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We study some scalar inequalities of parabolic type and we give the leading term 
of an asymptotic expansion as f + co for solutions of thermo-hydraulic equations 
without external excitation. A phenomenon of resonance is pointed out. We also 
treat M. H. D. equations and Navier-Stokes equations on a Riemannian 
manifold. 0 1986 Academic Press. Inc. 

Due to dissipation effects, and in the absence of an external excitation, 
the solutions of thermo-hydraulic equations decay at least exponentialy 
when time goes to infinity. The aim of this paper is to give a qualitative 
description of this behaviour similar to that obtained by C. Foias and 
J. C. Saut [3,4] for the Navier-Stokes equations. It is proved in [3,4] 
that for these equations without exterior forces, the velocity decays exactly 
exponentialy with a rate which is an eigenvalue of Stokes operator. 

Let us now describe our main results. For thermo-hydraulic equations, 
we show (see Theorem 2.1) that two different situations may occur. In the 
first one, tempeature and velocity decay exactly exponentialy. In the second 
situation, a phenomenon of resonance between Stokes operator and the 
heat operator appears. Although temperature decays exactly exponentialy, 
the velocity decays like the product of an integer power of time and a 
decreasing exponential whose rate is the same as that of the temperature. 
This is a case of resonance. 

For Navier-Stokes equations on a Riemannian manifold, for 
magnetohydrodynamic equations, we prove that solutions of these 
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equations decay exactly exponentialy, w.r.t. the L2-Sobolev norm of order 
m for every m 20. Finally we consider scalar inequalities of the type 
(u(x, r) E C, Q bounded set in P’): 

We show that under the assumptions that a,( ., t) goes to a;( .) and n(t) 
goes to zero in a certain sense when t goes to infinity; there exists an eigen- 
value /1” of the second order differential operator A” = --d/ax, 
(al?(x) &‘/ax,) associated to appropriate B.C., such that enrf u( ., t) goes to 
some function zP’(. ) eigenfunction of A O3 associated with /1 no. 

The paper is organized as follows: in Section 1 we present some abstract 
results on differential inequalities of the type (v > 0): 

where {A(t)} is a family of self-adjoint unbounded operators on a Hilbert 
space H. 

In Section 2 we make use of the results of Section 1 to study the long 
time behaviour of the equations previously mentioned: we consider suc- 
cessively the thermo-hydraulic equations (Sect. 2.1) the M.H.D. equations 
(Sect. 2.2) and scalar inequalities (Sect. 2.3). 

1. REMARKS AND COMPLEMENTS ON THE ASYMPTOTIC BEHAVIOUR FOR 
SOLUTIONS OF ABSTRACT INEQUALITIES 

1.1. Notations and Hypotheses 

Let V be a separable Hilbert space included with continuous and com- 
pact injection in a Hilbert space H; we denote by ( ., . ) and 1. / the scalar 
product and the norm on H and by I.1 y the norm on V. 

We suppose that V is dense in H and thus, identifying H with its 
antidual, we have the usual injections 

Vc Hc V’, (1.1) 

we shall also denote by (.;) the duality between V and v’. 
A bounded operator &’ from V into v’ restricted to H defines an 

unbounded operator still denoted by d with domain 

D(d)= {USE V,J&‘~~EH}. (1.2) 
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Let t + A(t) be a measurable mapping from R + = [0, + cc [ into 
5?( V, V’); we assume that for almost every t E R + (in the sequel we shall 
simply write for a.e. t B 0) the operator A(t) is self-adjoint. 

