) a Uq(gI0)-crystal. Let us first recall a combi-
natorial algorithm often called a signature rule, which will be used throughout the paper. Suppose
that σ = (. . . , σ−2, σ−1, σ0, σ1, σ2, . . .) is a sequence (not necessarily finite) with σk ∈ {+,−, ·} such
that σk = + or · for k � 0 and σk = − or · for k � 0. In σ , we replace a pair (σs, σs′ ) = (+,−),
where s < s′ and σt = · for s < t < s′ , with (·, ·), and repeat this process as far as possible until we
get a sequence with no − placed to the right of +. Such a reduced sequence will be denoted by σ̃ .
When we have an infinite sequence σ = (σ1, σ2, . . .) (respectively σ = (. . . , σ2, σ1)), we also under-
stand σ̃ as a reduced sequence obtained by applying the signature rule to a doubly infinite sequence
(. . . , ·, ·, ·, σ1, σ2, . . .) (respectively (. . . , σ2, σ1, ·, ·, ·, . . .)).

Now, let (S, T ) ∈ T ↘
r×(n−r) be given. For k � 1, let sk and tk be the entries in the top of the k-th

columns of S and T (enumerated from the right), respectively. We put

σk =

⎧⎪⎨⎪⎩
+, if the k-th column is empty,

+, if sk > r and tk > r + 1,

−, if sk = r and tk = r + 1,

·, otherwise.

Let σ̃ be the reduced sequence obtained from σ = (σ1, σ2, . . .) by the signature rule. Then we define
ẽr(S, T ) to be the bitableaux obtained from (S, T ) by removing r and r + 1 in the columns of S and
T corresponding to the right-most − in σ̃ . If there is no such − sign, then we define ẽr(S, T ) = 0.
We define f̃ r(S, T ) to be the bitableaux obtained from (S, T ) by adding r and r + 1 on top of the
columns of S and T corresponding to the left-most + in σ̃ . Note that f̃ k

r (S, T ) �= 0 for all k � 1.
We put εr(S, T ) = max{k | ẽk

r (S, T ) �= 0} and ϕr(S, T ) = εr(S, T ) + 〈wt(S, T ),hr〉, where wt(S, T ) =
wt(S) + wt(T ). Then T ↘

r×(n−r) is a Uq(gI0)-crystal with respect to wt, εi,ϕi and ẽi, f̃ i (i ∈ I0).

Example 3.2. Suppose that n = 6 and r = 3. Consider

(S, T ) =
(

3 2 2
3 2 1 1

,
4 4 4

5 5 5 6

)
.

Then

ẽ3(S, T ) =
(

2 2
3 2 1 1

,
4 4

5 5 5 6

)
,

and

f̃3(S, T ) =
(

3 2 2
3 3 2 1 1

,
4 4 4

4 5 5 5 6

)
.

Define

κ↘ :Mr×(n−r) → T ↘
r×(n−r) (3.4)

by κ↘(M) = (P(M)↘,Q(M)↘). By [5, Theorem 3.6], we have the following.

Proposition 3.3. κ↘ is an isomorphism of Uq(gI0 )-crystals.

Example 3.4. Let (S, T ) be as in Example 3.2. Then (S, T ) = κ↘(M), where

M =
[1 0 1

2 1 0
0 2 0

]
.

We have
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ẽ3M =
[ 0 0 1

2 1 0
0 2 0

]

and κ↘ (̃e3M) = ẽ3(S, T ).

Next, let us consider

T ↖
r×(n−r) =

⊔
�(λ)�r,n−r

SST[r](λ) × SST[n]\[r](λ). (3.5)

As in T ↘
r×(n−r) , T ↖

r×(n−r) is a regular Uq(gI0,r )-crystal. Let us define ẽ0, f̃0 on T ↖
r×(n−r) to make T ↖

r×(n−r)

a Uq(gIr )-crystal. Let (S, T ) ∈ T ↖
r×(n−r) be given. For k � 1, let sk and tk be the entries in the bottom

of the k-th columns of S and T (enumerated from the left), respectively. We put

σk =

⎧⎪⎨⎪⎩
−, if the k-th column is empty,

−, if sk < 1 and tk < n,

+, if sk = 1 and tk = n,

·, otherwise.

Let σ̃ be the reduced sequence obtained from σ = (. . . , σ2, σ1) by the signature rule. We define
ẽ0(S, T ) to be the bitableaux obtained from (S, T ) by adding 1 and n to the bottom of the columns
of S and T corresponding to the right-most − in σ̃ . We define f̃0(S, T ) to be the bitableaux obtained
from (S, T ) by removing 1 and n in the columns of S and T corresponding to the left-most +
in σ̃ . If there is no such + sign, then we define f̃0(S, T ) = 0. Note that ẽk

0(S, T ) �= 0 for all k � 1.

We put ϕ0(S, T ) = max{k | f̃ k
0 (S, T ) �= 0} and ε0(S, T ) = ϕ0(S, T ) − 〈wt(S, T ),h0〉. Then T ↖

r×(n−r) is

a Uq(gIr )-crystal with respect to wt, εi,ϕi and ẽi, f̃ i (i ∈ Ir ).
Define

κ↖ :Mr×(n−r) → T ↖
r×(n−r) (3.6)

by κ↖(M) = (P(M)↖,Q(M)↖) = (P(M),Q(M)). By the same argument as in [5, Theorem 3.6], we
have the following.

