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Abstract                                                                                                                                                                                                           
The present study investigates unsteady fluid flow through a curved rectangular duct of aspect ratio 0.5 and curvature 0.5. 
Numerical calculations are carried out by using a spectral method, and covering a wide range of the pressure gradient parameter, 
the Dean number, 6000 12000Dn  and the Grashof number, 100 2000Gr for two cases of the duct, Case-I: Stationary 
duct and Case-II:  Rotating duct. The outer wall of the duct is heated while the inner wall cooled. The main concern of the 
present study is to discuss the unsteady flow behavior i.e whether the unsteady flow is steady-state, periodic, multi-periodic or 
chaotic, if Dn or Gr is increased. For a stationary duct, we investigate the unsteady flow characteristics for the Dean number 
6000 12000Dn and the Grashof number 100 2000,Gr and it is found that the unsteady flow undergoes in the scenario 
‘steady-state  periodic multi-periodic chaotic’, if Gr is increased. For rotating duct, however, we investigate the 
unsteady flow characteristics for the Taylor number 100 1000Tr , and it is found that the unsteady flow undergoes through 
various flow instabilities, if Dn or Gr is increased. Typical contours of secondary flow patterns and temperature profiles are also 
obtained, and it is found that the unsteady flow consists of a single-, two-, and multi-vortex solutions. 
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1. Introduction 
 

     Recently, great attention has been paid for the study of flow and heat transfer through curved ducts and channels 
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because of their ample applications in fluids engineering. Since rotating machines were introduced into engineering 
applications, such as rotating systems, gas turbines, electric generators, heat exchangers, cooling system and some 
separation processes, scientists have paid considerable attention to study rotating curved duct flows. The readers are 
referred to Nandakumar and Masliyah [1] and Yanase et al. [2] for some outstanding reviews on curved duct flows.   
 The fluid flowing in a rotating curved duct is subjected to two forces: the Coriolis force due to rotation and the 
centrifugal force due to curvature. For isothermal flows of a constant property fluid, the Coriolis force tends to 
produce vortices while centrifugal force is purely hydrostatic. When a temperature induced variation of fluid density 
occurs for non-isothermal flows, both Coriolis and centrifugal type buoyancy forces can contribute to the generation 
of vortices. These two effects of rotation either enhance or counteract each other in a non-linear manner depending 
on the direction of wall heat flux and the flow domain. Therefore, the effect of system rotation is more subtle and 
complicated and yields new; richer features of flow and heat transfer in general, bifurcation and stability in 
particular, for non-isothermal flows. Selmi and Nandakumer [3] and Yamamoto et al. [4] performed studies on the 
flow in a rotating curved rectangular duct. Recently, Mondal et al. [5] performed numerical prediction of the non-
isothermal flows through a rotating curved square duct. They performed time-evolution calculations of the unsteady 
solutions with and without symmetry condition. Mondal et al. [6] performed numerical prediction of the unsteady 
solutions for rotating curved square duct flow with negative rotation and discussed the transitional behavior of the 
unsteady solutions. Employing finite volume method, Wang and Cheng [7] examined the flow characteristics and 
heat transfer in curved square ducts for positive rotation and found reverse secondary flow for the co-rotation cases. 
Recently, Mondal et al. [8] performed numerical investigation of the non-isothermal flows through a rotating curved 
square duct and obtained substantial results. In the succeeding paper, Mondal et al. [9] performed spectral numerical 
study to investigate the unsteady flow characteristics for the non-isothermal flows through a curved rectangular duct 
and showed transitional behavior of the unsteady solutions. However, there is no known study on the rotating curved 
rectangular duct flows for small aspect ratio. The present paper is, therefore, an attempt to fill up this gap with 
studying the effects of rotation on the flow characteristics for such flows.  
 

2. Governing Equations 
 

     
 Consider a hydro-dynamically and thermally fully developed two-dimensional flow of viscous incompressible 
fluid through a rotating curved duct with rectangular cross section, whose height and wide are 2h and 2l, 
respectively. The coordinate system with the relevant notation is shown in Fig. 1. The system rotates at a constant 
angular velocity T around the y′ axis. It is assumed that the outer wall of the duct is heated while the inner wall 
cooled. The variables are non-dimensionalized by using the representative length and velocity.