ASSUMPTION 1.1. (i) There exists 2~ R and 9, > 0 such that 

Mt)$,b)+J. 1412211 l4lL Vfj E V for a.e. t 2 0. 

that (ii) Th 
ere exists a function of L’( R’ + ; Y( V, V’) denoted dA/dt such 

The point (ii) clearly implies that (A(t)} converges, when t goes to + co, 
to a limit denoted by A O” in the topology of 9?( V, V’). This limit satisfies 

(A”hd)+l 1412h l$l:, V4E V, 

and A” is self-adjoint. The operator A,” = A” + ,? is an isomorphism from 
V onto V’, Thus 11 C#J 11 - (A,” 4, $)‘I2 and I C$ ( y are two equivalent norms on 
V. In the following we shall use the first one. We rewrite the point (i) of 
Assumption 1.1 as 

9>O(A(t)4,#)+~ ld12bvl 114112, VIE Vf0ra.e. t20. (1.3) 

Let a(t) be the function 

and define 

AD(t)= -jt+mz(s)ds=A(t)-A’. 

It follows from (ii) of Assumption 1.1 that AD(t) goes to zero and 

5 
+cO 

II A”(t)ll Y(V,V) G a(s) ds. (1.6) f 
Diagonalisation of A”. The operator A,” is an isomorphism from D(A,“) 

onto H and (A,“) - ’ is a self-adjoint and compact operator from H into H. 
Thus there exists a complete family in H constituted by eigenfunctions of 
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A O”. More precisely there exists { 5j}irI c H and a non-decreasing sequence 
IAjlj> 1 of real numbers such that 

sP{5jJj> 1 is dense in H, 

(iii> t,, = 6,9 (1.7) 

Axti= A,(,. 

We also denote by a(A”)= {Aj)j21 the increasing sequence of distinct 
eigenvalues. If ;i E o(A ” ), we denote by Z7, the projector onto 
Ker(A co - 2) and by PJ the projector P,- = Ci G ,J 17,. 

1.2. Asymptotic Behaviour 

This Section is devoted to the study of the behaviour as t + +co of a 
function 4 from R + into V satisfying 

9EWR+; V) n L’(O, E WA(t)), VT>O, (1.8) 

(the notation ~EL’(O, T; D(A(t)) means that for almost every t E [0, T]; 
u(t) E D(A(t)) and A(t) u(t) E L2(0, T; H)). 

for a.e. t 2 0, 

I I 

(1.9) 

;+vAB <n II411 for a.e. t 3 0, 

where v > 0 and 

n E L2(0, + cc ). (1.10) 

According to a backward uniqueness result for which the reader is 
refered to J. L. Lions and B. Malgrange [ 181, C. Bardos and L. Tartar 
[ 11, and J. M. Ghidaglia [9] we know that either 4 is identically zero or 4 
never vanishes. Thus assuming that d(O) # 0, we have 

I d(t)1 > 0, vt 2 0. (1.11) 

In this last case, [9] Theorem 1.1 proves that the ratio 114 I/“/I 4 I2 con- 
verges when t + + co to some Am E o(A ” ), and for every E > 0, there exists 
a constant C, > 0 such that 

I&t)] >CCEe-“(‘+E)nmt, Vt20. (1.12) 

We shall show that, under stronger hypothesis on the convergence of 
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A(t) to A” (see (1.16)) and on the decay of n (see (1.15)), (1.12) can be 
improved. More precisely Theorem 1.1 (which is the main result of this 
paragraph) proves that there exists an eigenfunction 4” # 0 of A” 
associated with A” such that 

lim I/ e’“-‘$(t) - 4” )I = 0. (1.13) 
I--r +m 

Let us note that (1.12) was proved without the hypothesis of compactness 
of the injection from V into H. 