Proposition 3.5. κ↖ is an isomorphism of Uq(gIr )-crystals.

3.4. Main theorem

For M ∈ Mr×(n−r) with M = M(a,b), let �(M) be the maximal length of weakly decreasing sub-
words of a. For s � 1, let

Ms
r×(n−r) = {

M ∈ Mr×(n−r)
∣∣ �(M) � s

}
. (3.7)

Note that �(M) is the number of columns in P(M) or Q(M) (cf. [19, §3.1]). We regard Ms
r×(n−r) as a

subcrystal of Mr×(n−r) and define a U ′
q(A(1)

n−1)-crystal

Br,s = Ms
r×(n−r) ⊗ Tsωr . (3.8)

Lemma 3.6. Br,s is a regular U ′
q(A(1)

n−1)-crystal that is isomorphic to B(sωr) as a Uq(gI0)-crystal.

Proof. When restricted to Ms
r×(n−r) , we have the following bijections

κ↘ :Ms
r×(n−r) → T ↘,s

r×(n−r), κ↖ :Ms
r×(n−r) → T ↖,s

r×(n−r), (3.9)
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where

T ↘,s
r×(n−r) =

⊔
�(λ)�r,n−r

λ1�s

SST[r]
(
λπ

) × SST[n]\[r]
(
λπ

)
,

T ↖,s
r×(n−r) =

⊔
�(λ)�r,n−r

λ1�s

SST[r](λ) × SST[n]\[r](λ).

Since T ↘,s
r×(n−r) (respectively T ↖,s

r×(n−r)) can be viewed as a subcrystal of T ↘
r×(n−r) (respectively T ↖

r×(n−r)),

κ
↘

(respectively κ↖) is an isomorphism of Uq(gI0) (respectively Uq(gIr ))-crystals.

First we claim that T
↘,s

r×(n−r) ⊗ Tsωr is isomorphic to B(sωr) as a Uq(gI0)-crystal. Recall that B(sωr)

can be identified with SST[n]((sr)) [4].

Let (S, T ) ∈ T ↘,s
r×(n−r) be given where sh(S) = sh(T ) = λπ for some λ ∈ P with λ1 � s. Consider an

isomorphism of Uq(g{1,...,r−1})-crystals,

ς : SST[r]
(
λπ

) ⊗ Tsωr → SST[r]
(
λc),

where λc = (sr) \ λπ = (s − λr, . . . , s − λ1) is a rectangular complement of λπ in (sr) (see [21,
Lemma 5.8] for an explicit description of ς , which is given as σ s). Let Sc = ς(S ⊗ tsωr ) and let U
be the semistandard tableau in SST[n]((sr)) obtained by gluing Sc and T . Therefore, the map sending
(S, T ) ⊗ tsωr to U defines a weight preserving bijection (with the same notation)

ς :T ↘,s
r×(n−r) ⊗ Tsωr → SST[n]

((
sr)). (3.10)

By definition, it is straightforward to check that ς commutes with ẽr and f̃ r , which therefore implies
that it is an isomorphism of Uq(gI0 )-crystals.

Next consider T ↖,s
r×(n−r) ⊗ Tsωr = T ↖,s

r×(n−r) ⊗ T−sω′
0
. We claim that T ↖,s

r×(n−r) ⊗ Tsωr is isomorphic
to B(−sω′

0) as a Uq(gIr )-crystal. Since B(−sω′
0) = B(sω′

t) where t ≡ 2r (mod n), B(−sω′
0) can be

identified with SST[n]+r ((sr)).

Let (S, T ) ∈ T ↖,s
r×(n−r) be given where sh(S) = sh(T ) = λ for some λ ∈ P with λ1 � s. By modifying

the bijection in [21, Lemma 5.8] (exchanging k∨ and k), we have an isomorphism of Uq(g{1,...,r−1})-
crystals,

ς : SST[r](λ) ⊗ Tsωr → SST[r]
((

sr)/λ)
.

Let Sc = ς(S ⊗ tsωr ) and let U be the semistandard tableau in SST[n]+r ((sr)) obtained by gluing Sc

and T . Then the map sending (S, T ) ⊗ tsωr to U defines a weight preserving bijection (with the same
notation)

ς :T ↖,s
r×(n−r) ⊗ Tsωr → SST[n]+r

((
sr)). (3.11)

As in (3.10), ς commutes with ẽ0 and f̃0 and it is an isomorphism of Uq(gIr )-crystals.
Now, for a proper subset J ⊂ I with | J | � 2, we have J ⊂ I0 or J ⊂ Ir or J ⊂ {0, r}. By (3.10) and

(3.11), Br,s is a crystal of an integrable Uq(g J )-module. Hence it is a regular U ′
q(A(1)

n−1)-crystal. �
Example 3.7. Assume that n = 6 and r = 3. Consider

M =
[1 0 1

2 1 0
0 2 0

]
∈ M4

3×3.
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Then we have

P(M)↘ = 3 2 2
3 2 1 1

, Q(M)↘ = 4 4 4
5 5 5 6

.

Note that as an element in a Uq(A2)-crystal, P(M)↘ is equivalent to

1 1 3 3
2

.