   
 
 
 
                                            
                                              
                                                 
 

 
 
 
 
 

Fig. 1. Coordinate system. 
 
      Since the flow field is uniform in the z  direction, the sectional stream function  is introduced as, 
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     The basic equations for the axial velocity w, the stream function  and the temperatureT are derived from the 
Navier-Stokes equations and the energy equation under the Boussinesq approximation as, 
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The non-dimensional parameters Dn , the Dean number,Tr , the Taylor number, Gr, the Grashof number and Pr, the 
Prandtl number, which appear in equations (2) to (4) are defined as: 
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where the parameters denote their usual meaning. In this study, the aspect ratio is considered as 0.5, Gr =100, 
0.5  and Pr 7.0 (water). The rigid boundary conditions for w  and  are used as 

                ( 1, ) ( , 1) ( 1, ) ( , 1) ( 1, ) ( , 1) 0w y w x y x y x
x y

                                              (6) 

and the temperature T  is assumed to be constant on the walls as (1, ) 1, ( 1, ) 1, ( , 1) .T y T y T x x                      
 

3. Method of Numerical Calculations 
 
 

       In order to obtain the numerical solutions, spectral method is used. The main objective of the method is to use 
the expansion of the polynomial functions i.e. the variables are expanded in the series of functions consisting of 
Chebyshev polynomials. By this method the expansion functions )(xn  and  )(xn  are expressed as  

                                                           
2( ) (1 ) ( ),
2 2( ) (1 ) ( )

x x C xn n

x x C xn n
                                                                   (7) 

where 1( ) cos cos ( )C x n xn  is the n-th order Chebyshev polynomial. ),,(),,,( tyxtyxw  and ),,( tyxT  are 

expanded in terms of the expansion functions )(xn  and )(xn  as 
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where M  and N  are the truncation numbers. In order to calculate the unsteady solutions, the Crank-Nicolson and 
Adams-Bashforth methods together with the function expansion (8) and the collocation methods are applied.   

4. Resistance Coefficient 
 
 

       We use the resistance coefficient  as one of the representative quantities of the flow state. It is also called the 
hydraulic resistance coefficient, and is generally used in fluids engineering, defined as  

                                                               
* * 21 *1 2 ,* * 2

P P
w
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                                                                       (9) 

where quantities with an asterisk denote the dimensional ones,  stands for the mean over the cross section of the 

rectangular duct.. Since * * */ ,1 2P P z G   is related to the mean non-dimensional axial velocity w  as                   
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5.  Results and Discussion 
 
5.1 Case I: Non-Rotating Duct 
 
      We studied the time evolution of  for 10500Dn at Gr = 1500 as shown in Figure 2(a). We found that the flow 
is steady-state for 10500Dn  at Gr = 1500. Note that the unsteady flow for 10500Dn is also steady-state. We 
also show typical contours of secondary flow patterns and temperature profiles in Fig. 2(b).  

 
       

 
        

             
 

                      T 
  
            (a)                                                                                         (b) 
 
Fig. 2. (a) Time evolution of  at time 0 30t  for 10500Dn and 1500Gr for the aspect ratio 0.5 and curvature 

0.5; (b) Secondary flow pattern and temperature profile for 10500Dn and 1500Gr . 
 
         Then, we studied the time evolution for 11000Dn  at Gr =1000 as shown in Fig. 3(a). We found that the 
flow is multi-periodic for 11000Dn  at Gr = 1000. In order to see the multi-periodic oscillations more clearly, we 
show contours of secondary flow patterns, temperature profiles and axial flow distribution in Fig. 3(b). It is found 
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that the unsteady flow is an asymmetric two-vortex solution. We obtained time evolution of  for 12000Dn  at Gr 
=1500, it is found that the flow is chaotic for 12000Dn  at Gr = 1500. In order to see the chaotic flow behavior, 
we also obtained typical contours of secondary flow patterns, temperature profiles and axial flow distribution, and it 
is found that the unsteady flow is an asymmetric two-vortex solution. The results are not shown here for brevity.  
 