Before stating our result, let us introduce some notations when 4(O) # 0 
so that (1.11) holds: 

THEOREM 1.1. The hypotheses are those of Section 1.1. Let 4 satisfy (1.9) 
and qb(O) # 0. We make the following supplementary assumptions 

nEL2(lF!+)nL1(IW+), (1.15) 

Then the ratio /I d( t)\l */I 4( t)l* converges to A” E o(A”) when t + + co and 
there exists 4” E D(A”) such that 

e”“““#(t) converges to I$” in the norm of V, (1.17) 

Am&= = A,q+O”. (1.18) 

Remark 1.1. The hypothesis n EL’(R+) and (1.16) are optimal in a 
certain sense. Take, for instance, V = H = R, and 

(i) A=Zd, n30, (d#/dt) + C$ = nq5 then e’#(t) converges iff 
nELW+), 

(ii) A(t)=[1+a(t)]Id,a>O,n=O,(dq5/dt)+(1+a)qb=O,ef4con- 
verges in R iff aEL’([W+). 

The proof of Theorem 1.1 consists in successive lemmas. In all of them, 
hypotheses of Section 1.1 are understood. 

Let us remark that using qi(t) e -“AA and A + A instead of d(t) and A 
amounts to the case A = 0. 

LEMMA 1.1. Let q3 satisfy (1.9) with (1.10). Zf $(O) #O then A(t) and 
A’(t) converge to A” E o(A”) when t --* + co. 
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ProoJ We denote by L(d)= (dc$/dr)+ vAqi We have the following 
equation for A(t) : 

dA 
z=2Re (Ad - 44 4’) + (A’$, 4) 

141’ Idl” 

Since (A# - A#, 4) = 0, it follows then that 

1 d/l 

2x+” 
IAd-4Q2 

Ml’ 

= Re (A$ - 46 U4)) +’ (A’& 4). 

141” 2Tv’ 
(1.19) 

dashes denoting derivatives with respect to t. From (1.19) thanks to (1.3) 
(1.4), and (1.9) we have 

where 

(1.20) 

(1.21) 

From (1.20) it follows that dA/dt <m/l and by integration from t, to 
t,(t, 2 to) we find 

A~~A(t~)4A(t,)expS”m(s)ds. 
10 

Using (1.4), (l.lO), and (1.21) we deduce 

taking the lim inf when t, goes to + cc we have then 

A,<limsupA(t,)<liminfA(t,). 
I,-+ +m to- +m 

It follows that A(t) converges to a limit Am when t -+ + co. Using now 
(1.6) we estimate A”(t): 

and thus lim,, +oo A(t)=lim,, +oO Ar(t)=Am. 
It remains to show that A O” E a(A ” ). Denoting by + = #/I 4 1 we deduce 
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from (1.20) and from the fact that A(t) is bounded for t E R, that 
$ E L2(lR + , H). Hence there exists a sequence tj --) + CC as j -+ + cc such 
that (A-A)$(tj)-+O in H. Then r,~(A--A~)Jl(t~)+0 in H. If 
.4a .$ a(A”), (A”-Am)-‘E9(V, V). Since AD+(cj)+rj*O in v’, 
$(tj)= (A” -Am)-’ {AD$(tj) + r,} g oes to 0 in V. This conradicts the fact 
that 1 $(tj) 1 = 1. This completes the proof of Lemma 1.1. 

LEMMA 1.2. Let 4 satisfy (1.9) with (1.10). If b(O) $0, under the 
assumption ( 1.16), we have 

s 
+m Ifl(t)-A”1 df< +co. (1.23) 

0 

ProoJ: We have the following equation for $ = ~/Ic# 1 (recall that 
L(4) = (Wdt) + v&l 

(1.24) 

We shall prove that (1.22), (1.23) follow from (1.24), thanks to the follow- 
ing lemma (the proof of Lemma 1.3 is given hereafter). 