By gluing it with Q(M)↘ , we have

1 1 3 3
2 4 4 4
5 5 5 6

∈ B(4ω3),

which is equivalent to M ⊗ t4ω3 ∈ B3,4 as an element in a Uq(gI0) (= Uq(A5))-crystal. If we view
M ∈M5

4×3, then M ⊗ t5ω3 ∈ B3,5 corresponds to

1 1 1 3 3
2 2 4 4 4
3 5 5 5 6

∈ B(5ω3).

On the other hand, we have

P(M)↖ = 3 3 2 2
2 1 1

, Q(M)↖ = 4 4 4 6
5 5 5

.

Note that as an element in a Uq(A2)-crystal, P(M)↖ is equivalent to

1
1 2 3 3

.

By gluing it with Q(M)↖ , we have

4 4 4 6
5 5 5 1
1 2 3 3

∈ B
(−4ω′

0

) ∼= B
(
4ω′

0

)
,

which is equivalent to M ⊗ t4ω3 ∈ B3,4 as an element in a Uq(gI3) (= Uq(A5))-crystal.

Theorem 3.8. Let Br,s be the KR crystal of type A(1)
n−1 for 1 � r � n − 1 and s � 1. Then as a U ′

q(A(1)
n−1)-crystal,

we have Br,s ∼= Br,s .

Proof. Note that Br,s is isomorphic to B(sωr) as a Uq(gI0)-crystal [7]. Then it follows from Lemmas 2.1
and 3.6 that Br,s ∼= Br,s . �
4. Classically irreducible KR crystals of type D(2)

n+1 and C (1)
n

4.1. Affine algebras of type D(2)
n+1 and C (1)

n

Assume that g = A(1)
2n−1 (n � 2) with I = {0,1, . . . ,2n−1} and the Cartan datum (A, P∨, P ,Π∨,Π),

and ĝ = D(2)
n+1 or C (1)

n with Î = {0, . . . ,n} and the Cartan datum ( Â, P̂∨, P̂ , Π̂∨, Π̂).
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A(1)
2n−1:

©

©

©
�
�

�
�

· · ·

· · ·©

©

©�
�

�
�

α0

α2n−1

α1 αn−1

αn+1

αn

D(2)
n+1: © © © ©�⇒⇐� · · ·

α̂0 α̂1 α̂n−1 α̂n

C (1)
n : © © © ©⇐��⇒ · · ·

α̂0 α̂1 α̂n−1 α̂n

Throughout this section, we assume that ε ∈ {1,2} and ĝ = D(2)
n+1 (respectively ĝ = C (1)

n ) when
ε = 1 (respectively ε = 2). Put Îr = Î \ {r} (r = 0,n) and Î0,n = Î0 ∩ În . Note that ĝ̂I0

∼= ĝ̂In
= Bn (re-

spectively Cn) when ε = 1 (respectively ε = 2) and ĝ̂I0,n
= An−1. We may assume that

P̂∨ = Zh0 ⊕ · · · ⊕Zhn ⊕Zd ⊂ P∨,

P̂ =
{
λ

∣∣∣ 1

ε
〈λ,hi〉 ∈ Z (i = 0,n), 〈λ,hi〉 = 〈λ,h2n−i〉 (i ∈ Î0,n)

}
⊂ P ,

Π̂∨ = {̂
hi = hi (i ∈ Î)

} ⊂ Π∨,

Π̂ = {
α̂i = εαi (i = 0,n), α̂i = αi + α2n−i (i ∈ Î0,n)

} ⊂ Π.

The classical weight lattice of ĝ is P̂cl = ⊕
i∈̂I ZΛ̂i and its dual classical weight lattice is ( P̂cl)

∨ =⊕
i∈̂I Zhi , where Λ̂i = εΛi for i = 0,n and Λ̂i = Λi + Λ2n−i for i ∈ Î0,n . Note that α̂i = ε̂i − ε̂i+1

(i ∈ I0,n), where ε̂i = εi − ε2n−i+1 for i = 1, . . . ,n, α̂0 = −εε̂1 and α̂n = εε̂n in P̂cl. We denote the
fundamental weights for ĝI0 by ω̂i = ωi + ω2n−i for i ∈ Î0,n and ω̂n = εωn , and those for ĝIn by
ω̂′

i = ω′
i + ω′

2n−i for i ∈ Î0,n and ω̂′
0 = εω′

0 = −ω̂n .

4.2. Crystals of symmetric matrices

Put

M̂n = {
M = (mi j) ∈ Mn×n

∣∣ mi j = m ji and ε|mii for i, j ∈ [n]}. (4.1)

Define

êi =
{

(̃ei)
ε, for i = 0,n,

ẽĩe2n−i, for i ∈ Î0,n,
f̂ i =

{
( f̃ i)

ε, for i = 0,n,

f̃ i f̃2n−i, for i ∈ Î0,n.

Note that Mn×n is a U ′
q(A(1)

2n−1)-crystal with respect to wt, εi , ϕi and ẽi , f̃ i (i ∈ I) by Proposition 3.1.

Then it is not difficult to see that M̂n ∪ {0} is invariant under êi and f̂ i for i ∈ Î (cf. [5, Proposi-
tion 5.14]). For M ∈ M̂n , define ŵt(M) = wt(M),

ε̂i(M) =
{ 1

ε εi(M), if i = 0,n,

εi(M), if i ∈ Î0,n,
ϕ̂i(M) =

{ 1
ε ϕi(M), if i = 0,n,

ϕi(M), if i ∈ Î0,n.

