
RESEARCH NOTE

Survival of Mycobacterium ulcerans at 37°C
M. Eddyani and F. Porteals

Mycobacteriology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium

ABSTRACT

Bone infection and metastatic spread in cases of Buruli ulcer imply that Mycobacterium ulcerans is able to survive and multiply at 37°C. This study investigated the survival at 37°C of M. ulcerans isolates from diverse geographical and clinical sources. Although the viability of all isolates decreased after a few days at 37°C, viable bacilli remained after 13 days at 37°C in most instances. African isolates of M. ulcerans were more thermotolerant than isolates from temperate regions. Isolates from skin and bone lesions of the same patients showed no difference in thermotolerance.

Keywords Buruli ulcer, geographical origin, Mycobacterium ulcerans, survival, thermotolerance

Original Submission: 2 March 2007; Revised Submission: 25 April 2007; Accepted: 7 May 2007
Clin Microbiol Infect 2007; 13: 1033–1035
10.1111/j.1469-0691.2007.01791.x

Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU), grows optimally on mycobacteriological media at 30–32°C [1]. M. ulcerans classically infects skin and subcutaneous tissue, where the pathogen encounters favourable growth temperatures. However, metastatic spread to distant skin sites or bone also occurs [2–5], suggesting that M. ulcerans is able to survive and/or multiply at 37°C. The present study investigated the survival of M. ulcerans at 37°C on Löwenstein–Jensen medium. The results may have implications for: (i) a better understanding of the clinical features of the disease, with bone involvement resulting from metastatic spread; (ii) the treatment of lesions with local heat; and (iii) the epidemiology and transmission of the disease in relation to survival of M. ulcerans in the environment at high temperatures.

Seventeen isolates of M. ulcerans from ten countries were initially studied. Tubes of Löwenstein–Jensen medium were inoculated with serial dilutions of suspensions of bacteria and incubated at 37°C for 0, 3, 6, 9 or 24 h, and 2, 3, 6, 9 or 13 days, and thereafter at 32°C for 12 weeks. The number of surviving bacilli was estimated by counting the number of CFU. Inactivation curves were obtained for each isolate by plotting CFU/mL against exposure time at 37°C on a semi-logarithmic scale. The slope of the inactivation curves was expressed as decimal reduction time (D), measuring heat resistance and the time needed to inactivate 90% of the bacterial population at a given temperature. A higher D value thus indicates a greater thermotolerance [6,7].

Table 1 shows that a decrease in viability occurred for all isolates after a few days at 37°C, but with large variations for individual isolates. However, for all isolates except those from Japan, China and French Guiana, viable bacilli were still present after incubation for 13 days at 37°C. The
D values varied between 2.17 days for a Chinese isolate, and 16.98 days for an isolate from Benin (ITM 03-0216). This means that it takes 2.17 days at 37°C to reduce a bacterial population of 1000 CFU of the Chinese isolate to a population of 100 CFU, while the same reduction would take 16.98 days for the isolate from Benin. Thus, the Chinese isolate was much more sensitive to heat inactivation at 37°C than was the isolate from Benin. The average D value of 9.03 days for African isolates was higher than that for isolates from other continents, but this was only significant when compared with isolates from non-tropical countries in Australasia (p 0.027). In non-tropical regions of Australia, China and Japan, BU is complicated only rarely by the osteomyelitis or multifocal forms that are seen in Africa [4,5]. For this reason, African strains might be expected to tolerate prolonged incubation at 37°C. Schulze-Röbbecke and Buchholtz [7] found a D value of 2.33 days at 37°C for a *Mycobacterium marinum* strain from Philadelphia, USA, which is comparable to the values obtained in the present study for isolates from non-tropical regions (average 3.33 days).

