
Journal of Computer and System Sciences 57, 289�308 (1998)

Arity Bounds in First-Order Incremental Evaluation and Definition of
Polynomial Time Database Queries*

Guozhu Dong-

Department of Computer Science, University of Melbourne, Parkville, Victoria 3052, Australia
E-mail: dong�cs.mu.oz.au

and

Jianwen Su�

Department of Computer Science, University of California, Santa Barbara, California 93106

E-mail: su�cs.ucsb.edu

Received December 6, 1995; revised October 9, 1997

After inserting a tuple into or deleting a tuple from a database, a first-
order incremental evaluation system (or a ``foies'') for a database query
derives the new query answer by using a first-order query on the new
database, the old answer, and perhaps some stored auxiliary relations.
Moreover, the auxiliary relations must also be maintained similarly
using first-order queries.

In this paper we measure the space needed by foies in terms of
the maximal arity of the auxiliary relations and present results on the
existence and nonexistence of such space-restricted foies for a variety
of graph queries, including counting and transitive closure. We
construct space efficient foies for these queries and show that the arity
bounds are tight using Ehrenfeucht�Fra@� sse� games. In particular, for
transitive closure over undirected graphs, the minimum arity bound of
its foies is shown to be exactly two; this resolves an open problem
raised by Patnaik and Immerman in 1994. For the general case, we
show that the arity-based hierarchy is strict for all arities. The strictness
proof uses queries with input relations having arities much larger than
the auxiliary relations. It is still open whether the hierarchy remains
strict for arities two or greater when the input relations of queries have
arities bounded by a fixed number, such as two, or by the arities of the
auxiliary relations.

Finally, we consider a variation of foies where the cost of storing the
answer to the query is also ``charged.'' We show that the arity hierarchy
in this case is also strict. The positions of queries in the two arity-based
hierarchies can differ; we give the positions in this hierarchy of the
queries considered for the other arity hierarchy.] 1998 Academic Press

1. INTRODUCTION

Recently, there have been research interests focusing on
incremental evaluation of database queries (or maintenance

of views) [BLT86, AP87, Ku� c91, WDSY91, DT92, DS93,
GMS93, DK97, PI94, RRSS94, DST95, DS95a, DS95b,
DLW95, GL95, DP97]. In particular, a framework of evaluat-
ing recursive queries (or maintaining recursive views) by
incrementally evaluating some nonrecursive, first-order
queries has been proposed and studied by Dong, Su, and
Topor [DST95, DS95b, DS93]; a slightly different framework
was proposed and studied by Patnaik and Immerman [PI94].
In this approach, some auxiliary relations may be computed
and stored in addition to the answer to the query of interest;
when an update occurs, the new answer to the query and the
new auxiliary relations are obtained using some first-order
queries (which are fixed for the query of interest) on the new
database, the old auxiliary relations, and the old answer. Such
an approach is useful for situations where the database changes
frequently and the query answer is needed in real time. The
approach also has great potential for parallel evaluation; this is
because first-order queries are readily adaptable to parallel
implementations and have very low parallel complexity
[AHV95]. This approach also gives pure relational data-
base systems the power of supporting recursive views without
resorting to programming in host languages. It has been
shown that many database queries, including regular chain
datalog (plus a particular kind of initialization) [DT92,
DS95a, DST95], and transitive closure over acyclic graphs
[DS95b] and over undirected graphs [PI94], can be main-
tained in this way.

If a (finite) set of first-order queries maintains the answers
to a query (and necessary auxiliary relations), we call the set
a first-order incremental evaluation system (or ``foies'') for
the query of interest. In this paper, we consider the space
resources that are needed by foies. We measure the space
resources in terms of the maximum arity of the auxiliary
relations used by a foies: With maximal arity k, the auxiliary
relations can hold at most O(nk) tuples, where n is the
number of constants in the input database. We define a

Article No. SS981565

289 0022-0000�98 �25.00
Copyright � 1998 by Academic Press

All rights of reproduction in any form reserved.

* An extended abstract of the paper appeared under the title ``Space-
Bounded FOIES'' in the ``Proceedings of ACM Symposium on Principles
of Database Systems, 1995.''

- This author gratefully acknowledges support of the Australian research
Council through research grants. Part of this work was done while the
author was on study leave at UCSB.

� Work by this author supported in part by NSF Grant IRI-9109520 and
IRI-9411330 and NASA Grant NAGW-3888.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81176775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

File: 571J 156502 . By:CV . Date:26:11:98 . Time:14:50 LOP8M. V8.B. Page 01:01
Codes: 6933 Signs: 6021 . Length: 56 pic 0 pts, 236 mm

family of classes, FOIESk , as queries having foies with
auxiliary relations of arity �k. We show that the FOIESk

classes are separable at each level. On one hand, we give
tight arity bounds for a number of well-known graph queries
and show that they separate the FOIESk hierarchy for the
lowest levels. We construct foies with low arity bounds for
these queries. In particular, we show that the transitive
closure query for undirected graphs is in FOIES2; this
solves an open problem raised by Patnaik and Immerman
in [PI94]. We further prove that these queries do not have
foies with lower arity bounds using proof techniques based
on Ehrenfeucht�Fra@� sse� games [Fra54, Ehr61]. On the other
hand, we show that the arity-based hierarchy FOIESk is
strict for all arities. We define a k-Mod-4 query for each
k # N and show that it is in FOIESk but not in FOIESk&1.
The nonmembershipproof is based on a result by Cai [Cai90]
which establishes an exponential lower bound on the size
of constant-depth Boolean circuits with ``help'' bits that
compute the multiple parity problem. In particular, we show
that if k-Mod-4 is in FOIESk&1 , then there is a polynomial
size constant-depth Boolean circuit with help bits that
computes the multiple parity problem, contradicting Cai's
result. The input relation of the k-Mod-4 query, however,
has arity 6k+1 (improved to 3k+1 in [DZ97]), much larger
than the bound k on auxiliary relations. It remains open
whether the classes FOIESk-and FOIESk&1 can be separated
by queries over (input) database schema whose arity is
k-ary or bounded (such as binary). We note that the negative
results reported here are the first of their kind. Finally we
discuss what happens to the arity hierarchy if we also charge
the cost of storing the answer to the query of interest.

In general, foies can be nondeterministic since the auxiliary
relations may be defined by nondeterministic mappings. If the
auxiliary relations are defined by deterministicmappings, then
the foies is said to be deterministic. In [DS97] we compare the
deterministic foies with nondeterministic foies, and we show
among other things that nondeterministic foies are more
powerful and more space efficient than deterministic ones.
The examplequery (i.e., k-Mod-4) used in showingthestrictness
of the foies arity hierarchy also implies that the deterministic
foies arity hierarchy is strict, thus answering our own problem
in [DS97].

In addition to related work on view maintenance cited
earlier, there are three other groups of related work. (i) The
first group is the Dyn-FO framework of [PI94]. There are
similarities as well as difference between Dyn-FO and our
foies. Both use first-order formulas as maintenance queries.
However, Dyn-FO deals with problems which do not seem
to correspond to database queries. Furthermore, for one
logical update, Dyn-FO allows a first-order query to be
evaluated an unbounded number of times (depending on
the number of bits affected by the update), whereas in foies
each query can only be evaluated once. (ii) The second
group generalizes the foies framework in the database

setting by using SQL or other query languages, which are
more powerful than the first-order query language, as the
incremental language [DLW95]. (iii) The third group consists
of other kinds of on-line algorithms for graph problems.
Concerned with the design of efficient general algorithms
instead of with databases, these algorithms typically use
nonrelational data structures such as queues or lined lists,
use invented values such as integers, or use the iteration
constructs such as while loops and for loops (see [DS95b]
for references to such work). A more general complexity-
theoretical framework for on-line or incremental computa-
tion is reported in [MSVT94]. Motivated from the view
maintenance problem of databases, our approach uses only
relations and has none of the above nonlogical features.
A comparison of our approach with other methods for the
incrementalevaluationof databasequeries isgivenin [DST95].

This paper is organized as follows. Section 2 reviews some
basic notions including, in particular, foies. Section 3 discusses
the classes FOIES0 and FOIES1 and their relationships to
monadic 71

1. Section 4 focuses on queries in FOIES2. Section 5
includes the techniques for proving negative results concerning
the classes of FOIES�1. In Section 6 we prove that the FOIESk

hierarchy is strict for all k. In Section 7 we consider the alter-
native arity hierarchy. Finally in Section 8 we summarize our
results and list some open problems. In the Appendix we
prove that same-generation and transitive closure over k-path
graphs belong to FOIES4.

2. THE NOTION OF FOIES

In this section, we provide necessary terminology about
databases and graphs, and define the central notion of a
first-order incremental evaluation system of a database query.
We illustrate first-order incremental evaluation systems with a
few examples.

Roughly speaking, a first-order incremental evaluation
system is simply a finite set of first-order queries which
maintains a set of derived relations, including the answer to
a query of interest, after base relations are updated.

Formally, we assume the existence of two disjoint infinite
sets: a set rel of predicate or relation names, each of which
has an associated arity n�0, and a (universal) domain dom
of constants.

Let N denote the set of natural numbers. For each n # N,
an n-ary tuple is a mapping from [i | 1�i�n] to dom, and
an n-ary relation is a finite set of n-ary tuples. Observe that
there is exactly one 0-ary tuple, which is denoted as []. The
cardinality of a relation r, denoted by |r|, is the number of
tuples in r. A database schema is a finite subset of rel, and its
arity is the maximal arity of relation names contained in it.
A database instance of a database schema S is a mapping I
such that, for each relation name R in S, if R has arity n,
then I(R) is an n-ary relation; the cardinality of I, denoted
by |I |, is defined as the total number of tuples in I, i.e.,

290 DONG AND SU

|I |=�R # S |I(R)|. We also denote by inst(S) the set of all
database instances of S.

In this paper we are interested in the maintenance, in first
order, of answers to queries after changes are made to base
relations. To formalize this approach, we need to introduce
several necessary concepts, including ``queries,'' ``auxiliary
stored database definitions,'' ``input domain preserving,''
and ``permissible updates.''

Let k # N, Sin be a database schema, and RQ be a k-ary
relation name not in Sin . A k-ary query from Sin to RQ is
a (possibly partial) mapping Q from inst(Sin) to relation
instances of RQ satisfying the following ``genericity'' criterion
[CH82, Hul86]: For each permutation \ of dom, Q commutes
with \ (\ is extended naturally to relations and databases),
i.e., \I # inst(Sin), Q(\(I))=\(Q(I)). We will refer to rela-
tion names in Sin (and their instances) as base relations
for Q.

We note that a query Q is always deterministic but it may
be partial; i.e., for each database instance I, Q(I) is unique
if it is defined. Practically, partial queries can be viewed as
queries over databases with integrity constraints. We call
the family of database instances over which Q is defined the
domain of Q and denote it by dom(Q).

First-order queries are formulas built using c, 7 , 6 ,
�, _, and \, starting from atoms of the form R(t1 , ..., tm)
and t1=t2 , where each ti is either a variable or a constant
and R is a relation name of arity m. The arity of a first-order
formula (query) is the number of free variables in the
formula.

Suppose Saux is a database schema disjoint from Sin . We
define an auxiliary stored database definition (aux-d-def)
from Sin to Saux to be a (possibly partial) mapping from
inst(Sin) to finite subsets of inst(Saux). Intuitively, aux-d-defs
are used to define some stored ``intermediate'' relations
including the query answer. The intermediate relations are
then used to help derive new intermediate relations after
base relations are updated. Observe than an aux-d-def
: may be nondeterministic: For each database instance
I # inst(Sin), every database in :(I) is a possible result (to be
stored).

In this paper we focus on the size of such intermediate
relations. To relate the size of the intermediate relations
with the size of the input relations, we restrict aux-d-defs to
be ``input domain preserving.'' Basically this condition says
that the auxiliary relations can use at most a bounded
number of constants not occurring in the base relations at
any time. Let r be a k-ary relation (k # N). We define the
active domain of r, denotedby adom(r), to be the set of constants
occurring in r, i.e., adom(r)=�1�i�k ?i (r), where ? i (r)
(1�i�k) is the projection of r onto the i th column. For
each database instance I of a schema S, we define the active
domain of I to be adom(I)=�R # S adom(I(R)). Finally, for
each finite set J=[r1 , ..., rk] of relations, we define the
active domain of J to be adom(J)=�1�i�k adom(ri).