Hence M̂n is a U ′
q (̂g)-crystal with respect to ŵt, ε̂i , ϕ̂i , êi , f̂ i (i ∈ Î).

Consider

T̂ ↘
n =

⊔
�(λ)�n

SST[n]
(
ελπ

)
, T̂ ↖

n =
⊔

�(λ)�n

SST[n](ελ), (4.2)
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where 2λ = (2λi)i�1 for λ = (λi)i�1 ∈ P . They are regular Uq (̂ĝI0,n
)-crystals with respect to ẽi , f̃ i

(i ∈ Î0,n). Here wt(T ) = −∑
i∈[n] mi ε̂i , for T ∈ T̂ ↘

n or T̂ ↖
n , where mi is the number of i’s appearing

in T .
Let us define ẽn , f̃n on T̂ ↘

n corresponding to α̂n as follows: Let T ∈ T̂ ↘
n be given. Suppose that

ε = 1. For k � 1, let tk be the entry in the top of the k-th column of T (enumerated from the right).
Consider σ = (σ1, σ2, . . .), where

σk =
{+, if tk > n or the k-th column is empty,

−, if tk = n.

Then we define ẽn T to be the tableau obtained from T by removing n in the column corresponding
to the right-most − in σ̃ . If there is no such − sign, then we define ẽn T = 0. We define f̃n T to be
the tableau obtained from T by adding n on top of the column corresponding to the left-most +
in σ̃ . Suppose that ε = 2. For each k � 1, let (t2k, t2k−1) the pair of entries in the top of the 2k-th and
(2k − 1)-st columns of T (from the right), respectively. Note that t2k and t2k−1 are placed in the same
row and t2k � t2k−1. Consider σ = (σ1, σ2, . . .), where

σk =
{+, if t2k, t2k−1 > n or the (2k − 1)-st column is empty,

−, if t2k = t2k−1 = n,

·, otherwise.

Then we define ẽn T and f̃n T in the same way as in ε = 1 with n replaced by n n .

Hence T̂ ↘
n is a U ′

q (̂ĝI0
)-crystal with respect to wt, εi , ϕi , ẽi , f̃ i (i ∈ Î0), where εn(T ) = max{k |

ẽk
n T �= 0} and ϕn(T ) = εn(T ) + 〈wt(T ), ĥn〉.

Proposition 4.1. The map κ̂↘ :M̂n → T̂ ↘
n given by κ̂↘(M) = P(M)↘ is an isomorphism of Uq (̂ĝI0

)-crystals.

Proof. It follows from [22, Propositions 3.5 and 6.5]. �
Next, let us define ẽ0, f̃0 on T̂ ↖

n corresponding to α̂0 as follows: Let T ∈ T̂ ↖
n be given. Suppose

that ε = 1. For k � 1, let tk be the entry in the bottom of the k-th column of T (enumerated from the
left). Consider σ = (. . . , σ2, σ1), where

σk =
{−, if tk < 1 or the k-th column is empty,

+, if tk = 1.

Then we define ẽ0T to be the tableau obtained from T by adding 1 to the bottom of the column
corresponding to the right-most − in σ̃ . We define f̃0T to be the tableau obtained from T by re-
moving 1 in the column corresponding to the left-most + in σ̃ . If there is no such + sign, then
we define f̃0T = 0. Suppose that ε = 2. For k � 1, let (t2k−1, t2k) be the pair of entries in the bottom
boxes of the (2k − 1)-st and 2k-th columns of T (from the left), respectively. Note that t2k−1 and t2k
are placed in the same row and t2k−1 � t2k . Consider σ = (. . . , σ2, σ1), where

σk =
⎧⎨⎩−, if t2k−1, t2k < 1 or the (2k − 1)-st column is empty,

+, if t2k−1 = t2k = 1,

·, otherwise.

Then we define ẽn T and f̃n T in the same way as in ε = 1 with 1 replaced by 1 1 .

Hence T̂ ↖
n is a U ′

q (̂ĝIn
)-crystal with respect to wt, εi , ϕi , ẽi , f̃ i (i ∈ În), where ϕ0(T ) = max{k |

f̃ k
0 T �= 0} and ε0(T ) = ϕ0(T ) − 〈wt(T ), ĥ0〉. Then we have

Proposition 4.2. The map κ̂↖ :M̂n → T̂ ↖
n given by κ̂↖(M) = P(M)↖ is an isomorphism of Uq (̂ĝIn

)-
crystals.
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4.3. KR crystals Bn,s

For s � 1, let M̂s
n = M̂n ∩ Mεs

n×n . We regard M̂s
n as a subcrystal of M̂n and consider a U ′

q (̂g)-
crystal

Bn,s = M̂s
n ⊗ Tsω̂n . (4.3)

Lemma 4.3. Bn,s is a regular U ′
q (̂g)-crystal that is isomorphic to B(sω̂n) as a Uq (̂ĝI0

)-crystal.