LEMMA 1.3. Let tj be a function with values in V such that 

ti EWR +, VI n Lf,, (R + ; WW)t 

where 

A(t) = (1 t)(t)ll’ converges to A4 E o(A”) as t + + KJ, (1.25) 

PEL2(R+). (1.26) 

Then 

lim II (I- n,,) * )I = 0, (1.27) 
I- +m 

I o+m II(Z-Z7,p)11/\12(s)ds< +m. (1.28) 
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We return to the proof of Lemma 1.2. Denoting by p= 
I(W~t)+v(~-~)~l, we infer from (1.9) and (1.10) that p satisfies ( 1.26). 
The convergence (1.25) results from Lemma 1.1 and thus applying 
Lemma 1.3, (1.22) follows. To prove (1.23) we write A -A- = 
/i’-P+AD; using (1.6) and (1.14) we have 

On the other hand one checks easily the estimate (expand in term of 
{&>j> 1) 

Now (1.23) follows from (1.16), (1.28) and the two last estimates. The 
proof of Lemma 1.2 is complete. 

We establish now a result which shows that jj#(t)jj decays at least like 
- v/l”‘r e . 

LEMMA 1.4. Under the assumptions of Theorem 1.1, there exists a 
positive constant C such that 

( 4(t)] Q Ce ~ vAxr, Vt 2 0, (1.29) 

[I d(t)11 < Ce ~ “‘“‘, vt > 0. (1.30) 

Proof: Since A’(t) is bounded, it suffices to prove (1.29). We have the 
following estimate: 

It results that 

ilog )#(2Poor < 2n(A’)“2 + 2v(A -Am). 

Now from (1.15) and (1.23) the r.h.s. of this last inequality belongs to 
L’( Iw + ) and thus (1.29) is satisfied: Lemma 1.4 is proved. 

We conclude by giving 

Proof of Theorem 1.1. We denote by ZZ(t) = IT,,&t), applying Z7,,m to 
L(b) = (dq)ldi) + vA4 it follows that 

$ (e”““‘Z7(t)) = e’““‘17nm(L($) - vA”f$). 
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By integration we deduce 

e wlyz( t) _ evnms n(s) = jr evAmu ZZ,m(L(c$) - vADq5) da. (1.31) 
s 

From (1.6) and (1.9) we have 

Using (1.15), (1.16), and (1.30) we deduce that there exists a function 
n,eL’([W+) such that 

e vnmul n,m(u4(a)) - vAD(a) 4(a)l <n,(o). (1.32) 

Hence the integral in the r.h.s. of (1.31) is convergent and therefore 
e “nm*n(t) converges to 4” in the norm of H. If 4” =O, then 

e ‘“m’17(t)=jt+m e “‘““l7,,&(~) - vADqS) da 

and according to (1.32) 

1 II(t)1 < eevnm’ 
5 

tm nl(a) do. 
f 

According to (1.22), there exists C, > 0 such that 

Iti(t)\ < Cle-‘@’ 5 +m nl(a) do. 
I 

From 

we deduce that 

I d(t)1 2 lqW)l exp -ji (VA + n(A’)‘/*)(g) da. 

By comparison with (1.33) we have 

(1.33) 

J‘ IW)l rIv(A-Am)+n(,4’)“21 du>log?- 
0 1 

log I,+ Ocl nl(a) da. 
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According to (1.15) and (1.23) the 1.h.s. of this last inequality is majored 
but since n, EL’(R + ) the r.h.s. goes to + co when t + + cc. It is absurd 
and 4” # 0. We have proved that e Ynm’Z7,,mqS(t) converges to 4” w.r.t. the 
norm on H. It follows then from (1.22) and (1.29) that e’““‘d(t) converges 
to 4” w.r.t. the norm on P’. Since Ker JIna is closed, (1.18) is satisfied. 

Proof of Lemma 1.3. We denote by q = (I- Pnw) $. Applying I-P,,% 
lo (&G/d?) + v(A - /1) $ and taking the scalar product in H with q we get 

~~lq12+Y(ll~l12-~ lq12)=Re q,$+v(A--A))-va”$). 