An aux-d-def : from Sin is said to be input domain preserv-
ing with respect to C, where C is a set of constants, if for each
I # inst(Sin), adom(:(I))�adom(I) _ C. Moreover, : is said
to be input domain preserving if it is input domain preserving
with respect to some finite C.

Each database update considered here may insert tuples
to and delete tuples from a database. Given a database
schema Sin an update over Sin is a pair $=(q, s), where
q, s # inst(Sin). In an update $=(q, s), q contains the
set of tuples to be inserted, and s the set of tuples to be
deleted. For technical convenience, we restrict ourselves to
updates whose insertion set and deletion set are disjoint; i.e.,
no tuple is inserted and deleted by the same update. Each
update $=(q, s) defines a mapping from inst(Sin) to
inst(Sin) in the natural way:

v For each I # inst(Sin), the new instance, denoted by $I,
is defined such that $I(R)=I(R) _ q(R)&s(R) for
each R # Sin .

Given a query Q, a first-order incremental evaluation
system for Q will maintain the answer to Q as long as the
updates are ``permissible.'' Intuitively, the notion of a
permissible update is to allow only ``small'' updates which
map dom(Q) to dom(Q). We require updates to be small and
having the databases in the domain of Q all the time, since
otherwise there cannot be any first-order queries to maintain
any truly recursive query.

Given a database instance I # dom(Q), a semi-permissible
update is an update $ such that $I # dom(Q). When Q is given,
there is usually a small number lQ such that each semi-
permissible update $ is equivalent to the composition of a
(finite) sequence of semi-permissible updates $1 } } } $n where
each $i=(qi , si) and |qi |+|si |�lQ . Because of this, we
define an update $=(q, s) to be permissible if it is semi-
permissible and |q|+|s|�lQ . Since it is usually clear
from the context what lQ is, we will not always spell out
what lQ is.

Example 2.1. Let Sset be a database schema consisting
of a single unary relation R. The Boolean (0-ary) query Even
over Sset is defined, for each database I # inst(Sset), by
Even(I)=true (represented by [[]]) if the relation I(R)
contains an even number of constants, and Even(I)= false
(represented by the empty set <) otherwise. So dom(Even)
is the set of all possible databases: dom(Even)=inst(Sset);
consequently every update over Sset is semi-permissible.
Each permissible update either inserts exactly one tuple or
deletes exactly one tuple (but not both).

Let Scyc be a database schema with a single binary
relation G. Consider a query over Scyc which is defined only
when G (review as a finite graph) is a simple cycle. Obviously,
each permissible update either replaces one edge of the form
(a, b) by two edges (a, c) and (c, d), where c is a new constant,
or replaces the two edges (a, c) and (c, b) by (a, b).

291FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

We now define a first-order incremental evaluation system
for a query. Intuitively, such a system consists of a finite set
of first-order queries (see Fig. 1): Each has as input the old
database, the old auxiliary relations, the old answer to the
query, and the update; for each permissible update, the new
auxiliary relations and the new query answer are obtained
by the first-order queries. For simplicity, for each database
instance (or relation name) X, we will use Xo to refer to the
instance before an update, and Xn the instance after the
update.

Definition 2.2. Let Q be a query from Sin to RQ and
k # N. A k-ary first-order incremental evaluation system
(foies) for Q is a triple (Saux , :, A\) satisfying the following
conditions:

1. Saux is a k-ary database schema disjoint from
Sin _ [RQ];

2. : is an input domain preserving aux-d-def from Sin to
Saux _ [RQ] such that J(RQ)=Q(I) for each I # inst(Sin)
and J # :(I);

3. A\ maps each relation name R in Saux _ [RQ] to a
first-order query A\

R (which is called an aux-maintaining
query); and

4. For each database I o
in in dom(Q), each permissible

update $=(q, s), and reachable auxiliary database1

I o
Qaux in :(I o

in), if I n
in=$I o

in is the new database, then a new
auxiliary database I n

Qaux in :(I n
in) is obtained by

I n
Qaux(R)=A\

R (I o
in , I o

Qaux , q, s)

for each R # Saux _ [RQ].

A (k-ary) foies is space free if Saux=<. An insertion-only
foies can only handle insertions.

Observe that we used the subscript ``Qaux'' to indicate
that IQaux is an instance over Saux _ [RQ]. In Fig. 1,
Saux _ [RQ] is the set of relations r1 , ..., rm , and A\

ri
=:\

i .
We now illustrate the notion with a very simple example

where only the query answer is stored; more examples will
be given in Sections 3 and 4.

Example 2.3. The query Even over the schema Sset

(cf. Example 2.1) has a space-free foies (<, Even, A\),
where A\

Even is constructed as follows.
If an update inserts a constant e (q=[R(e)]), the new

answer Even(I n) is true iff (i) e was not in the old R and the
old answer was false, or (ii) e was already in the old R and
the old answer was true; so,

Even(In)=A\
Even(I

o, Even(I o), [e], <)=true

FIG. 1. Illustration of a foies for a query Q.

iff

(cRo(e) 7 Even(I o)= false) 6 (Ro(e) 7 Even(I o)=true).

Similarly, if an update deletes e (s=[R(e)]), Even(In) is
true iff (i) e was in the old R and the old answer was false,
or (ii) e was not in the old R and the old answer was true;
so,

Even(In)=A\
Even(I o, Even(I o), <, [e])=true

iff

(Ro(e) 7 Even(I o)= false) 6 (cRo(e) 7 Even(I o)=true).

In the above definition, we did not specify how the old
answer and the old auxiliary relations are initialized. There
are two options: (i) They are initialized by other means, e.g.,
by evaluating Q and the aux-d-def on the initial database.
(ii) A foies starts from the empty database <. Once initialized,
the foies derives the new auxiliary databases by computing
its first-order aux-maintaining queries.

The requirement that the auxiliary stored database defini-
tions be input domain preserving is to prevent them from
using arbitrarily many constants to encore information, i.e.,
``cheating.'' For example, this requirement disallows aux-
maintaining queries that do not remove constants from the
auxiliary relations even after all tuples containing these con-
stants have been removed from the base relations. As we
mentioned earlier, this requirement is important for the
study of the space usage (complexity) of foies discussed
below.

We measure the space resources used by a foies in terms
of the maximum arity of the stored auxiliary relations: With
maximal arity k, the auxiliary relations can hold at most
O(nk) tuples, where n is the number of constants in the input
database. Thus this arity is an indicator of how hard it is to
maintain the query using foies.

There are two options for defining the arity requirement
of a first-order incremental evaluation system, depending on
whether the arity of the answer relation is included. We will

292 DONG AND SU

1 We say that the auxiliary database I o
Qaux # inst(Saux _ [RQ]) is reachable

for I o
in if there exists a sequence $n } } } $1 of permissible updates such that

$n } } } $1<=I o
in and Io

Qaux is the final auxiliary database obtained by
successively applying :\ after each of these updates.

File: 571J 156505 . By:CV . Date:26:11:98 . Time:14:47 LOP8M. V8.B. Page 01:01
Codes: 6664 Signs: 5015 . Length: 56 pic 0 pts, 236 mm

first consider the case where the arity of the answer relation
is excluded, and we will discuss what happens for the other
option in Section 7.

Definition 2.4. For each k # N, let FOIESk be the class
of queries having k-ary foies; let FOIESsf be the class of
queries having space-free foies; and let FOIES=FOIESsf _
�k # N FOIESk .

Obviously, \k # N, FOIESsf �FOIESk �FOIESk+1.
The following closure properties of the FOIESk classes are
easily verified.

Proposition 2.5. 1. FOIES is closed under first-order
operations (projection, selection, cross product, set operations,
and complement).

2. If Qi (i=1, 2) is an li -ary query in FOIESki , then
the projection and selection of Qi are in FOIESmax[ki , li]

;
the difference, union, and cross product of Q1 , Q2 are in
FOIESmax[k1 , k2 , l1 , l2] .

3. For each x # [sf] _ N, FOIESx is closed under
complement.

Proof. For (1), let F1 , F2 be two foies for queries Q1 , Q2

(respectively). Consider a first-order (binary) operation %.
We can easily combine F1 , F2 into a foies for Q1 %Q2 by
retaining all auxiliary mappings in F1 , F2 including the
answers to Q1 , Q2 and constructing easily the aux-main-
taining query for Q1%Q2 . Unary operations are similar.
Item (2) follows from this construction. To see (3), we note
that the answer to a query Q can be computed in first order
from its complement (with respect to the active domain). K

It is interesting to compare FOIES with 71
1 . Observe

that each query in FOIES is in PTIME. Since (monadic) 71
1

contains NPTIME-complete problems (e.g., 3-colorability),
FOIES{71

1 unless PTIME=NPTIME. The following is
also known: If a Boolean query Q over k-ary input relations
has a foies, then Q is in (k+1)-ary 71

1 [DW97].
Some of the example queries discussed below are defined

over graphs. We now introduce some basic definitions
concerning graphs in brief. A graph is represented by a
binary relation. We will consider as synonyms these three
pairs of terms: a ``binary relation'' and a ``graph,'' a ``binary
tuple'' and an ``edge,'' and a ``constant'' and a ``node.''

Suppose G is a graph. A sequence u0u1 } } } un (n>0) of
nodes in G is a walk (from u0 to un) if (ui&1 , ui) is in G for
each 1�i�n; the sequence if a path if it is a walk and ui {uj

whenever 0�i< j�n such that i{0 or j{n; and the
sequence is a cycle if it is a path and u0=un . G is acyclic if
it contains no cycles.

The transitive closure of a graph G, denoted by TCG , is
defined as [(x, y) | there exists a path of positive length
from x to y in G]. Notice that edges of the form (u, u)
contribute only in a trivial way to transitive closures. Due to

this reason, we assume that there are no such edges when-
ever the discussion is on transitive closure. In the remainder
of this paper, we let R� =R _ [(v, v) | v occurs in R] for each
binary relation R.

For each positive integer k, a graph is a k-path graph if for
each ordered pair of (not necessarily distinct) nodes u, v,
there are at most k paths from u to v. In [DS95b], 1-path
graphs were referred to as 0-1-path graphs; the singly
connected (also called uni-connected) graphs [BC93] are
strictly more general class: a graph is singly connected if for
each ordered pair of distinct nodes u, v, there is at most one
path from u to v.

3. FOIES�1

In this section we present several queries and their foies to
further illustrate the notion of foies. We also state the results
that the two containments FOIESsf �FOIES0 �FOIES1

are proper; the membership proofs are presented here, while
the nonmembership proofs will be provided in Section 5.
Finally, we compare these three classes with monadic 71

1 .
We start with foies for the transitive closure queries. The

first is over arbitrary directed graphs but we restrict updates
to insertions only, whereas the second is over acyclic directed
graphs and both insertions and deletions are allowed. In what
follows we shall use the queries in these foies frequently.

Example 3.1. We first consider the transitive closure
query and restrict the updates to insertions. The query has
an insertion-only space-free foies, where for each e=(u, v)
and G=Go _ [e], TCG is computed by (we also treat a
query as a predicate)

TCG(x, y)=TCGo(x, y) 6 TC@G o(x, u) 7 TC@G o(v, y).

The above provides an efficient way of updating (comput-
ing) the transitive closure query; more general results for
insertion-only foies can be found in [DT92, DS93, DST95].

Example 3.2. Consider now the transitive closure query
defined over acyclic directed graphs. It has a space-free foies for
both insertions and deletions. Insertions are dealt with as in
Example 3.1. For deletions, suppose Go is an acyclic graph,
(a, b) an edge in Go, and G=Go&[(a, b)]. If (x, y) # TCGo ,
then (x, y) remains in TCG iff (proved in [DS95b]) (,0 �
(,1 6 ,2 6 ,3)) 6 �, where

1. ,0 says that x, y, a, b are distinct nodes such that
TCG o(x, a) 7 TCG o(b, y).