Proof. By (3.9), we have bijections

κ̂↘ :M̂s
n → T̂ ↘,s

n , κ̂↖ :M̂s
n → T̂ ↖,s

n , (4.4)

where T̂ ↘,s
n (respectively T̂ ↖,s

n ) is the set of tableaux T ∈ T̂ ↘
n of sh(T ) = ελπ (respectively ελ)

with λ ⊂ (εsn). We may regard T̂ ↘,s
n and T̂ ↖,s

n as subcrystals of T̂ ↘
n and T̂ ↖

n , respectively. Then
by Propositions 4.1 and 4.2, the bijections in (4.4) are isomorphisms of Uq (̂ĝI0

) and Uq (̂ĝIn
)-crystals,

respectively. On the other hand, by [5, Remark 5.16] (or as a special case of [22, Theorem 6.4] when
λ is the empty partition), we have Bn,s ∼= T̂ ↘,s

n ⊗ Tsω̂n
∼= B(sω̂n) as a Uq (̂ĝI0

)-crystal, and Bn,s ∼=
T̂ ↖,s

n ⊗ Tsω̂n
∼= B(−sω̂′

0)
∼= B(sω̂′

0) as a Uq (̂ĝIn
)-crystal. This implies that Bn,s is regular. �

Theorem 4.4. Let Bn,s be the KR crystal of type ĝ for s � 1. Then as a U ′
q (̂g)-crystal, we have Bn,s ∼= Bn,s .

Proof. Since Bn,s ∼= B(sω̂n) as an Uq (̂ĝI0
)-crystal (cf. [14]), we have Bn,s ∼= Bn,s by Lemmas 2.1

and 4.3. �
5. Classically irreducible KR crystals of type D(1)

n

5.1. Affine algebra of type D(1)
n

Assume that g = D(1)
n (n � 4) with I = {0,1, . . . ,n}. Put Ir = I \ {r} (r = 0,n), and I0,n = I0 ∩ In .

Note that gI0
∼= gIn = Dn and gI0,n = An−1.

D(1)
n :

©

©
© ©

©

©

��

�� · · · ��

��

α0

α1

α2 αn−2

αn−1

αn

Let ε1 = Λ1 −Λ0, ε2 = Λ2 −Λ1 −Λ0, εk = Λk −Λk−1 for k = 3, . . . ,n−2, εn−1 = Λn−1 +Λn −Λn−2
and εn = Λn −Λn−1. Then

⊕n
i=1 Zεi forms a weight lattice of gI0 . Note that αi = εi − εi+1 for i ∈ I0,n ,

αn = εn−1 + εn , and α0 = −ε1 − ε2 in Pcl. The fundamental weights for gI0 are ωi = ∑i
k=1 εk for

i = 1, . . . ,n − 2, ωn−1 = (ε1 + · · · + εn−1 − εn)/2 and ωn = (ε1 + · · · + εn−1 + εn)/2. We denote the
fundamental weights for gIn by ω′

i for i ∈ In , where ω′
i = ωi for i ∈ I0,n and ω′

0 = −ωn .

5.2. Young tableau descriptions of B(sωn) and B(−sω′
0)

Consider

T ↘
n =

⊔
λ′

i : even
�(λ)�n

SST[n]
(
λπ

)
. (5.1)
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Fig. 2. The KR crystal graph B2,2 of type C (1)
2 .

It is a regular Uq(gI0,n )-crystal with respect to ẽi and f̃ i for i ∈ I0,n , where wt(T ) = −∑
i∈[n] miεi (mi

is the number of i’s in T ) for T ∈ T ↘
n .

Let T ∈ T ↘
n be given. For k � 1, let tk be the entry in the top of the k-th column of T (enumerated

from the right). Consider σ = (σ1, σ2, . . .), where

σk =
⎧⎨⎩+, if tk > n − 1 or the k-th column is empty,

−, if the k-th column has both n − 1 and n as its entries,
·, otherwise.
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Fig. 3. The KR crystal graph B4,2 of type D(1)
4 . Here ≡ denotes the Knuth equivalence or Uq(A3)-crystal equivalence.

Define ẽn T and f̃n T as in the case of T̂ ↘
n (see Section 4) with n replaced by

n

n − 1
. Then T ↘

n

is a Uq(gI0 )-crystal with respect to wt, εi , ϕi , ẽi , f̃ i (i ∈ I0), where εn(T ) = max{k | ẽk
n T �= 0} and

ϕn(T ) = εn(T ) + 〈wt(T ),hn〉.
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For s � 1, let T ↘,s
n be the set of tableaux T ∈ T ↘

n of shape λπ with λ ⊂ (sn), and consider T ↘,s
n

as a subcrystal of T ↘
n .

Lemma 5.1. T ↘,s
n ⊗ Tsωn is isomorphic to B(sωn) as a Uq(gI0)-crystal.

Proof. First we prove the case when s = 1. Recall that B(ωn) is the crystal of the spin representation
of Uq(gI0), and by [4] it can be identified with {v = (i1, . . . , in) | ik = ±1, i1 · · · in = 1}, where wt(v) =
1
2

∑n
k=1 ikεk and

ẽk v =
{

(. . . ,−ik,−ik+1, . . .), if k ∈ I0,n and (ik, ik+1) = (−1,1),

(. . . ,−in−1,−in), if k = n and (in−1, in) = (−1,−1),

0, otherwise,

f̃k v =
{

(. . . ,−ik,−ik+1, . . .), if k ∈ I0,n and (ik, ik+1) = (1,−1),

(. . . ,−in−1,−in), if k = n and (in−1, in) = (1,1),

0, otherwise.