 

 
 

 
       T 
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                                                                                        t          27.15               27.20                27.22             27.24 
                                             (a)                                                                                    (b) 

Fig. 3. (a) Time evolution of  for 11000Dn and 1000Gr ; (b) Secondary flow patterns (top), temperature 
profiles (middle) and axial flow distribution (bottom) for 11000Dn and 1000Gr . 

5.2 Case II:  Rotating duct 
 

       We studied the time evolution of  for the rotating curved duct at 10750Dn  and Tr = -100 as shown in Fig. 
4(a). It is found that the flow is a steady-state solution for 10750Dn . We also show typical contours of secondary 
flow patterns and axial flow distribution as shown in Fig. 4(b). It is found that the secondary flow is a two-vortex 
solution. Then we studied the time evolution of  for 10750Dn  and Tr = - 500 as shown in Fig. 5(a). We found 
that the flow is periodic for 10750Dn . Contours of secondary flow patterns and temperature profile are shown in 
Fig. 5(b). As seen in Fig. 5(b), the periodic flow oscillates between asymmetric two-vortex solutions for Tr = -100. 
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 (a)                                                                                                       t         26.16              26.17             26.18              26.19                                    

 (b) 
Fig. 4. (a) Time evolution of  for 10750Dn and 500Tr ; (b) Secondary flow patterns (top) and axial flow 

distribution (bottom) for 10750Dn  and 500Tr . 
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Fig. 5. (a) Time evolution of  for 10750Dn and 700Tr ; (b) Secondary flow patterns (top) and axial flow 
distribution (bottom) for 10750Dn and 700Tr . 

           
      We then studied time evolution of  for 10750Dn  and Tr = - 700 as shown in Fig. 5(a). It is found that the 
flow is chaotic for 10750Dn and Tr = - 700. In order to view the flow behavior of chaotic solution clearly, we 
also show typical contours of secondary flow patterns and axial flow distribution in Fig. 5(b). As seen in Fig. 5(b), 
the chaotic flow oscillates between asymmetric six-vortex solutions. 
 
 
 
 
 
  
 
 
 
 
 (a)                                                                                 (b) 
 

Fig. 6. Unsteady solutions at a glance aspect ratio 0.5 and curvature 0.5, (a) Non-rotating duct; (b) Rotating duct. 
 

Phase diagrams in the Dn Gr and Dn Tr plane 
 

       Finally, we show complete unsteady solutions obtained by the numerical computation in the present study, by 
two phase diagrams in Fig. 6(a) in the Dn Gr and Dn Tr planes for 9000 13000Dn  and 0 2000Gr for 
the stationary duct flow, while in Fig. 6(b) in the Dn Tr  plane for 5000 12000Dn and 900 0Tr for the 
rotating curved duct flow. In this figure, circles indicate steady-state solution, crosses periodic solution and triangles 
chaotic solution. As seen in Fig. 6, the steady flow turns into chaotic flow through periodic or multi-periodic flows. 
 
6. Conclusion  
 

     The present study addresses fully developed two dimensional flow of viscous incompressible fluid flow through 
a curved rectangular duct of aspect ratio 0.5 and for strong curvature 0.5. Numerical calculations are carried out by 
using a spectral method, and covering a wide range of the pressure gradient parameter, the Dean number, 
6000 12000Dn  and the Grashof number, 100 2000Gr  for two cases of the duct, Case-I: Non-Rotating duct 
and Case-II:  Rotating duct. After a comprehensive survey over the parametric ranges for a stationary curved duct, it 
is found that the unsteady flow undergoes in the scenario ‘steady-state  periodic multi-periodic chaotic’, if 
Gr is increased. For a rotating curved duct, we considered the rotation of the duct in the negative direction, and it is 
found that steady-state flow turns into chaotic flow through periodic or multi-periodic oscillations, if Dn or Gr is 
increased. Typical contours of secondary flow patterns and temperature profiles are also obtained, and it is found 
that the unsteady flow consists of a single-, two-, and multi-vortex solutions. It is suggested that chaotic flows 
enhance heat transfer more effectively in the fluid than the periodic solutions because of the formation of many 
secondary vortices appearing at the outer wall of the duct. 
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