2. ,1 says there exists a node u on a path from x to y in Go

such that either cTC@Go(u, a)7cTC@Go(a, u) or cTC@Go(u, b)
7 cTC@G o(b, u).

3. ,2 says there exists a node u such that TCGo(a, u) 7
TCG o(u, b). (Note that this implies u � [a, b].)

293FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

4. ,3 says there exist two nodesu and v suchthat TC@Go(x, u)
7 TC@G o(u, a) 7 TC@Go(b, v) 7 TC@G o(v, y) 7 Go(u, v) and
either u{a or v{b.

5. � handles the case where x=a or y=b in a manner
similar to the above.

The following two queries are in FOIES0 and FOIES1

(respectively) but not in lower classes.

Example 3.3. Consider the Boolean query Mod-3, defined
on databases over the schema Sset consisting of one unary
relation. It answers true if the cardinality of the relation is a
multiple of 3 and false otherwise. The query is in FOIES0:
We use three 0-arity auxiliary relations pi (0�i�2), where
pi is nonempty iff there are n constants in the input such that
i=n mod 3. The first-order aux-maintaining queries are easily
constructed.

Example 3.4. The Boolean query Equal-Length-Chain
over two binary relations (q1 and q2) is defined if each qi

(i=1, 2) contains a single chain; the answer is true iff the
two chains are of the same length. Then Equal-Length-Chain
is in FOIES1. Indeed, each permissible update must map a
chain to a chain, so it either adds an edge to or deletes an
edge from either the head or the tail of a chain. We use two
unary auxiliary relations, p1 and p2 . Each pi is to hold the
extra nodes in qi not paired up with nodes in the other chain,
i.e., nodes in qi beyond its prefix of length min(|q1 |, |q2 |).
Clearly, the answer is true iff p1= p2=<.

We update p1 and p2 by using the order implied by the
chains. For example, for the database shown in Fig. 2, if we
insert into q2 the tuple (2, 3), we simply remove d, the first
element of po

1 , from po
1 . Other updates can be dealt with

similarly.
We now describe the incremental queries for maintaining

p1 and p2 in English; they can be easily translated into first-
order queries. Consider an insertion of an edge (a, b) into qo

1 ,
the other updates being similar. Then either b is the first
node in qo

1 or a is the last node in qo
1 . Consider the first case,

the second case is similar and simpler. Suppose qo
1 {<.

(i) If po
1= po

2=<, we insert the last node of qo
1 into p1 .

(ii) If po
1=< but po

2 {<, then p2 is obtained by
removing the first node of q2 in po

2 from po
2 .

FIG. 2. Two chains and the auxiliary relations.

FIG. 3. FOIES�1 classes and monadic 71
1 .

(iii) If po
1 {< but po

2=<, then p1 is obtained by adding
to po

1 the predecessor of the first node of q1 in po
1 .

(iv) It is not possible to have both po
1 {< and po

2 {<.

For qo
1=< (the first edge introduces two new nodes), we

modify the updates on p1 and p2 so that two elements are
added for (i) and removed for (ii).

Theorem 3.5. The FOIESk hierarchy is strict for k�1:
FOIESsf %FOIES0 %FOIES1 .

Proof. The containments clearly hold. The first inequality,
FOIESsf {FOIES0 , holds since Mod-3 belongs to FOIES0 as
shown in Example 3.3 but it is not in FOIESsf , proved in
Theorem 5.3.

For the second inequality, FOIES0 {FOIES1 , we use the
query Equal-Length-Chain which is in FOIES1 as shown in
Example 3.4. The result that Equal-Length-Chain � FOIES0

will be established in Theorem 5.4 using Ehrenfeucht�Fra@� sse�
games. K

It is interesting to compare the FOIES�1 classes with
monadic 71

1 . On one hand, the query Even is in FOIESsf

(Example 2.3) but not in monadic 71
1 [Fag75, AF90,

FSV95]. On the other hand, disconnectivity of undirected
graphs is in 71

1 [AF90] but not in FOIES1 and not in
FOIESsf (Theorem 5.7). Therefore, monadic 71

1 is incom-
parable with FOIES�1 classes and with FOIESsf (Fig. 3).

4. FOIES1 VS FOIES2 (UNARY VS BINARY)

Patnaik and Immerman [PI94] showed that transitive
closure of undirected graphs can be maintained in first order
with ternary auxiliary relations and posed the open problem
of whether binary auxiliary relations suffice. In this section
we resolve this open problem by giving a positive answer;
we will show in Section 5 that this space bound is also tight
(unary auxiliary relations are not enough). So FOIES2

strictly contains FOIES1 . We also show that a number of
other conventional queries are in FOIES2 but not in FOIES1.

In resolving the open problem, the key idea in the
construction is to store a directed ``spanning forest,'' instead
of the undirected spanning forest as in [PI94], for each

294 DONG AND SU

undirected graph. This idea is applied to other problems
(minimum spanning trees and 2-colorability) on undirected
graphs. We also use a ``core'' of a directed 1-path graphs in
assisting the derivation of transitive closure, where the core
is an arbitrary maximal acyclic subgraph; this also improves
an earlier space upper bound [DS95b] to the optimum.

Our results on undirected graphs and the lack of similar
results for directed graphs support, if not confirm, the belief
that directed graphs are harder than undirected graphs
[AF90]. For maintaining transitive closures of general
directed graphs, the above two kinds of ``generators'' do not
seem to help.

We will represent undirected graphs as symmetric binary
relations. (The proofs for our results would be much easier
if an asymmetric representation were used.) Thus each
permissible update (either an insertion or a deletion) should
consist of two ordered pairs of the form [(x, y), (y, x)].
To simplify the notations, we will use an undirected edge
(x, y) to denote the set of directed edges (x, y) and (y, x),
and we will say (x, y) and (y, x) are the two directions of
(x, y). We say an undirected edge (x, y) is isolated in a
graph if both x and y are connected only to themselves.

To establish the main result of this section, we will need
the following two lemmas, which show that some auxiliary
relations can be maintained in first order. The first auxiliary
relation we need is an almost total order on the nodes in an
undirected graph.

Lemma 4.1. Let G be an undirected graph. We can
maintain in first order a binary relation T on nodes in G and
its transitive closure TCT , where T satisfies the following
conditions:

1. If G is empty then so is T.

2. If G contains exactly one edge, say (a, b) , then T may
be <, [(a, b)], or [(b, a)].

3. If |G|>1, then either TCT (x, y) or TCT (y, x) but not
both, whenever x and y are nodes in G such that (x, y) is not
an isolated edge of G.

Clearly, both T and TCT are acyclic. The relation T we
incrementally build is essentially the order of ``arrival'' with
some ``delayed decision,'' and the ordering will be used to
choose an element from a set of elements, when necessary.
An example of modifying T after insertions is given in Fig. 4.

We did not define T to be an exact successor relation on
nodes of G, since it is unclear how such a relation could
be maintained incrementally. Indeed, there are situations
where we cannot make an ordering from the two newly
inserted nodes. For example, when we insert an undirected
edge (a, b) which is isolated in the new graph, there is no
way to say in first order that a is before b or b is before a.
When this happens we will only append both a and b to the
tail end of the old T. (This is the reason why T is not a total
order.) We delay the decision on the ordering of a and b

FIG. 4. An example of maintaining the ``almost'' successor relation T.

until this edge gets connected to other edges. However,
when an edge becomes isolated after losing its connecting
edges we will remember the ``history'' and keep their ordering.

Proof of Lemma 4.1. Since T is acyclic, TCT can be
maintained in first order as in Example 3.2, provided that T
can be maintained in first order and each update to G only
causes the insertion�deletion of a bounded number of tuples
in T. As we will see below, we can indeed maintain T in such
a way.

For the maintenance of T after insertions, suppose2 we
insert (a, b). If (a, b) is in Go then we do nothing. Suppose
(a, b) is not in Go. Two cases arise:

Case 1. T o=<. If Go=<, then let T=<. If |Go|=1
and neither of a, b occurs in Go, then let T=[(x, y),
(z, y) | Go(x, z), y # [a, b]]. Otherwise, it must be the case
that |Go|=1 and exactly one of a, b occurs in Go. In this
case, we can distinguish in first order all three nodes. Let e1

be the edge in Go. We define T=[(x, y), (y, z)], where x is
the node of G which occurs in e1 and in (a, b) , y is the other
node of e1 , and z is the other node in (a, b).

Case 2. T o{<. We need to consider the following
three situations:

2a. Neither of a, b occurs in Go. Then we add both a, b
as the last elements to T: If y is the last element in T o, we
let T=T o _ [(y, a), (y, b)]; if there are two last elements
of T o, say y, z, we let T=T o _ [(u, v) | u # [y, z], v # [a, b]].

295FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

2 Recall that we disallow self-loop edges of the form (x, x).

2b. Exactly one of a, b occurs in Go. Without loss of
generality, suppose a occurs in Go and hence b is a new
node. We first make b the sole last node in T. If a, c are
equivalent in T o, i.e.,

\x (T o(a, x) � T o(c, x)) 7 (T o(x, a) � T o(x, c)),

then (a, c) must be an isolated edge in Go; when this
happens, we break the equivalence of a, c, and make a the
successor of c in T.

2c. Both a, b occur in Go. To maintain T we may need
to break one or two equivalences. If a, c are equivalent in
T o, then c{b and we modify T o by making a the successor
of c in T. The case when b is involved in an equivalence
relationship in T o is dealt with similarly.

To maintain T after the deletion of an edge e, we simply
remove from T o those nodes in e that are not in any other
edges and then make necessary ``repairs'' for these nodes
(linking their predecessors with the successors). K

Using T and TCT , we can maintain in first order the other
auxiliary relations: a binary directed ``generating'' forest of
an undirected graph and the transitive closure of the forest.

Lemma 4.2. Let G be an undirected graph. Then we can
maintain in first order a directed forest H and its transitive
closure TCH , where [(u, v) | (u, v) # H] _ [(u, v) | (u, v)
is an isolated edge of G] is an undirected spanning forest of
G. Furthermore, for each update to G, the corresponding
update to H consists of (a) a possible deletion of an edge, (b)
a possible change of directions of edges in a path, and (c) a
possible insertion of a bounded number of edges.

Proof. Suppose an edge (a, b) is inserted into Go. The
following three cases are possible.

Case A. Neither of a, b occurs in Go (or equivalently,
(a, b) is isolated in G). Then let H=Ho.

Case B. Exactly one of a, b occurs in Go. There are two
possibilities.

B1. Neither of a, b occurs in H o. Then there exists
exactly one edge e in Go which is connected to (a, b) and
is isolated in Go. We choose the node that occurs in both
(a, b) and e as the root of a new tree with these two edges,
and add this tree to Ho to get H.

B2. Exactly one node in a, b occurs in Ho. Let a be the
node that occurs in Ho; we set H=H o _ [(a, b)].

Case C. Both a, b occur in Go. The following three
situations can happen.

C1. Neither of a, b occurs in H o. By the assumption that
the edge (a, b) is not in Go, there must exist exactly two
isolated edges e=(a, c) and e$=(b, d) in Go. We choose
the direction (a, b) of e such that TCT o(a, b) is true, i.e., a

precedes b in the order relation T o. We then choose the
(a, c) and (b, d) directions of e and e$. We construct a new
tree with the directed edges (a, b), (a, c), (b, d) and add this
tree to Ho to get the new forest H.

C2. Exactly one of a, b occurs in Ho. Let a be the node
that occurs in H o. Then there must be an isolated edge
(b, c) in Go. We insert (a, b) and (b, c) to Ho to get H.

C3. Both a, b occur in Ho. It is possible that a, b are in
the same tree in Ho; in that case Ho is not modified. This can
checked by examining TCHo : a, b are in the same tree iff they
have a common ancestor. Suppose now that a, b are not
in the same tree. Then the edge (a, b) connects two trees
in Ho. We combined these two trees into a single new tree
by the following three steps:

(a) Since a, b are already in Ho, (a, b) is not an
isolated edge and a, b are not equivalent in T o. We choose
one direction of e, say (a, b), such that T o(a, b) holds.

