Copper is an indispensable nutrient for functioning of various cell processes. Essential for copper uptake in human cells and have been also implicated in various biological processes, including iron metabolism, essential for copper uptake in human cells and have been also implicated in various biological processes, including iron metabolism, and neurological function. It is a significant component of several enzymes involved in essential metabolic pathways, including the cytochrome c oxidase and the copper-zinc superoxide dismutase.

Regis Pomes 1,2

The cytosol interface constitutes a steric bottleneck whose location coincides with a 15-A˚ hydrophobic constriction straddling the membrane-coronary interface. Results show that a 15-A˚ hydrophobic constriction straddling the membrane-coronary interface. The location of this constriction is determined by the position of the extracellular gate. To gain further insight into dynamics and cooperativity of these states and the concerted motions underlying their interconversion through semi-open with a bridging water molecule, and open. The interconversion of these states is thought to occur through a series of intermediate states known as lock states. The lock states are characterized by the presence of a bridging water molecule, which stabilizes the inactive state of the receptor.

The study of the dynamics of the lock states is important for understanding the mechanism of receptor activation. The lock states are thought to be involved in the coupling of the extracellular and intracellular domains, which is essential for the functional activity of the receptor. The concerted motions involved in the interconversion of the lock states are thought to be mediated by the movement of the extracellular domain, which leads to a conformational change in the intracellular domain. The concerted motions are thought to be important in the activation of the receptor and the coupling of the G-protein, which is essential for the transmission of the signal from the receptor to the intracellular machinery.

Regis Pomes 1,2

Corresponding author: regis.pomes@ontario.ca

1. University of North Carolina at Greensboro, Greensboro, NC, USA, 2. University of Rochester Medical School, Rochester, NY, USA, 3. IBM, Yorktown Heights, NY, USA.

Regis Pomes 1,2

The study of the dynamics of the lock states is important for understanding the mechanism of receptor activation. The lock states are characterized by the presence of a bridging water molecule, which stabilizes the inactive state of the receptor. The lock states are thought to be involved in the coupling of the extracellular and intracellular domains, which is essential for the functional activity of the receptor. The concerted motions involved in the interconversion of the lock states are thought to be mediated by the movement of the extracellular domain, which leads to a conformational change in the intracellular domain. The concerted motions are thought to be important in the activation of the receptor and the coupling of the G-protein, which is essential for the transmission of the signal from the receptor to the intracellular machinery.

Regis Pomes 1,2

MOR bundles in a three step process and the ligand binding pocket was identified. Docking studies suggested that naloxone, a MOR antagonist, binds in the TMH3-2-6-7 region of the MOR such that the N-allyl group sterically prohibits the movement of the N-9.

The study of the dynamics of the lock states is important for understanding the mechanism of receptor activation. The lock states are characterized by the presence of a bridging water molecule, which stabilizes the inactive state of the receptor. The lock states are thought to be involved in the coupling of the extracellular and intracellular domains, which is essential for the functional activity of the receptor. The concerted motions involved in the interconversion of the lock states are thought to be mediated by the movement of the extracellular domain, which leads to a conformational change in the intracellular domain. The concerted motions are thought to be important in the activation of the receptor and the coupling of the G-protein, which is essential for the transmission of the signal from the receptor to the intracellular machinery.

Regis Pomes 1,2

The study of the dynamics of the lock states is important for understanding the mechanism of receptor activation. The lock states are characterized by the presence of a bridging water molecule, which stabilizes the inactive state of the receptor. The lock states are thought to be involved in the coupling of the extracellular and intracellular domains, which is essential for the functional activity of the receptor. The concerted motions involved in the interconversion of the lock states are thought to be mediated by the movement of the extracellular domain, which leads to a conformational change in the intracellular domain. The concerted motions are thought to be important in the activation of the receptor and the coupling of the G-protein, which is essential for the transmission of the signal from the receptor to the intracellular machinery.