Now by (1.6) we obtain 

and if we denote by 

m2(t) =P Al,2 + v(A’)“~ j + O” N(S) ds, 
I I 

(1.34) 

we have 

+i 1412+v(IIql12-~ lq12)<m2 llql(. (1.35) 

It follows from (1.16) (1.26) that 

m2 E L2( R + ). (1.36) 

NOW, thanks to Schwarz inequality (E > 0 will be chosen later) it comes 
from (1.35): 

Now, let (1 + 6,) /1” be the first eigenvalue of A” which is strictly greater 
than Aa, then )q12< 11q112/(l +6,)n” and 

$lql’+2v (l--E)- 
i 

n 
I 

1 
(1+6,)/i” l14112~-m~. 2VE 

(1.37) 

But since (1 -&)-(/l/(1 +6,)/1”) tends to (6,/l +bl)-e, choosing 
E = 6,/4( 1 + 6 1), there exists to > 0 such that 

A 1 61 
1-E-(1+6,)A”%+b,’ 

Vt b t,. (1.38) 
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Now from (1.37) it follows that 

(1.39) 

From this last inequality, using 1 q 1 2 < (I q I( 2/( 1 + 6, ) A 30, one obtains by 
Gronwall’s lemma for t > t,, 

Now from (1.36) and (1.40) it follows easily that 

lim Iq(t)l =O. 
t--t tee 

Returning to (1.39) we obtain that 

s +m I(q(s)l12ds< +a. 
f 

Let us remark that if A O” = A 1, (1.41) can be written as 

4 lim (I-IT,,)lg)( =O. 
I+ +a2 

(1.41) 

(1.42) 

If ,4 O” > A 1, let (1 - 6,) A O” be the first eigenvalue of A O” which is strictly 
smaller than A O”. Denoting by 8 = P,, -62)Am $, applying P,, _ 62)A5 to 
(d$/dt) + v(A -A) $ and taking the scalar product in H with 0 we get 

Denoting by 

%(f) = P + v(A’A? 1 - S2))1’2 jf+ 3c1 E(S) ds, 

we have 

fl W+v ww--/1 lei2)a -m3 181, 

and from (1.16) and (1.26) it follows that 

m3 E L2( R + ). 

(1.44) 

(1.45) 



LONG TIME BEHAVIOUR 

Since [(8((2<Am(1 -6,)1812, there exists tl 20 such that 

A(t)-n-(1-s,)>? for tat,. 

Now from ( 1.46) 

Thanks to Schwarz inequality we deduce 

Let T> t 2 t, , by Gronwall’s lemma it follows that 

Letting T -+ + co, observing that 10 1 d ) Ic/ 1 = 1, we obtain 

279 

(1.46) 

Using (1.45) this last inequality proves that lim, _ +u3 1 &?)I = 0. Now 
according to (1.41), ( 1.43) is also proved in the case where A ui > A,. We 
are going to prove that (1.43) and lim,-+oo II ~&t)\\~ = ,4= shows (1.27). We 
write II~I12=II(~-~A~)rG/I12+~~ Ifl,,=til*, then ll(~-~,~)\1/112= 
A-/i-+Am I(Z-Z7,r)$I and this proves our claim. 

Now according to (1.42), to prove (1.28) it suffices to show that 

s +cc l)8(s)I12ds< +m. (1.48) 
11 

But (1.48) is a consequence of (1.47) since IId /I 2 6 A co ( 8 1’ and 

+CO 
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1.3. The Case of a Quadratic Nonlinearity 

Theorem 1.1 shows that solutions of (1.9) behave, w.r.t. the V-norm, like 
e -v”mf#co as t --+ + co. In this paragraph we strengthen this result in the 
case where C$ satisfies a nonlinear equation (see (1.50)). We prove in par- 
ticular that for every m E N, dmq5/dtm behaves, w.r.t. the D(A)-norm, like 
(-vp)m ,-v~“fp as t + + 03. Throughout this paragraph we assume 
that the family {A(t)},,o does not depend on t, i.e., A(t) = A and we make 
the assumption that A is positive (i.e., point (i) of assumption 1.1 is 
satisfied by A = 0). 