(b) If b is not a root (a root has no incoming edges)
in H o, we rotate the tree containing b so that b becomes
the root of the rotated tree. The rotation to make b the new
root of the second tree consists of two parts, to modify H
and TCH , respectively. (Fig. 5 shows an example.)

v Modifying H. Suppose c is the root in the tree of
Ho where b appears. The rotation is achieved by reversing
the edges in Ho on the path between c and b; i.e., an edge
Ho(u, v) becomes H(v, u) whenever TC@Ho(c, u) 7 TC@Ho(v, b).
For the simple example in Fig. 5, (c, d), (d, b) in Ho become
(d, c), (b, d) (respectively) in H. All other edges of Ho stay
unchanged.

v Modifying TCH . We next adjust TCHo to TCH

in response to the rotation of H by letting Tb=(TCH o&Y)
_ Z, where Y is the set of edges to be removed from TCH o ,

Y=[(u, v) # TCH o | _w(TC@Ho(c, u)

7 TCH o(u, w) 7 TC@Ho(w, b) 7 TC@T o(w, v))],

and Z=[(u, v) | .] is the set of new edges added to TCH

and

.=TC@Ho(c, v) 7 TCHo(v, u) 7 TC@H o(u, b)

TC@H o(c, w) 7 TCH o(w, u) 7

6 _w \TC@Ho(u, b) 7 TCH o(w, v) 7 + .

c(TCHo(v, u) 6 TCH o(u, v))

All edges in TCH o&Y stay unchanged. Fig. 6 illustrates the
sets Y and Z. For Fig. 5, Y=[(c, d)] _ [c, d]_[b, e, f,
g, h]] and Z contains (b, d), (b, c), and (d, c) by the first
disjunct, and (b, d), (b, h), (b, i), (b, j), (d, i), and (d, j) by
the second disjunct.

296 DONG AND SU

FIG. 5. An example of rotating a tree.

(c) Finally, we add the directed edge (a, b) to the forest
produced by (b). Specifically, we add (a, b) to the forest (H)
and derive TCH from Tb and (a, b) using the formula provided
in Example 3.1.

When an edge (a, b) is deleted, suppose one direction,
say (a, b), of e is in Ho (otherwise we do nothing). Then this
deletion breaks some tree in Ho into two. If there are edges
in G connecting the two trees, we first choose one such edge
(c, d) and choose a direction (c, d), both using the order
provided in TCT , and then insert (c, d) into the directed
spanning forest H using the method described above. K

We are now ready to present the main results of the section
concerning the connectivityand transitive closure queries over
undirected graphs and the 2-colorability of undirected graphs.
Here a graph G is said to be 2-colorable if there is a partition
of the notes into two sets X and Y such that each edge in G is
incident to a node in X and a node in Y.

Theorem 4.3. The following queries belong to FOIES2

but not to FOIES1.

1. Connectivity and transitive closure over undirected graphs.
2. 2-colorability of undirected graphs.

Proof. We prove the membership of these queries in
FOIES2 here and leave the proofs of their nonmembership
in FOIES1 to Section 5.

Let G be the name of the undirected input graph. For
both queries, we will use the following four common binary
auxiliary relations (which are described in Lemmas 4.1

FIG. 6. Sets Y and Z used in modifying the transitive closure of H.

and 4.2): T, TCT , H, TCH . As mentioned earlier, TCT is
used to choose an element from a set of elements, when
necessary. Their maintenance in first order was given in
Lemmas 4.1 and 4.2.

Let I=[(u, v) | (u, v) is isolated in G] and F=
[(u, v) | (u, v) # H] _ I.

For (1), the connectivity and transitive closure queries
over undirected graphs, we observe that TCG=TCF and
TCF (x, y)#F(x, y) 6_u(TC@H(u, x)7 TC@H(u, y)). Connec-
tivity is derivable from TCG in first order.

For (2), the 2-colorability query, we define, for each
binary relation R, a predicate evenR as evenR(x, y) iff there
is an even-length walk from x to y in R. We define oddR

similarly. In addition to the four common binary relations,
we also maintain evenH and oddH . Clearly, G is 2-colorable
iff c_xy(evenG(x, y) 7 oddG(x, y)) holds. So it suffices
to show that evenH and oddH can be maintained, and that
evenG and oddG can be derived from evenH and oddH .

For maintaining evenH and oddH , we need to consider
three cases: (i) H is obtained by inserting one edge into H o;
(ii) H is obtained by deleting one edge from Ho; (iii) H is
obtained from Ho by changing directions of all edges in a
path. (Corresponding to one update to G, we may need to
compose several of these updates to evenH and oddH to
reflect the complete change to the even�odd relations.)

Suppose (a, b) is inserted into Ho. Then, the new evenH

and oddH can be expressed as

oddH(x, y)#oddH o(x, y) 6 [even@H o(x, a)

7 even@H o(b, y) 6 oddH o(x, a) 7 oddH o(b, y)]

evenH(x, y)#evenH o(x, y) 6 [oddH o(x, a) 7 even@Ho(b, y)

6 even@H o(x, a) 7 oddH o(b, y)].

Suppose (a, b) is deleted from Ho. We compute new oddH

and evenH by deleting al tuples (x, y) in oddH o and evenH o if
there is a path from x to y through (a, b).

Suppose now that H is obtained from Ho by changing
directions of all edges in a path. To fix the notation, let us
say the path starts at c and terminates at b. We first delete

297FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

each pair (x, y) in the evenH o and oddH o relations where the
only path in Ho from x to y includes a node in the path from
c to b. (See Fig. 5.) Now we add pairs as follows:

v For all x, y both on the path from c to b, we simply
reverse direction: insert evenH(y, x) if evenHo(x, y) and
insert oddH(y, x) if oddHo(x, y).

v For all x on the path from c to b and all old descen-
dants y of c such that the least common ancestor w of x and
y is on the path from c to b, determine the parity of (x, y)
by combining the parity of the path from w to x and the
parity of the path from w to y using the four possible combi-
nations.

We can express evenF and oddF as

evenF (x, y)#even@H(x, y) 6 even@H(y, x)

6 _u(evenH(u, w) 7 evenH(u, y)

6 oddH(u, x) 7 oddH(u, y))

oddF (x, y)#I(x, y) 6 oddH(x, y) 6 oddH(y, x)

6 _u(evenH(u, x) 7 oddH(u, y)

6 oddH(u, x) 7 evenH(u, y)).

Then evenG and oddG can be expressed as

evenG(x, y)#evenF (x, y) 6 _uv(evenF (u, v) 7 G(u, v)

7 (even@F (x, u) 7 oddF (v, y)

6 oddF (x, u) 7 even@F (v, y)))

oddG(x, y)#oddF (x, y) 6 _uv(evenF (u, v) 7 G(u, v)

7 (even@F (x, u) 7 even@F (v, y)

6 oddF (x, u) 7 oddF (v, y))).

We now verify that the expression for evenG is correct. The
proof for oddG can be obtained from this proof by mostly
interchanging the words ``odd'' and ``even.''

Observe that each of the three disjuncts in the right-hand
side of the expression, namely evenF (x, y), _uv(evenF (u, v)
7 G(u, v) 7 even@F (x, u) 7 oddF (v, y)), and _uv(evenF (u, v)
7 G(u, v) 7 oddF (x, u) 7 even@F (v, y)), exhibits a path of
even length. So the right-hand side does not derive more
than necessary. We now show that the right-hand side derives
every pair of nodes between which there are even walks.
Suppose x and y are two nodes and u0u1 } } } un is a walk
from x to y in G such that n is even. If evenF (x, y) is true,
then we are done. Suppose otherwise. Since F is an undirected
spanning forest for G, oddF (x, y) must be true; so there exists
a path from x to y of odd length. Due to the acyclicity of F, all
walks in F from x to y are of odd length. Let x0x1 } } } xm be a
walk in F from x to y which goes through all ui 's (0�i�n).

(Such a walk exists since F is a spanning forest for G.) Hence
m is odd and each ui=xji

for some ji . Consider the following
list of pairs: (j0 , j1), (j1 , j2), ..., (jn&1 , jn). There are an
even number of them since n is even, but j0=0 is even and
jn=m is odd. It is easily seen that there must be at least one
pair, say (jk , jk+1), in the list where jk and jk+1 are both
even or both odd. If they are both even, then _uv(evenF (u, v)
7 G(u, v) 7 even@F (x, u) 7 oddF (v, y)) is true; if they are
both odd, then _uv(evenF (u, v) 7 G(u, v) 7 oddF (x, u) 7

even@F (v, y)) is true. In both cases the right-hand side holds
for x and y. K

The foies construction for 2-colorability does not generalize
for 3-colorability: A 3-colorable graph may have a pair of
nodes between which there are three paths whose lengths
modulo 3 are 0, 1, and 2. (Note that the existence of a foies
for the 3-colorability query implies PTIME=NPTIME.)

The idea in the above proof can also be used to maintain
minimum spanning trees for undirected graphs. (Over a
ternary input relation, where the first two columns specify
edges and the third column specifies the weight of the edge,
the problem is to return a spanning forest with minimalweight.)
The maintenance queries are constructed in a way similar to
the ones used by Patnaik and Immerman [PI94] except
that we derive their auxiliary P from our H and TCH :
P(x, y, u) says u is on the unique path in F from x to y and
is expressed as .(x, y, u) 6 .(y, x, u), where .(x, y, u) is

TCH(x, y) 7 TC@H(x, u) 7 TC@H(u, y)

� \c(TC@H(x, y) 6 TC@H(y, x)) 7

_v(� 7 TC@H(v, x) 7 TC@H(v, u) 7 TC@H(u, y))+
and � says that v is the least common ancestor of x and y.

Theorem 4.4 1. For 1-path directed graphs, (s, t)-
connectivity and TC are in FOIES2 but not in FOIES1 .

2. For acyclic directed graphs, (s, t)-connectivity3 is in
FOIES2 but not in FOIES1 , while TC is in FOIESsf .

Proof. The negative results will be shown in Section 5.
For (2), the positive results follow from Example 3.2. (That
TC over acyclic graphs is in FOIESsf is proved in [DS95b].
Since by storing TC one can define (s, t)-connectivity,
(s, t)-connectivity belongs to FOIES2 .) For (1), the 1-path
case, we store two binary auxiliary relations: an arbitrary
maximal acyclic subgraph H of G, and TCH . Note that TCH

can be maintained as in Example 3.2 (and [DS95b]). We
will use TCH to help derive TCG when an edge in a cycle of
G is deleted.

Roughly, we maintain H as follow. When an edge is
inserted into Go, the edge is inserted into H o iff this insertion

298 DONG AND SU

3 For each graph G, the (s, t)-connectivity query returns true if there is
a path from s to t in G.

does not introduce a cycle into H. When an edge e deleted
from Go is in H o, we delete e from Ho; if there is another
edge e$ in Go&Ho such that e and e$ are in a cycle of Go

(there is at most one such edge since Go is 1-path), then we
insert e$ into H. Each time H is changed, the transitive
closure of H is adjusted accordingly.

We maintain TCG as follows. Insertions are handled as
usual. Suppose (a, b) # Go is deleted. If a and b are not in the
same strongly connected component (SCC) of Go, then we
derive TCG using a query in [DS95b] (an extension of the
query in Example 3.2). This is similar to the case for acyclic
graphs. Suppose a and b are in a common SCC of Go (Fig. 7).

Let C be the set of all nodes in the same SCC of Go as a,
and let T0 be TCH limited to the nodes in C, i.e., T0=[(x, y) #
TCH | x, y # C]. The following steps will derive TCG :

(i) Let T1 be the result of removing from TCG o all pairs
(x, y) such that there is a path from x to y through (a, b)
in Go, i.e., T1=TCG o&[(x, y) | TC@G o(x, a) 7 TC@G o(b, y)].

(ii) Then TCG is defined by _z1z2[T� 1(x, z1) 7 T� 0(z1 , z2)
7 T� 1(z2 , y)].