In a collection at this laboratory of 944 *M. ulcerans* isolates from worldwide locations, 215 (22.8%) showed growth at 37°C. Of these, 189 (87.9%) isolates yielded more colonies at 30°C, and only 23 (10.7%) showed the same growth at 37°C and 30°C. Interestingly, three (1.5%) African isolates yielded more colonies at 37°C than at 30°C, which is in agreement with the higher thermotolerance of African isolates at 37°C that was observed in the present study. African strains of *M. ulcerans* also show genetic differences as compared with strains from other continents [8–12]. In addition, they are much more virulent in a mouse model (F. Portaels et al., unpublished data) and produce a different mycolactone [13].

Nineteen isolates from nine patients in Benin with both bone and skin lesions were also studied (Table 1). There was no difference in thermotolerance among isolates from skin and bone specimens (mean D values of 6.21 vs. 6.34 days, respectively). The disparity between the thermotolerance of *M. ulcerans* to 37°C on Löwenstein–Jensen medium and its resistance to the same temperature in infected bone may be explained by the differences between local conditions in the bone and the bacteriological growth medium.

In view of the efficacy of heat treatment, survival of *M. ulcerans* should also be tested at temperatures >37°C (e.g., 40°C). Meyers et al. [14] have demonstrated that a rigorously controlled regimen of local heat therapy at 40°C can be curative for BU. Moreover, it was also found that subsequent growth at 32°C was retarded after exposure of cultures of the bacteria to 37°C for 1 day, and was completely inhibited after exposure to 40°C for 10 days. In a previous study, it was observed that exposure to 41°C for 1 day kills >90% of the bacilli [15].

<table>
<thead>
<tr>
<th>Strain number</th>
<th>Country of origin</th>
<th>D value (days)</th>
<th>Patient number</th>
<th>Strain number</th>
<th>Origin of specimen</th>
<th>D value (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITM 5142</td>
<td>Australia (Victoria); human tissue (ATCC 19423)</td>
<td>5.74</td>
<td>97-10</td>
<td>ITM 97-0952</td>
<td>Skin</td>
<td>4.28</td>
</tr>
<tr>
<td>ITM 95-1112</td>
<td>Australia (Victoria); human tissue</td>
<td>3.18</td>
<td></td>
<td>ITM 97-0684</td>
<td>Bone</td>
<td>7.27</td>
</tr>
<tr>
<td>ITM 8756</td>
<td>Japan; human tissue (ATCC 33728)</td>
<td>2.22</td>
<td>98-301</td>
<td>ITM 99-0826</td>
<td>Skin</td>
<td>10.60</td>
</tr>
<tr>
<td>ITM 98-0912</td>
<td>China; human tissue</td>
<td>2.17</td>
<td></td>
<td>ITM 99-0742</td>
<td>Bone</td>
<td>5.90</td>
</tr>
</tbody>
</table>

Table 1. Isolates of *Mycobacterium ulcerans* from different geographical or clinical origins showing their decimal reduction times (D values) at 37°C.
Tolerance of *M. ulcerans* to moderately elevated temperatures may have implications for the epidemiology of BU in tropical and non-tropical countries. In southern Australia, which has a mild temperate climate, it has been hypothesised that *M. ulcerans* spreads in the environment through aerosols arising from contaminated water, which may, in turn, infect humans through contamination of skin lesions [16]. This seems plausible in the temperate climate of southern Australia, but in tropical areas, such as Australia, temperatures away from water can be sufficiently elevated (>40°C) for *M. ulcerans* not to survive in aerosols.

In conclusion, isolates obtained from skin and bone lesions of the same patients show no difference in thermotolerance, but African isolates of *M. ulcerans* appear to be more thermotolerant than isolates from temperate regions. There was an increase in the D values, from 3.3 days for isolates from non-tropical Australasia to 9.03 days for isolates from Africa. This observation could be linked to the fact that osteomyelitis and multifocal lesions occur in Africa, but almost never occur in non-tropical Australasia.

ACKNOWLEDGEMENTS

The authors greatly appreciate the comments and advice of M. T. Silva, S. R. Pattyn and R. Schulze-Röbbecke. This work was supported by the Damien Foundation (Brussels, Belgium) and by grants G.0471.03N and G.0375.05N from the Fund for Scientific Research of Flanders (Brussels, Belgium).

REFERENCES