Note that T ↘,1
n is the set of semistandard tableaux with a single column of even length no more

than n. Define ρ :T ↘,1
n ⊗ Tωn → B(ωn) by ρ(T ⊗ tωn ) = (i1, . . . , in), where ik = −1 if and only if

k appears in T . Note that the empty tableau is mapped to (1, . . . ,1) of weight ωn . Then ρ is an
isomorphism of Uq(gI0)-crystals.

For s � 1, consider the map

ιs :T ↘,s
n ⊗ Tsωn → (

T ↘,1
n

)⊗s ⊗ Tsωn
∼= (

T ↘,1
n ⊗ Tωn

)⊗s ∼= B(ωn)⊗s,

where for ιs(T ⊗ tsωn ) = T 1 ⊗ · · · ⊗ T s ⊗ tsωn (T i is the i-th column of T from the right). Then it is
straightforward to check that ιs is a strict embedding of Uq(gI0)-crystals, and its image is isomorphic
to the connected component of ∅⊗s ⊗ tsωn , where ∅ is the empty tableau. Since ∅⊗s ⊗ tsωn is a highest

weight element of weight sωn in B(ωn)⊗s , T ↘,s
n ⊗ Tsωn is isomorphic to B(sωn). �

Next, consider

T ↖
n =

⊔
λ′

i : even
�(λ)�n

SST[n](λ). (5.2)

As in T ↘
n , it is a regular Uq(gI0,n )-crystal. Let T ∈ T ↖

n be given. For k � 1, let tk be the entry in the
bottom of the k-th column of T (enumerated from the left). Consider σ = (. . . , σ2, σ1), where

σk =
⎧⎨⎩−, if tk < 2 or the k-th column is empty,

+, if the k-th column has both 1 and 2 as its entries,
·, otherwise.

Define ẽ0T and f̃0T as in the case of T̂ ↖
n (see Section 4) with 1 replaced by 2

1
. Then T ↖

n is a

Uq(gIn )-crystal with respect to wt, εi , ϕi , ẽi , f̃ i (i ∈ In), where ϕ0(T ) = max{k | f̃ k
0 T �= 0} and ε0(T ) =

ϕ0(T ) − 〈wt(T ),h0〉.
For s � 1, let T ↖,s

n be the set of tableaux T ∈ T ↖
n of shape λ with λ ⊂ (sn) consider T ↖,s

n as a
subcrystal of T ↖

n .

Lemma 5.2. T ↖,s
n ⊗ Tsωn is isomorphic to B(−sω′

0) as a Uq(gIn )-crystal.

Proof. The proof is similar to that of Lemma 5.1. �
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5.3. KR crystals Bn,s

For a semistandard tableau T of skew shape, let [T ] denote the equivalence class of T with respect
to Knuth equivalence. For n � 4, let

Tn = {[T ] ∣∣ T ∈ T ↘
n

} = {[T ] ∣∣ T ∈ T ↖
n

}
. (5.3)

Recall that under ẽi and f̃ i for i ∈ I0,n , any T ′ ∈ [T ] generates the same crystal as T . Hence, Tn has a
well-defined Uq(gI0,n )-crystal structure. Now, for i = 0,n and x = e, f , we define

x̃i[T ] =
{ [̃x0T ↖], if i = 0,

[̃xn T ↘], if i = n,
(5.4)

where we assume that [0] = 0. Put

wt
([T ]) = wt(T ), εi

([T ]) = εi(T ), ϕi
([T ]) = ϕi(T ) (i ∈ I0,n),

εn
([T ]) = εn

(
T ↘)

, ϕn
([T ]) = ϕn

(
T ↘)

,

ε0
([T ]) = εn

(
T ↖)

, ϕ0
([T ]) = ϕn

(
T ↖)

. (5.5)

Then, Tn is a U ′
q(g)-crystal with respect to wt, εi , ϕi , ẽi , f̃ i (i ∈ I).

Now, for s � 1, we put T s
n = {[T ] | T ∈ T ↘,s

n } = {[T ] | T ∈ T ↖,s
n }, which is a subcrystal of Tn , and

then define

Bn,s = T s
n ⊗ Tsωn . (5.6)

Lemma 5.3. Bn,s is a regular U ′
q(g)-crystal that is isomorphic to B(sωn) as a Uq(gI0)-crystal.

Proof. By definition of Bn,s and Lemmas 5.1 and 5.2, we have Bn,s ∼= T ↘,s
n ⊗ Tsωn

∼= B(sωn) as a

Uq(gI0)-crystal, and Bn,s ∼= T ↖,s
n ⊗ Tsωn

∼= B(−sω′
0) as a Uq(gIn )-crystal. This implies that Bn,s is reg-

ular. �
Theorem 5.4. Let Bn,s be the KR crystal of type g = D(1)

n for s � 1. Then as a U ′
q(g)-crystal, we have

Bn,s ∼= Bn,s .

Proof. Since Bn,s ∼= B(sωn) as a Uq(gI0 )-crystal (cf. [14]), we have Bn,s ∼= Bn,s by Lemmas 2.1
and 5.3. �
Remark 5.5. One may expect a matrix realization of Bn,s as in the cases of A(1)

n−1, D(2)
n+1 and C (1)

n .
In fact, there is a variation of RSK map which is a bijection from Tn to a set of symmetric non-
negative integral matrices with trace zero and also an isomorphism of Uq(An−1)-crystals (see [21,
Proposition 3.13] when m = 0). But there does not seem to be a natural extension to an isomorphism
of Uq(Dn)-crystals (and hence Uq(D(1)

n )-crystals).