For correctness, note that clearly we did not produce
more pairs than necessary. To see that we produced every-
thing we should, suppose x reaches y in G. The following
three cases are possible.

(a) c(TC@G o(x, a) 7 TC@Go(b, y)). Then (x, y) # T1 .

(b) TC@Go(x, a) 7 TC@G o(b, y) 7 TC@G o(y, x). Then x and
y are in the SCC of a in Go, so (x, y) # T0 .

(c) TC@Go(x, a) 7 TC@Go(b, y) 7 cTC@Go(y, x). Since Go

is 1-path, x can only reach y in Go (and in G) through the
SCC of Go where a occurs. Let u0 u1 } } } um be the path from
x to y in G. Clearly this is also a path in Go. There must be
some node in C which occurs in this path, since otherwise
there would be two paths in Go from x to y, one through
some node in C and one not. It can be easily seen that all
nodes in the path between two nodes in C must also be in
C. This interval of nodes in C is covered by one reachability
pair in H. If this interval consists of one node, we have either
T1(x, y) true (this covers the case where either x or y is in
the SCC of a in Go) or T1(x, z)7 T1(z, y) true; if this interval
consists of mode nodes, then we have _z[T1(x, z) 7 T0(z, y)
6 T0(x, z) 7 T1(z, y)] 6 _z1 , z2[T1(x, z1) 7 T0(z1 , z2) 7
T1(z2 , y)]. K

For regular chain datalog queries, we can assert that they
all have binary insertion-only foies [DT92, DST95], and

FIG. 7. 1-path edge deletion.

some of them (such as the transitive closure) do not have
unary insertion-only foies. The negative part can be proved
using the Ehrenfeucht�Fra@� sse� games developed in the next
section over a long chain of edges roughly using the following
argument: There must be two isomorphic segments with
identical colors but first-order queries cannot tell the order
of the two segments, yet the ordering is important since that
corresponds to which segment can reach the other segment.

5. STRICTNESS INSIDE FOIES2

In this section we prove results of the form ``query Q is not
in FOIESk '' for k=0, 1, or ``not in FOIESsf .'' The proofs
are based on Ehrenfeucht�Fra@� sse� games [Fra54, Ehr61].
Specifically, we show that Mod-3 is not in FOIESsf ; Equal-
Length-Chain is not in FOIES0; and many other queries
including 2-colorability, transitive closure over 1-path graphs
and over undirected graphs, and various connectivity queries,
etc., are not in FOIES1. The game-based techniques presented
here do not seem suitable for proving nonexistence of k-ary
foies for k�2. In the next section, we use a reduction to show
that the FOIESk hierarchy is indeed strict.

This section is organized as follows. We first briefly
describe the Ehrenfeucht�Fra@� sse� games and then use the
games to prove nonexistence of k-ary foies for the above-
mentioned queries for k being space free, 0,1 (in that order).

Ehrenfeucht�Fra@� sse� games are played on first-order
structures. Let I and J be two (first-order) structures with
universes UI and UJ and r a positive integer. The game of
length r associated with I and J is played by two players, a
spoiler and a duplicator, each of which makes r moves. The
spoiler starts by picking an element in UI or UJ and the
duplicator picks an element in the opposite structure. This is
repeated r times. At each move, the spoiler has the choice of
the structure, and the duplicator must respond in the
opposite structure. Let ai (bi) be the ith element picked in
UI (UJ). The duplicator wins the round [(a1 , b1), ..., (ar , br)]
if the mapping ai [bi is an isomorphism of the substruc-
tures I�[a1 , ..., ar] and J�[b1 , ..., br]. The duplicator wins
the game of length r associated with I and J if the duplicator
has a winning strategy; i.e., the duplicator can always win
every game of length r on I and J, no matter how the spoiler
plays. This is denoted by I#r J. Note that the relation #r is
an equivalence relation on structures.

Intuitively, I#r J says that the structures I and J cannot
be distinguished by looking at just r elements at a time. The
main result concerning Ehrenfeucht�Fra@� sse� games states
that the ability to distinguish among structures using games
of length r is equivalent to the ability to distinguish among
structures using first-order sentences of ``quantifier depth'' r
(the maximum number of quantifiers in a path from the root
to a leaf in the syntax tree of the sentence). In particular,
Ehrenfeucht�Fra@� sse� 's general result implies the following.

299FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

Proposition 5.1. Let . be a first-order with quantifier
depth r and I, J two structures. If I<. and I#r J, then J<..

Ehrenfeucht�Fra@� sse� games and extensions are a very use-
ful tool in proving the expressive power of query languages
(e.g., [Fag75, AF90, AHV95, GS94]). But they cannot be
used directly in proving results concerning foies, since the
process of incremental evaluation is not strictly first order.
Next, we extend Ehrenfeucht�Fra@� sse� games and prove that
many queries discussed in the previous sections are outside
classes FOIESsf , FOIES0 , and FOIES1 .

Let I, J be two structures and f be a 1�1 function from a
subset of UI to a subset of UJ . We extend the Ehrenfeucht�
Fra@� sse� games by adding the restriction that whenever the
spoiler picks an element c such that either f (c)=d or f (d)=c
for some d, the duplicator must pick d. We call the extended
games f-games and denote by I# f

r J that the duplicator has
a winning strategy. Obviously, I# f

r J implies J# f &1

r I. If f
is a function, we also denote by .[f] the formula obtained
by replacing each occurrence of each constant c with f (c).
Proposition 5.1 can be extended to the following.

Lemma 5.2. Let . be a sentence with quantifier depth r,
I and J two structures, and f a 1�1 function from the set of
constants in . to UJ . If I<. and I# f

r J, then J<.[f].

The proof of the above lemma is as follows. For the
function f, we can construct unary relations, one for each
constant, to encode f, i.e., to force the constants mapped by
f to be matched against each other. The standard Ehrenfeucht�
Fra@� sse� games can then be played and the result follows
from Lemma 5.1.

We next present the proofs for the negative results stated
earlier in Sections 3 and 4. We provide first the proof for
FOIESsf (Mod-3), then the proof for FOIES0 (Equal-Length-
Chain), and finally the proofs for FOIES1 (2-colorability,
TC over 1-path and over undirected graphs).

Theorem 5.3. The Mod-3 query is not in FOIESsf .

Proof. Suppose there exists a space-free foies F for Mod-3
and let , be the aux-maintaining query for the query answer
in F. Having only the answer to Mod-3 available, F can
only remember whether the current database size is a multiple
of 3. Thus, when the size, say n, is not a multiple of 3, it cannot
distinguish whether n satisfies 1=n mod 3 or 2=n mod 3.
Below we use this fact to get a contradiction.

Let d be the quantifier depth of the first-order formula ,.
Let R be the input unary relation to Mod-3, and I1 and I2

two instances of R such that |Ii | mod 3=i and |I i |>d for
each i=1, 2. Suppose that a is a new constant. Consider
the insertion of a into Ii . Since Mod-3(Ii) is false for each
i=1, 2, we can replace Mod-3o by false. We further replace
each occurrence of the insertion set by a, i.e., ``hardwire'' a
into the formula. Let the resulting formula be . which now
has the database (before insertion) as the only input. Since

F is a foies for Mod-3, .(I1) and .(I2) should produce
different answers. However, by construction |Ii |>d for
i=1, 2, the duplicator has a winning strategy of d-round
Ehrenfeucht�Fra@� sse� games on I1 and I2 [Kol95]. This implies
that . cannot distinguish I1 and I2 , a clear contradiction. K

Space-free foies do not have auxiliary relations other than
the query answer. The above proof simply exhibits two large
databases such that the same update yields different answers
but the first-order aux-maintaining query is incapable of
telling the difference. We extend this idea to 0-ary and unary
foies, i.e., foies with Boolean or unary auxiliary relations.

Theorem 5.4. The query Equal-Length-Chain is not in
FOIES0 .

Proof. Suppose F=(Saux , :, A\) is a 0-ary foies for
Equal-Length-Chain where Saux consists of m 0-ary relations
which exclude the query answer (by definition), : is an
aux-d-def, and A\ provides an aux-maintaining (first-
order Boolean) query for each relation in Saux and for the
query answer. The idea of the proof is to find two databases
I and I$ and a sequence of insertions $� such that $� acting on
I and I$ yields different query answers but the first-order
queries in A\ are incapable of distinguishing the difference.

Suppose d is the maximal quantifier depth of all first-
order aux-maintaining queries in A\. Let d $=d } 2m. Since
we shall consider a sequence of k cascading updates (for
some fixed k), we ``expand'' the aux-maintaining queries in
A\ to handle k updates at a time. We use A\k to denote
the expanded first-order queries.

For example, we can obtain the new aux-maintaining
queries in A\2 from the ones in A\ by replacing each
occurrence of an auxiliary relation R by its aux-maintaining
query A\

R (which handles the first update). Then the queries
in A\k can be constructed by k&1 rounds of such replace-
ments. It is easy to verify that the maximal quantifier depth of
aux-maintaining queries for 2m updates is �d $.

Recall that Equal-Length-Chain is defined over two binary
relations q1 , q2 , each containing a chain. Now consider the
following 2m+1 databases, J i , for 1�i�2m+1, where

v J1 consists of two chains q1 , q2 of lengths l, l+1
(respectively) where l�2d $;

v for each 1�i�2m, Ji+1 is obtained by inserting exactly
one q2 -edge into Ji .

Clearly, since the length difference of the two chains in the
database Ji is i, the answer Equal-Length-Chain(Ji) is false.
Since F has only m additional Boolean auxiliary relations
(excluding the query answer), there are at most 2m different
results for the auxiliary relations and there must exist two
distinct databases I, I$ # [Ji | 1�i�2m+1] such that I(R)
=I$(R) for each auxiliary relation R # Saux ; i.e., the auxiliary
relations are identical for I and I$. Figure 8 illustrates a

300 DONG AND SU

FIG. 8. The databases Ji when m=2.

possible case for m=2. Without loss of generality, assume
I=Jn , I$=Jn$, and n<n$.

We now consider a sequence of n insertions $� on I and I$
separately, each extending the q1 chain by one edge. Since
the length difference of the two chains in I is n and in I$ is
n$>n, Equal-Length-Chain($� I) becomes true, while Equal-
Length-Chain($� I$) remains false. Suppose , is the first-order
aux-maintaining query maintaining the answer to Equal-
Length-Chain for the case of n cascading updates. Because
the quantifier depth of , is �d $ and each chain in I, I$ has
length �2d $, it can be shown that the duplicator has a
winning strategy when playing d $-round f-games on I and I$,
where f is the identity mapping defined only on the nodes
incident to the newly inserted edges. The winning strategy is
similar to the winning strategy for the Ehrenfeucht�Fra@� sse�
games on linear order [Kol95]. Hence $� I# f

r $� I$. This
contradicts the fact that , yields different results on $� I
and $� I$. K

We next consider the class FOIES1. Recall that each unary
foies may store a fixed number of unary auxiliary relations
during the incremental evaluation. It is convenient to view
these unary relations as colorings on the constants (nodes) in
the input database. We first examine Boolean queries.

Theorem 5.5. The 2-colorability query is not in FOIES1.

Proof. Suppose that the Boolean query 2-colorability
does have a unary foies F, which uses m unary auxiliary
relations. We further assume that d is the quantifier depth
of the aux-maintaining query , which updates the query
answer.

Now consider the database I consisting of n1 simple chains,
each of which has exactly n2 nodes, where n2�4 } 3d is an odd
number and n1>(2m)n2. Since each unary auxiliary relation
contains a set of nodes, we can view the combinations of the
membership of a node in the m unary auxiliary relations as a
``node color pattern.'' Having m unary auxiliary relations
means that there are at most 2m different node color patterns.
Therefore for chains with n2 nodes, there are at most (2m)n2

chains with distinct color patterns. Because I has n1>(2m)n2

number of chains of length n2 there must be two chains C1 , C2

which have the same color pattern (Fig. 9). More precisely, for
each i, j, 1�i�n2 and 1� j�m, the i th node of C1 is in the
j th auxiliary relation iff the i th node of C2 is.

Let the first and last nodes of C1 (C2) be a1 , b1 (respec-
tively a2 , b2). We now consider two separate insertions
on I: one ($1) inserts the edge (a1 , b1), while the other ($2)
inserts the edge (a1 , b2). Since I is acyclic, $2I is also
acyclic and thus 2-colorable. But $1 introduces an odd cycle,
so $1I becomes non-2-colorable. However, since the difference
occurs at the two chains having length exponential in the
quantifier depth of the aux-maintaining query , maintaining
the query answers, it is impossible for , to respond differently
on the two insertions $1 , $2 . The argument is again based on
d-round f-games where f maps the two nodes incident to the
inserted edge in $1 to corresponding nodes incident to the
inserted edge in $2 . The duplicator's winning strategy is
again quite similar to that used in the games for linear
orders [Kol95]. K

Theorem 5.6. The transitive closure query over 1-path
graphs is not in FOIES1.

Proof. The proof is accomplished by exhibiting a database
(a 1-path graph) and two separate updates which cannot be
distinguished by the first-order aux-maintaining queries of an
assumed unary foies. The latter argument uses f-games.

Suppose the TC query over 1-path graphs is in FOIES1.
Let F=(Saux , :, A\) be a unary foies for this query, which
has m unary auxiliary relations. Note that the query answer
is a binary relation containing the transitive closure of the
input database (graph). Let d be the quantifier depth of the
first-order query , in A\ which updates the query answer.
In particular, ,(x, y) states that there is a path from x to y
in the new graph.

We consider a database I which is a huge cycle of at least
8n } ((2m)2n+1) nodes, where n�3d. We consider paths in I.
Two paths of length 8n are called n-similar if their center
segments of length 2n are isomorphic with respect to all
stored unary (and of course Boolean) auxiliary relations
(see Fig. 10). Clearly there are at most (2m)2n non-n-similar
paths of length 8n (analogous to the argument in the proof

FIG. 9. The graph I and updates $1 , $2 .

301FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

FIG. 10. Two similar paths of length 8n.

of Theorem 5.5). Since I has at least (2m)2n+1 nonintersect-
ing paths of length 8n, there must exist two similar paths of
length 8n. Let J1 , J2 be the two similar paths of length 8n,
(a1 , b1) be the edge in (near) the center of J1 , and (a2 , b2)
be the edge in J2 which is the isomorphic image of (a1 , b1).
Finally, let s, t be the center nodes of the paths from b2 to
a1 and from b1 to a2 (respectively) (Fig. 11). Note that the
distances between s and a1 , b2 and between t and b1 , a2 are
at least 4n.

Now consider the following two updates: $1 deletes the
edge (a1 , b1), $2 deletes the edge (a2 , b2). It is obvious
that there is a path from s to t in $2I but not in $1 I. This is
the property we shall use in the following game-theoretic
arguments.

The formula ,(x, y) contains several parameters: G, $,
r� 0 , r� 1 , and TCG , where G is a database (graph), $ is an
update, r� 0 and r� 1 are Boolean and unary auxiliary relations
in Saux with respect to G, and TCG is the transitive closure
of G. We modify the formula ,(s, t) by replacing the update
$ by v1 , v2 representing the deletion of (v1 , v2), r� 0 by the
appropriate values of true or false as given by the auxiliary
relations, and TCG(u, w) by true for all (u, w). Suppose
.G, r� 1

(s, t, v1 , v2) is the resulting formula. The formula .
simply states that s remains connected to t in the new graph,
G without the edge (v1 , v2), if G is fully connected. We now
argue that .I, r� 1

(s, t, a1 , b1) and .I, r� 1
(s, t, a2 , b2) can only be

both true or both false. This clearly contradicts the fact that
there is a path from s to t in $2I but not $1 I.

FIG. 11. The graph I used in the proof of Theorem 5.6.

Let f be the mapping from [a1 , b1] to [a2 , b2] such
that f (a1)=a2 , f (b1)=b2 . Then .I, r� 1

(s, t, a2 , b2)=
.I, r� 1

(s, t, a1 , b1)[f]. Since . has the same quantifier depth
d as ,, we argue that $1I# f

d $2I, i.e., the duplicator has a
winning strategy when playing d-round f-games on $1I
and $2I. The winning strategy of the duplicator is as follows.
When the spoiler plays anywhere outside the center segments
of J1 or J2 , the duplicator plays by picking the same element
in I; when the spoiler plays near a1 , b1 (or a2 , b2) the
duplicator makes corresponding moves near a2 , b2 (or a1 , b1).
Since the segment length 2n is exponential in the number of
rounds to play, the spoiler will not tell the difference between
the two segments nor make any connection from a1 , b1 , a2 , b2

to s, t. The details of the strategy again resemble those for the
connectivity query [Kol95]. K

Using the same approach with different graphs and update
sequences, or reductions to queries known to be outside of
FOIES1 , we can establish the following.

Theorem 5.7. The following queries are not in FOIES1:
the transitive closure of directed and undirected graphs;
(s, t)-connectivity of 1-path and acyclic graphs; connectivity
and disconnectivity of undirected graphs; every unbounded
chain query; the same generation query, even over acyclic
graphs.

Proof. The result that transitive closure of directed
graphs is not in FOIES1 follows directly from Theorem 5.6.
For transitive closure over undirected graphs, we use the
graph (shown in Fig. 12) which consists of a large number
of chains sharing a common end. Then there must exist two
isomorphic chains with respect to all the auxiliary relations;
suppose these two chains end at nodes s and t, respectively.
Consider two different sequences of updates, one sequence
consisting of inserting (s, s$) followed by deleting (a, b)
and the other sequence consisting of inserting (s, s$) followed
by deleting (c, d). It then can be argued using f-games that a
foies cannot tell the difference between the two resulting
graphs, while it is clear that one update sequence results in a
connected graph and the other results in a disconnectedgraph.
The results on connectivity and disconnectivity queries over

FIG. 12. An undirected graph.

302 DONG AND SU

various classes of graphs follow from the transitive closure
query, except for the acyclic graphs.

For the (s, t)-connectivity of acyclic graphs, suppose F is
a unary foies. We start with a long chain from s to t. Then
there are two long intervals, far apart, say from a to b and
from c to d, of the long chain which are isomorphic to each
other with respect to all the auxiliary relations. We consider
two update sequences: one inserts the edge (a, b) and then
deletes the center edge of the interval from a to b, while the
other inserts the edge (a, b) and then deletes the center edge
of the interval from c to d. It is easy to verify that F cannot
tell the difference between the two resulting graphs, while
one resulting graph is (s, t)-connected and the other resulting
graph is not. So F cannot be a foies for the (s, t)-connectivity
of acyclic graphs.

The same generation query is defined on two binary
relations (graphs) R1 , R2 such that a pair (x, y) is in the
answer if there exists a node u such that there are two paths
of the same length: one from u to x in R1 and the other from
u to y in R2 . To show the same generation query is not in
FOIES1 we use the database shown in Fig. 13, where R1

contains a chain of length n for some large n and R2 contains
a much longer chain of length m. Since the R2 chain is very
long, we can find two segments l1 , l2 of length n&1 which
are isomorphic to each other with respect to all the auxiliary
relations. Upon the insertion of the edge e into R2 (see Fig. 13),
it can be established that either both (a, b), (a, c) are in the
query answer or neither of them is in, a clear contradiction.

The above game-theoretic argument for the same genera-
tion query can be further extended to show that every
unbounded chain query is not in FOIES1. Since each chain
query assumes that the database schema contains only binary
relations, we can view the input database as an edge-labeled
graph. Clearly, each chain query Q can be associated with a
context-free grammar GQ such that (x, y) is in the answer iff
there is a path in the input graph from x to y with the labels
(along the path) spell a word in the language of GQ . Since Q
is unbounded, the language of GQ is infinite. We can then find
a word in the language with length exponential in the maximal
quantifier depth of first-order formulas in the assumed foies
that maintain the query answer. The construction of the graph
and updates follows an idea similar to that for the same
generation query. K

Figure 14 summarizes results on some of the queries
discussed in previous sections; results proven in this paper
are italicized. Note that connectivity and transitive closure

FIG. 13. A database for the same generation query.

FIG. 14. Summary of queries and results.

are different (for undirected graphs) since the answers of the
latter contain more information. However, it is easy to
observe the following.

Proposition 5.8. If (s, t)-connectivity over a family of
graphs belongs to FOIESk , then the corresponding transitive
closure query is in FOIESk+2.

As an aside, we note the following: The graphs and
updates used in proving transitive closure over undirected
graphs can also be used to show that there is no unary foies
for on-line computation of minimal spanning trees of graphs.
Indeed, when all edges have the same weight in the graph
described above in Fig. 12, the two insertions above should
lead to different results which the first-order formulas fail to
tell.

6. THE FOIESk HIERARCHY IS STRICT

We now present a main result of this paper which states
that the FOIESk hierarchy is indeed proper. The proof of
this result also settles the open problem raised in our earlier
paper [DS97] on the ``deterministic'' version of the FOIESk

303FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

hierarchy. We also discuss the impact of the arity of the
input databases on the arity hierarchies.

We show that FOIESk %FOIESk+1 for each k # N. The
proof uses a result by Cai [Cai90, Th. 3.2] which establishes
an exponential lower bound on the size of constant-depth
Boolean circuits with ``help'' bits to compute the ``multiple
parity'' problem. We first state a weaker version of Cai's
Theorem below.

Theorem6.1 [Cai90]. LetX=[xij | 1�i�m, 1� j�m5]
be a set of Boolean variables and C be an unbounded fan-in,
constant depth circuit computing the m parity functions xi1 �
xi2� } } } �xim5 for 1�i�m. Suppose further that in addition
to the X variable, the circuit C also takes as input m&1
arbitrary precomputed values, which can depend on the X
variables in any desired way (these are called the help bits).
Then the circuit C must have size �2m *

, where * is a constant
depending on the depth of C.

We now use the above theorem by Cai to prove that
FOIESk hierarchy is strict at each level. In particular, we
encode the multiple parity problem into a query in FOIESk

and prove that the query cannot be in FOIESk&1 . The
latter is shown by exhibiting a first-order solution to the
multiple parity problem using some (k&1)-ary stored
auxiliary relations, assuming the query is in FOIESk&1 .
Since each first-order query (formula) can be computed by
an unbounded fan-in, constant depth Boolean circuit of
polynomial size, and auxiliary relations can be represented
as help bits, this contradicts the exponential lower bound
established in Theorem 6.1.

Theorem 6.2. For each integer k>0, FOIESk&1 %
FOIESk .

Proof. Let S be the database schema with a single
(6k+1)-ary relation R. We define the k-Mod-4 query over
S as follows: \I # inst(S), k-Mod-4(I)=[(x1 , ..., xk) | Nx1, ..., xk

mod 4=0], where Nx1, ..., xk
is the cardinality of the set

[(y1 , ..., y5k+1) | R(x1 , ..., xk , y1 , ..., y5k+1)].
Observe that k-Mod-4 # FOIESk . Indeed, to maintain the

answers to k-Mod-4, one only needs to keep three additional
k-ary auxiliary relations ri , for each i # [1, 2, 3], which
keeps track of all (x1 , ..., xk) tuples in ?1, 2, ..., k(R) such that
Nx1, ..., xk

mod 4=i.
In the following, we prove that k-Mod-4 cannot be in

FOIESk&1 . Suppose otherwise, i.e., k-Mod-4 has a (k&1)-
ary foies F. We first rewrite F into another (k&1)-ary
foies F$ that uses only (k&1)-ary auxiliary relations.
Suppose that F$ has + auxiliary relations. We pick n # N
such that n>+. Suppose D�dom is a set of n constants and
a1 , a2 , a3 , a4 are four distinct elements in D.

Let P be a given instance of Cai's multiple parity problem
with m=nk. We will show how to solve the multiple parity

problem using an AC0 circuit, through the foies F$ for
k-Mod-4.