5.4. KR crystals Bn−1,s

Let us give a combinatorial description of Bn−1,s to complete the list of KR crystals associated to
exceptional nodes in the Dynkin diagram of classical affine type. In this case, we put

Bn−1,s = T̃ s
n ⊗ Tsωn , (5.7)

where T̃ s
n is defined in the same way as T s

n in Section 5.3 with λ′
i being odd for all i (see (5.2)). Then

Bn−1,s ∼= Bn−1,s, (5.8)

where Bn−1,s is the KR crystal isomorphic to B(sωn−1) as a Uq(gI0)-crystal. The proof is almost iden-
tical to that of Theorem 5.4. So we leave the details to the reader.
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6. Remarks on ẽ0 and ˜f0

6.1. Lusztig involution

Let η be the involutive automorphism of Uq(An−1) given by η(ei) = fn−i , η( f i) = en−i , and
η(qhi ) = q−hn−i (i = 1, . . . ,n − 1). Let w0 be the longest element in the Weyl group of An−1. Recall
that w0(αi) = −αn−i for i = 1, . . . ,n − 1. Let B be a crystal of a finite dimensional Uq(An−1)-module.
Then by [23, Proposition 21.1.2], we have an induced map

η : B → B (6.1)

such that η2(b) = b, wt(η(b)) = w0(wt(b)), η(̃ei(b)) = f̃n−iη(b) and η( f̃ ib) = ẽn−iη(b) for b ∈ B and
i = 1, . . . ,n − 1. Similarly, one can define η on a crystal of a finite dimensional Uq(Am−1 ⊕ An−1)-
module for m,n � 2.

In [24], it is shown that η coincides with the Schützenberger’s involution (see e.g. [19]) when
B = SST[n](λ) for λ ∈ P with �(λ) � n. Indeed, for T ∈ SST[n](λ), let T ′ be the tableau obtained by
180◦-rotation of T and replacing i with n − i + 1. Then η(T ) = (T ′)↖ .

Based on our combinatorial descriptions, we have the following characterization of ẽ0 and f̃0 on
classically irreducible KR crystals in terms of η on an underlying classical crystal of type A.

Proposition 6.1. Let Br,s be a classically irreducible KR crystal of type g (s � 1) (that is, for r = 1, . . . ,n − 1
when g = A(1)

n−1 , r = n when g = D(2)
n+1 , C (1)

n , r = n,n − 1 when g = D(1)
n , and s � 1). Let η denote the

involution (6.1) on Br,s as a crystal of type g J with J = I \ {0, r}. Then we have on Br,s

ẽ0 = η ◦ f̃ r ◦ η, f̃0 = η ◦ ẽr ◦ η.

Proof. We assume that x = e (respectively f ) when y = f (respectively e) throughout the proof.
Case 1. Br,s of type A(1)

n−1 for r = 1, . . . ,n − 1 and s � 1. Note that g J = Ar−1 ⊕ An−r−1. Consider

π :Mr×(n−r) →Mr×(n−r) , where π(M) is obtained by 180◦-rotation of M . By definition of ẽ0 and f̃0
on Mr×(n−r) , we have x̃0 = π ◦ ỹr ◦ π .

Let M = M(a,b) be given with a = i1 · · · ik . Then π(M) = M(aπ ,bπ ) with aπ = r − ik + 1 · · ·
r − i1 + 1. Also, if Mt = M(c,d) with c = j1 · · · jl , then π(Mt) = M(cπ ,dπ ) with cπ = (n − jl +
r + 1) · · · (n − j1 + r + 1). This implies that

x̃i M �= 0 ⇐⇒ ỹn−i+rπ(M) �= 0, (6.2)

for i ∈ I0,r , where the indices are assumed to be in Zn . On the other hand, we have

x̃i M �= 0 ⇐⇒ ỹn−i+rη(M) �= 0, (6.3)

for i ∈ I0,r .
Let M = (mi j) be a g J -highest weight element in Mr×(n−r) , where mi j = 0 unless i = j, and

mrr+1 � mr−1r+2 � mr−2r+2 � · · · . It is easy to see that π(M) = η(M). Then it follows from (6.2) and
(6.3) that π = η and hence x̃0 = η ◦ ỹr ◦ η on Mr×(n−r) . Since Br,s is a subcrystal of Mr×(n−r) ⊗ Tsωr ,
we have x̃0 = η ◦ ỹr ◦ η on Br,s .

Case 2. Bn,s of type D(2)
n+1, C (1)

n for s � 1. The proof is similar to Case 1.