Since m=nk, we identify each integer i (1�i�m) with a
distinct k-ary tuple ti in Dk and each integer j (1� j�m5)
with a distinct 5k-ary tuples sj in D5k. Let I be the following
database instance:

I(R)=(Dk_[a1]5k+1) _ [(ti , sj , a2),

(ti , sj , a3) | x i, j is true in the instance P].

Clearly ?1, ..., kI(R)=Dk. Observe that for each i (1�i�m),
if xi1 �xi2 � } } } �xim5=1 (or 0), then the number of tuples
of form (ti , y1 , ..., y5k+1) is 3 mod 4 (or 1 mod 4, respectively).
Thus k-Mod-4(I)=<.

For each i, 1�i�m, consider the update $i=(q i , <),
where the insertion set qi=[(ti , a4 , ..., a4)] and ti is the
tuple in Dk identified with i. Since F$ is a foies for k-Mod-4,
there is a first-order query ,i ($, I, Iaux) which computes the
new answer (the current answer is empty). From the defini-
tion of the query k-Mod-4 and the database I, it is clear that
the new answer will be either the same as the current answer
(when the number of tuples of form (ti , y1 , ..., y5k+1) is still
not a multiple of 4) or the current answer plus the tuple ti .
By building the update $i into ,i and using the construction
of I, we can easily obtain a first-order formula .i (I, Iaux)
which returns true iff xi1 �xi2 � } } } �x im5=0.

We can now construct an AC0 circuit C to compute the
multiple parity problem with m&1 help bits. Let r1 , ..., r+ be
the + auxiliary relations in F$ for the database I. We can
represent each relation ri by nk&1 bits. Therefore, the auxiliary
relations r1 , ..., r+ can be represented by + } nk&1�(m&1)
bits, which will be the help bits. Now for each i, 1�i�m, we
construct an AC0 circuit Ci from .i to compute the parity
of xi1 �x i2 � } } } �xim5 . Since C is an AC0 circuit, it has a
polynomial size (in m), contradicting Theorem 6.1. K

In [DS97], we considered ``deterministic'' foies, which
are foies with the restriction that the auxiliary relations are
defined by (fixpoint) queries. This severely limits the power
of foies. For example, a deterministic foies cannot maintain
a total order of the active domain. In [DS97], we proved
that the corresponding arity-based hierarchy det-FOIESk is
strict at small arities �2 and conjectured that it is strict at
each arity. The proof of the above theorem also shows that
det-FOIESk hierarchy is strict at each level, thus settling
that conjecture.

Theorem 6.3. For each integer k>0, det-FOIESk&1 %
det-FOIESk .

It is interesting to note that the arity of the input database
schema plays a role in the arity hierarchy. Let (det)-FOIESl

k

denote the set of all queries over an l-ary database schema
that have k-ary (deterministic) foies. The following are refined
statements of Theorems 6.2, 6.3, 3.5, and 4.3.

304 DONG AND SU

Corollary 6.4. 1. For each integer k>0, (det)-
FOIES6k+1

k&1 %(det)-FOIES6k+1
k .

2. FOIES1
sf %FOIES1

0 .

3. FOIES2
0 %FOIES2

1 .

4. FOIES2
1 %FOIES2

2 .

In [DZ97] the following improvement was given:
(det)-FOIES3k+1

k&1 %(det)-FOIES3k+1
k ; this was achieved by

tuning Cai's result and tuning the proof of Theorem 6.2.
In [DS97] it was shown that the det-FOIESk hierarchy

collapses at level 0 if the input arity is limited to 1: �k det-
FOIES1

k=det-FOIES1
0 . This result also shows that the

deterministic and nondeterministic foies arity hierarchies
behave differently if the input arity is limited to 1, since it
can be easily shown that the Count-kth-Power query is in
FOIES1

2&FOIES1
1 for all positive integers k. (The Count-

kth-Power query takes as input two unary relations R and
S and checks if |R|=|S|k. Membership in FOIES1

2 can be
proven in a way similar to that for Theorem 4.1 of [DW97].)

For the general input arity restricted situation, there are
many interesting problems that remain unanswered, including
the following:

v For each k>0 and l>0, is it the case that FOIESl
k

%FOIESl
k+1? In particular, is the hierarchy strict for l=2,

or even 1?

v For each k>0 and l>0, is it the case that det-FOIESl
k

%det-FOIESl
k+1? In particular, is the hierarchy strict for l=2?

The same generation query over acyclic graphs and the
transitive closure over k-path graphs might be useful in
answering the above questions. They are in FOIES2

4 but not
FOIES2

1 , proven in the Appendix, though it is open whether
they belong to FOIES2

2 or FOIES2
3 .

Proposition 6.5. The following two queries belong to
FOIES2

4 : the same generation query over acyclic graphs and
the transitive closure query over k-path graphs.

7. FIRST-ORDER INCREMENTAL DEFINABILITY

In the current definition of a foies, storing the query
answer is ``free,'' regardless of its size (arity). An alternative
way to measure the space usage of foies is to charge not only
for storing auxiliary relations but also for storing the answer
to the query of interest. This allows us to concentrate on the
space cost of the incremental ``definition'' of a query.

One may be tempted in saying that a query Q can be
incremental defined using arity cost n if Q as a k-ary foies,
Q has arity m, and n=max[k, m]. There are two considera-
tions against this naive definition. (i) The measure under
this definition does not reflect the difficulty of maintaining
the answer of the query. For example, first-order queries,
even those with the same conceptual difficulty, are not
equally easy to maintain: letting Q i

id be the (identity) query

defined by Q i
id(r)=r for each i-ary relation r, then Qk

id could
be incrementally defined using arity k but Qk+1

id could not.
(ii) The measure under this definition does not properly
reflect the difficulty of maintaining the non-first-order part
of the query, since it may be distorted by the first-order part
of the query. Indeed, consider the k-ary (k>0) query Q0

defined by Q0(r)=r if the number of tuples in r is even and
Q0(r)=< otherwise. Under the naive measure, the arity
cost of the incremental definition of Q0 would be k. However,
Q0 can be defined as the composition of two queries Q1Q2 ,
where Q2 tests if r is even, and Q1 will produce r (or the empty
set) if Q2 sets (respectively, does not set) a flag. If we maintain
the non-first-order part Q2 of Q0 only, then we can derive
the answer to Q0 as well. So the real incremental definition
cost for Q0 should be 0 instead of k.

The following definition addresses these two issues.
Intuitively, the auxiliary database is incrementally maintained
as in foies; however, after the maintenance for an update, a
first-order query can be applied to the input database and
the auxiliary database to derive the answer to the query Q.

Definition 7.1. Let Q be a query from Sin to RQ and
k # N. A k-ary first-order incremental definition (foid) for Q
is a quadruple (Saux , :, A\, �) satisfying the following
conditions:

1. Saux is a k-ary database schema disjoint from
Sin _ [RQ];

2. : is an input domain preserving aux-d-def from Sin

to Saux ;

3. A\ maps each relation name R in Saux to a first-
order aux-maintaining query A\

R ;

4. for each database I o
in in dom(Q), each permissible

update $=(q, s), and each reachable auxiliary database
I o

aux in :(I o
in), if I n

in=$I o
in is the new database, then a new

auxiliary database I n
aux in :(I n

in) is obtained by

I n
aux(R)=A\

R (I o
in , I o

aux , q, s) for each R # Saux ;

5. � is a first-order query from Sin _ Saux to RQ such
that �(I, J)=Q(I) for each I # dom(Q) and each J # :(I).

Similarly, a foid is called space free if Saux=<.

Remark. A foid for query Q differs from a foies for Q in
the following three aspects:

1. The answer to Q must be stored in the foies but is not
necessarily stored in the foid.

2. The arity of the query answer is not counted toward
the arity of the foies, but is counted toward the arity of the
foid if the foid stores the answer.

3. Since the query answer may or may not be stored in
the foid, the answer is computed by applying a first-order
query on the current database and stored relations (if any).

305FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

The arity-based FOIDk hierarchy is defined in a way similar
to the FOIESk hierarchy.

Definition 7.2. For each k # N, let FOIDk be the set of
all queries which have k-ary foids. Let FOIDsf be the set of
queries which have space-free foids.

Observe that FOIDsf is precisely the set of all first-order
queries. So the identity queries are in FOIDsf . Moreover,
the query Q0 considered prior to the definition of a foid is in
FOID0 . The FOIDk classes also enjoy the following closure
properties similar to Proposition 2.5.

Proposition 7.3. For each k # N, FOIDk is closed under
the first-order operations: projection, selection, cross product,
set operations, and complement.

Proof. Let F1 , F2 be two k-ary foids for queries Q1 , Q2

(respectively). Consider a binary operation %. We can easily
combine F1 , F2 into a foid for Q1%Q2 by retaining all
aux-maintaining queries in F1 , F2 and constructing easily
the aux-maintaining query for Q1%Q2 . Unary operations
are similar. K

The FOIDk classes are different from the FOIESk classes.
For example, Even is in FOIESsf (Example 2.3) but not in
FOIDsf since the latter coincides with first-order queries.
The following can be easily verified.

Theorem 7.4. 1. FOIDsf %FOIESsf .

2. For each k # N, FOIDk �FOIESk ; furthermore, the
containment is proper for k�1.

3. If an m-ary query Q is in FOIESk then Q is in FOIDn

for some n�max[k, m]. It follows that a Boolean query is in
FOIESk iff it is in FOIDk .

The strictness in (1) and (2) of Theorem 7.4 can be
established using the transitive closure query over acyclic
graphs. To verify (3), it suffices to observe that we can add
the answer RQ to Q as an auxiliary relation and use the iden-
tity first-order query on RQ as the �.

Although the FOIESk and FOIDk hierarchies do not
coincide, they only differ slightly. Almost all results on FOIESk

reported in Sections 3, 4, and 5 can be translated into ones
on FOIDk . In particular, the following hold.

Theorem 7.5. 1. For all k # N, FOIDk %FOIDk+1 .

2. Mod-3 and Even are in FOID0 .

3. Equal-Length-Chain is in FOID1&FOID0 .

4. 2-Colorability, (s, t)-connectivity for both acyclic graphs
and 1-path graphs, (dis)connectivity for undirected graphs,
and TC of acyclic (or undirected or 1-path) graphs are in
FOID2&FOID1 .

The proof for (1) above is almost identical to that of
Theorem 6.2, using the k-Mod-4 query as a separator. Items
(2) and (3) follow from Theorem 7.4.(3). The membership

part of (4) is clear; the proofs for the nonmembership part
can be modified from the respective proofs of Section 5.

8. CONCLUDING REMARKS AND OPEN PROBLEMS

Our study on the arity of auxiliary relations brings out an
interesting perspective on the incremental evaluation and
definition of fixpoint queries using first-order queries. The
results presented here clarify (i) the strictness of the evalua-
tion arity hierarchy (FOIESk) when the arities are small
and when the input relations can be as large as 6k+1,
where k is the maximum arity of the auxiliary relations of
the corresponding foies, and (ii) the strictness of the defini-
tion arity hierarchy (FOIDk). It should be pointed out that
for the small arities the hierarchies are separated using
graph queries, whereas for large arities the hierarchies are
separated using queries over relations with large arities.

We also have the exact positions of several graph queries
in the hierarchies, including some counting queries and the
transitive closure of undirected graphs, acyclic graphs, and
1-path graphs.

There are many more open problems. We now list five:

v As mentioned earlier, recent improvement by [DZ97]
states that we can separate FOIESk&1 and FOIESk using
queries over (3k+1)-ary input databases. It is still open
whether we can separate FOIESk&1 and FOIESk using
queries over f (k)-ary input databases, where f is some
function such that f (k)�3k, f (k)�k, or f (k)�2.

v Is the transitive closure query over directed graphs
in FOIES?

v Is there a polynomial time complete problem in
FOIES? (Please refer to the discussion on Dyn-FO toward
the end of the Introduction for reasons that the existence of
a PTIME-complete problem in Dyn-FO does not immediately
imply the same for FOIES.)

v Does the same generation query have an (insertion-only)
foies for arbitrary input relations? Is the same generation query
for acyclic graphs in FOIES2?

APPENDIX

In this Appendix we prove Proposition 6.5, which is
restated in the following two propositions.

Proposition 1. The same generation query over acyclic
graphs belongs to FOIES2

4 .

Proof. Suppose the two input relations are q1 and q2 .
We use sl(x, y, u, v) to mean that there is a q1 -path from x
to y that has the same length of a q2 -path from u to v. The
sg relation can be derived as sg(x, y)#_z sl(z, x, z, y).

Upon the insertion of a new edge into q1 (the case for q2

is symmetric and thus omitted), the new sl relation is the

306 DONG AND SU

union of its old value slo and the set Y, where (x, y, u, v) # Y
iff

qq
1 (x, y) 7 qo

2(u, v)

6_u$(slo(x, w, u, u$) 7 qq
1 (w, y) 7 qo

2(u$, v))

6_v$(qq
1 (x, z) 7 qo

2(u, v$) 7 slo(z, y, v$, v))

6_uv(slo(x, w, u, u$) 7 qq
1 (w, z)

7 qo
2(u$, v$) 7 slo(z, y, v$, v)),

where qq
1 is the insertion set (containing a single edge).

We now consider how to maintain sl after the deletion of
an edge (u1 , u2) from q1 . Let T1 denote the result of deleting
all tuples (x, y, u, v) from slo where

_u1u2(_wz slo(x, u1 , w, z)

7 qo
1(u1 , u2) 7 _wz slo(u2 , y, w, z))

is true. Then we get the new sl in the following manner:
(x, y, u, v) # sl iff

T1(x, y, u, v)

6 _zw(q1(x, z) 7 q2(u, w) 7 T1(z, y, w, v))

6 _zw(T1(x, z, u, w) 7 q1(z, y) 7 q2(w, v))

6 _z1z2 w1 w2(T1(x, z1 , u, w1) 7 q1(z1 , z2)

7 q2(w1 , w2) 7 T1(z2 , y, w2 , v)).

To verify that this is correct, clearly the right-hand side
does not derive more tuples than necessary. To see that it
derives every tuple required, suppose x, y, u, v are four
nodes such that there exists a q1 -path v0v1 } } } vk from x to
y and a q2 -path w0 w1 } } } wk from u to v with equal length.
If there is no qo

1-path going through (u1 , u2), then T1(x, y, u, v)
is true, and the proof is complete. Suppose there is a qo

1-path
from x to y through (u1 , u2). It can be shown that (see [DP97]
for a proof) there exists an i<k such that there are no walks
in qo

1 using (u1 , u2) from v0 to vi or from vi+1 to vk . The cases
when i=0 or i=k&1 are two degenerate cases of the case
of 0<i<k&1, so we consider the case when 0<i<k&1.
Clearly, T1(x, vi , u, w1), T1(vi+1 , y, w2 , v), q1(v i , vi+1),
q2(wi , wi+1) all hold. Therefore sl(x, y, u, v) can be
obtained using the right-hand side. K

Proposition 2. The transitive closure query over k-path
graphs is in FOIES2

4 .

Proof. We will maintain k 4-ary relations, which store
up to k distinct paths for each pair of nodes. In particular,
we use the formula spi (x, y, u, v) to mean that the edge

(u, v) is on the i th path from x to y. For example, the i th
path from a0 to an

(a0 , a1), ..., (an&1 , an)

is stored as the following n tuples in spi :

(a0 an a0 a1)

} } }

(a0 an aj aj+1)

} } }

(a0 an an&1 an)

If an edge (c1 , c2) is deleted, we simply delete (for each i)
all tuples (x, y, u, v) in spo

i such that (x, y, c1 , c2) is also in
spo

i . Note that there is no need to split the i th path (from x
to y). To help maintain the spi 's after insertions we also do
some compacting so that a consecutive initial segments of
the identifiers is used.

Suppose a new edge (c1 , c2) is inserted. Let x and y be
two arbitrary nodes in the graph. If there are a path (with
identified) m from x to c1 and a path n from c2 to y, we
concatenate the two paths and the new edge to form a walk
from x to y. The walk is a new path from x to y iff no cycle
exists in the walk (Fig. 15), or equivalently iff path m and
path n do not share nodes. (If a cycle exists in the walk then
a path from x to y must already exist which consists of a
subset of edges in the walk, e.g., the path from x to y via o
and o$ in Fig. 15.) This walk contributes to a new path iff the
condition specified by the following first-order formula is
true4:

c_u((spo
m(x, c1 , u, V) 6 spo

m(x, c1 , V , u))

7 (spo
n(c2 , y, u, V) 6 spo

n(c2 , y, V , u))).

We will use .mn(x, y) to denote the formula saying: there
are a path m from x to c1 and a path n from c2 to y which
do not share any node.

We then use a systematic way to derive the spi relations.
This can be done by first defining spi (x, y, v, w) as spo

i (x, y,
v, w) whenever such an old path exists. After such copying,
we use an order on pairs (m, n), where .mn(x, y) holds, to
``merge'' the old contents of paths m and n and the edge (c1 , c2)
to define sp i for the next i, i.e., spi is defined to contain

(spo
m(x, c1 , v, w) 6 (v=c1 7 w=c2)

6 spo
n(c2 , y, v, w)) 7 .mn(x, y).

307FIRST-ORDER INCREMENTAL EVALUATION SYSTEM

4 We will use spo
m(x, y, u, V) as a shorthand for the formula

_v spo
m(x, y, u, v), and spo

m(x, y, V , V) for _uv spo
m(x, y, u, v).

FIG. 15. A cycle introduced by the new edge.

The orderings of the steps can be coded into the formulas,
although this is tedious. K

ACKNOWLEDGMENTS

The authors are grateful to Victor Vianu for interesting discussions and
to Serge Abiteboul for his comments. We also thank the referees for their
valuable comments. Most importantly, we are deeply indebted to Peter Bro
Miltersen, who provided us with the proof of the strictness of FOIESk

(Theorem 6.2) using Cai's theorem and pointed out the need of considering
charging for the cost of storing the answer to the query of interest.

REFERENCES

[AF90] M. Ajtai and R. Fagin, Reachability is harder for directed
than for undirected finite graphs, J. Symbolic Logic 55 (1990),
113�150.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu, ``Foundations of Data-
bases,'' Addison�Wesley, Reading, MA, 1995.

[AP87] K. R. Apt and J.-M. Pugin, Maintenance of stratified data-
bases viewed as a belief revision system, in ``Proceedings,
ACM Symposium on Principles of Databases systems,''
pp. 136�145, 1987.

[BC93] A. L. Buchsbaum and M. C. Carlisle, Determining uni-
connectivity in directed graphs, Inform. Process. Lett. 48
(1993), 9�12.

[BLT86] J. A. Blakeley, P.-A. Larson, and F. W. Tompa, Efficiency
updating materialized views, in ``Proceedings, ACM SIGMOD
International Conference on Management of Data,'' pp. 61�71,
1986.

[Cai90] J. Cai, Lower bounds for constant-depth circuits in the
presence of help bits, Inform. Process. Lett. 36 (1990), 79�83.

[CH82] A. K. Chandra and D. Harel, Structure and complexity of
relational queries, J. Comput. System Sci. 25 (1982), 99�128.

[DK97] G. Dong and R. Kotagiri, Incrementally evaluating constrained
transitive closure by conjunctive querie, in ``International
Conference on Deductive and Object-Oriented Databases,''
1997.

[DLW95] G. Dong, L. Libkin, and L. Wong, On impossibility of
decremental recomputation of recursive queries in relational
calculus and SQL, in ``Proceedings, International Workshop
on Database Programming Languages,'' 1997.

[DP97] G. Dong and C. Pang, Maintaining transitive closure in first-
order after node-set and edge-set deletions, Inform. Process.
Lett. 62 (1997), 193�199.

[DS93] G. Dong and J. Su, First-order incremental evaluation
of datalog queries (extended abstract), in ``Proceedings,
4th International Workshop on Database Programming
Languages,'' 1993.

[DS95a] G. Dong and J. Su, Increment boundedness and nonrecursive
incremental evaluation of datalog queries (extended abstract),
in ``Database Theory��ICDT'95'' (G. Gottlob and M. Y. Vardi,

Eds.), Lecture Notes in Computer Science, Vol. 893,
pp. 397�410, Springer-Verlag, Berlin�New York, 1995.

[DS95b] G. Dong and J. Su, Incremental and decremental evaluation
of transitive closure by first-order queries, Inform. Comput.
120 (1995), 101�106.

[DS97] G. Dong and J. Su, Deterministic foies are strictly weaker,
Ann. Math. Artificial Intelligence 19 (1997).

[DST95] G. Dong, J. Su, and R. Topor, Nonrecursive incremental
evaluation of datalog queries, Ann. Math. Artificial Intelligence
14 (1995), 187�223; Also appeared as Uni Melbourne CS
TR 93�3, March 1993.

[DT92] G. Dong and R. Topor, Incremental evaluation of datalog
queries, in ``Proceedings, International Conference on Data-
base Theory,'' pp. 282�296, Berlin, Germany, 1992.

[DW97] G. Dong and L. Wong, Some relationships between foies and
�1

1 arity hierarchies, Bull. European Assoc. Theoret. Comput.
Sci. 61 (1997).

[DZ97] G. Dong and L. Zhang, Separating auxiliary arity hierarchy
of first-order incremental evaluation using (3+1)-ary input
relations, Technical report, 97�13, 8 pages, Computer Science
Department, University of Melbourne, 1997.

[Ehr61] A. Ehrenfeucht, An application of games to the completeness
problem for formalized theories, Fund. Math. 49 (1961).

[Fag75] R. Fagin, Monadic generalized spectra, Z. Math. Logik
Grund. Math. 21 (1975), 89�96.

[Fra54] R. Fra@� sse� , Sur les classifications des syste� mes de relations,
Publ. Sci. Univ. Alger, I 1 (1954).

[FSV95] R. Fagin, L. J. Stockmeyer, and M. Y. Vardi, On monadic NP
vs monadic co-NP, Inform. Comput. 120 (1995), 78�93.

[GL95] T. Griffin and L. Libkin, Incremental maintenance of views
with duplicates, in ``Proceedings, ACM SIGMOD Interna-
tional Conference on Management of Data,'' 1995.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, Maintaining
views incrementally, in ``Proceedings, ACM SIGMOD Interna-
tional Conference on Management of Data,'' pp. 157�166, 1993.

[GS94] S. Grumbach and J. Su, Finitely representable databases, in
``Proceedings, ACM Symposium on Principles of Database
Systems,'' 1994.

[Hul86] R. Hull, Relative information capacity of simple relational
schemata, SIAM J. Comput. 15 (1986), 856�886.

[Kol95] P. G. Kolaitis, A tutorial on combinatorial games in database
theory, in ``Proceedings, ACM Symposium on Principles of
Database Systems,'' 1995.

[Ku� c91] V. Ku� chenhoff, On the efficient computation of the difference
between consecutive database states, in ``Proceedings, Second
International Conference on Deductive Object-Oriented
Databases'' (C. Delobel, M. Kifer, and Y. Masunaga, Eds.),
Lecture Notes in Computer Science, Vol. 566, pp. 478�502,
Springer-Verlag, Berlin�New York, 1991.

[MSVT94] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia,
Complexity models for incremental computation, Theor.
Comput. Sci. 130 (1994), 203�236.

[PI94] S. Patnaik and N. Immerman, Dyn-FO: A parallel dynamic
complexity class, in ``Proceedings, ACM Symposium on
Principles of Database Systems,'' pp. 210�221, 1994.

[RRSS94] R. Ramakrishnan, K. A. Ross, D. Srivastava, and S. Sudarshan,
Efficient incremental evaluation of queries with aggregation,
in ``International Logic Programming Symposium,'' 1994.

[WDSY91] O. Wolfson, H. M. Dewan, S. J. Stolfo, and Y. Yemini,
Incremental evaluation of rules and its relationship to
parallelism, in ``Proceedings, ACM SIGMOD International
Conference on Management of Data,'' pp. 78�87, 1991.

� � � � � � � � � � � � � � � � � � � �

308 DONG AND SU