Case 3. Br,s of type D(1)
n for r = n,n − 1 and s � 1. Let us prove the case Bn,s . The proof for Bn−1,s

is almost the same.
Let [T ] ∈ Tn be given. Define a map π :Tn → Tn , where π([T ]) = [T ′] and T ′ is obtained by 180◦-

rotation of T and replacing each entry i in T with n − i + 1. By definition, x̃i T �= 0 if and only if
ỹn−i T ′ �= 0 (i = 1, . . . ,n − 1). This implies that [T ′] = [η(T )]. Moreover, if T is of normal shape, then
we have by definition of x̃0 and ỹn (see Section 5.2) x̃0([T ]) = (π ◦ ỹn ◦ π)([T ]). Since the action of η
is also well-defined on Tn (that is, η([T ]) = [η(T )]), we conclude that x̃0 = η ◦ ỹn ◦ η. Since Bn,s is a
subcrystal of Tn ⊗ Tsωn , we have x̃0 = η ◦ ỹn ◦ η on Bn,s . �
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6.2. A connection with the Schützenberger’s promotion operator

Let pr be the Schützenberger’s promotion operator on SST[n](λ) for λ ∈ P with �(λ) � n [12],
which satisfies for T ∈ SST[n](λ) with wt(T ) = m1ε1 + m2ε2 + · · · + mnεn

(1) wt(pr(T )) = mnε1 + m1ε2 + · · · + mn−1εn ,
(2) pr(̃ei T ) = ẽi+1(pr(T )) and pr( f̃ i T ) = f̃ i+1(pr(T )) for i = 1, . . . ,n − 2.

Note that pr is the unique map on SST[n](λ) satisfying (1) and (2), and pr is of order n if and only if λ

is a rectangle (see [15, Proposition 3.2]). It is shown in [11] that on Br,s of type A(1)
n−1 (r = 1, . . . ,n −1,

s � 1)

ẽ0 = pr−1 ◦ ẽ1 ◦ pr, f̃0 = pr−1 ◦ f̃1 ◦ pr.

Suppose that g = A(1)
n−1. For k ∈ I , let ηk denote the involution (6.1) on crystals of type gI0,k . Here

gI0,0 = gI0 . Let λ ∈ P be given with �(λ) � n. Put ξ = η1 ◦ η0. By definition of ξ , it is straightforward
to check that

(1) wt(ξ(T )) = mnε1 + m1ε2 + · · · + mn−1εn ,
(2) ξ(̃ei T ) = ẽi+1(ξ(T )) and ξ( f̃ i T ) = f̃ i+1(ξ(T )) for i = 1, . . . ,n − 2.

By the uniqueness of pr, we have pr = η1 ◦ η0 on SST[n](λ).

Lemma 6.2. We have η0 ◦ ẽ0 = f̃0 ◦ η0 on Br,s .

Proof. First, we claim that

ẽ0 = η1 ◦ f̃1 ◦ η1, f̃0 = η1 ◦ ẽ1 ◦ η1. (6.4)

Note that prn = idBr,s . We have pr ◦ ẽn−1 = prn−1 ◦ ẽ1 ◦ pr−n+2 = pr−1 ◦ ẽ1 ◦ pr2 = ẽ0 ◦ pr. Since pr =
η1 ◦ η0, we have ẽ0 = η1 ◦ η0 ◦ ẽn−1 ◦ η0 ◦ η1 = η1 ◦ η0 ◦ η0 ◦ f̃1 ◦ η1 = η1 ◦ f̃1 ◦ η1. Similarly, we have
f̃0 = η1 ◦ ẽ1 ◦ η1. Now, by (6.4), we have

η0 ◦ ẽ0 = η0 ◦ pr−1 ◦ ẽ1 ◦ pr = η0 ◦ η0 ◦ η1 ◦ ẽ1 ◦ η1 ◦ η0 = f̃0 ◦ η0. �
Proposition 6.3. Let Br,s be a KR crystal of type A(1)

n−1 for 1 � r � n−1 and s � 1. Then we have prk = ηk ◦η0 ,
on Br,s for 1 � k � n − 1.

Proof. It is not difficult to see that the highest (respectively lowest) weight elements in Br,s as a
Uq(gI0,k )-crystal are parametrized by the partitions λ ⊂ (sr), say bh.w.

λ (respectively bl.w.
λ ). Note that

ηk ◦ x̃i = ỹn+k−i ◦ ηk for i ∈ I0,k and ηk(b
h.w.
λ ) = bl.w.

λ for λ ⊂ (sr). Here x = e (respectively f ) when
y = f (respectively e), and the indices are assumed to be in Zn .

Let ξk = prk ◦ η0. It is straightforward to check that ξk ◦ x̃i = ỹn+k−i ◦ ξk for i ∈ I0,k . This implies
that ξk(b

h.w.
λ ) is a lowest weight element as a Uq(gI0,k )-crystal and wt(ξk(b

h.w.
λ )) = wt(bl.w.

λ ). Hence,

we have ξk(b
h.w.
λ ) = bl.w.

λ , and ξk(b) = ηk(b) for b ∈ Br,s . �
Corollary 6.4. Under the above hypothesis, we have ẽ0 = ηk ◦ f̃k ◦ ηk and f̃0 = ηk ◦ ẽk ◦ ηk on Br,s for
1 � k � n − 1.

Proof. Since pr−k ◦ ẽk ◦ prk = ẽ0, we have η0 ◦ηk ◦ ẽk ◦ηk ◦η0 = ẽ0 by Proposition 6.3. Hence, we have
ηk ◦ ẽk ◦ ηk = η0 ◦ ẽ0 ◦ η0 = f̃0 by Lemma 6.2. Similarly, we have f̃0 = ηk ◦ ẽk ◦ ηk . �
Remark 6.5. By Proposition 6.3, η0 and η1 on Br,s generate the action of the dihedral group of or-
der 2n. When k = r, Corollary 6.4 also implies Proposition 6.1 for type A(1)

n−1.
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