This section is motivated by the case where A is the Stokes operator. 
Due to the classical regularity properties of this operator, the Theorem 1.3 
established at the end of this paraigraph leads, in this particular case, to 
decay results w.r.t. the Sobolev’s norm H” for every m > 0 (see 
Remark 2.2). 

1.3.1. Behaoiour in D(A). Let B a bilinear continuous operator from 
Vx V into v’, from D(A) x I/ and Vx D(A) into H, such that (K>O) 

I B(d> +)I+ I B($, $116 K I A4 I II ti II 3 VA $9 E WA 1. (1.49) 

We study the behaviour or d(t) solution of the differential equation 

4’(t) + vA#(t) + B(d(t), 9(t)) = 0. (1.50) 

Let us remark that we do not ask B to satisfy the identity (B(& #), 4) = 0. 
But we are interested in solutions of (1.50) which satisfy 

(1.52) 

Remark 1.2. If 4 satisfies (1.50) and (1.51) then c$E%‘~(]O, +co[; 
D(A)) (see J. M. Ghidaglia [6]). 

Let us notice that denoting by n(t) = K 1 A$( t)l it follows from ( 1.49) and 
(1.50) that 

I d’ f VA4 I d n II d /I. (1.53) 

As mentioned before according to (1.51)-(1.53), the following alternative 
holds: either 4 is identically zero or 4 never vanishes. We shall restrict our- 
selves to the latter case throughout this paragraph. Henceforth 

I f$( t) I > 0, vt 3 0. (1.54) 

We state now a result which makes more precise the behaviour of c)(t) with 
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respect to the D(A)-norm. It shows that under the previous hypotheses the 
behaviour of 4(t) when t goes to + co is exactly exponential. 

THEOREM 1.2. Let d satisfying (1.50) to (1.52). Then there exists an 
eigenvector 4 O” of A associated with the eigenvalue Aa, such that for every 
jEFV 

(j(t)si$-(-vAm)id”e mvnxt in D(A) when t -+ + co. (1.55) 

ProojI We only sketch the proof, for further details the reader is refered 
to J. M. Ghidaglia [7]. According to (1.51) (1.52) and (1.53) Theorem 1.1 
applies hence 

q$(t)-4”e mL’A’r in V. 

Equation (1.50) differentiated with respect to t reads: 

~;+vA~,+B(~,~,)+B(~,,~)=O. 

Using (1.49) and applying Theorem 1.1, one finds that 

d-d”e “” in D(A), 

dl 
- -vv/lze- vAX/ in V. 

Equation (1.50) differentiated twice w.r.t. t reads 

(1.56) 

4: + VA& = -W$, , d,)- B(d,, 4) - B(h h). 

From (1.56) one derives that 

(1.57) 

s 
+= ((Aq$I+IA#,/2)dt<+co. 

0 

(1.58) 

Now if we introduce $= (dL, &), it follows from (1.52) and (1.56)-(1.58) 
that Theorem 1.1 applies to $. Hence we deduce that 

01 - -V/ime-vAZf in D(A), 

qj2-( -vAm) emvAz’ in V. 

The proof proceeds by induction on I> 2. Let (S’), be 

q$ji(-vV/lm)jp-VAaf 
+,h.(-vjlm)le-vnat 

j$(A)forj= 1, -, I- l’)(%), 
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We have just proved (&? )2. Assuming (X ),, I3 2 we differentiate (1.50) I 
times w.r.t. t, 

k=O 0 : B(4k, (b/-k). 
Denoting $= (til, -, #,+ 1) we find that, according to (X)[, Theorem 1.1 
applies to 4 and (%)[+, follows. 1 

Remark 1.3. We have just proved that e”‘=‘&t) converges to an 
element 4” of Ker(A - Aa) when t + + cc. The following result will make 
more precise this convergence (this type of result has been first derived for 
the Navier-Stokes equations by C. Foias and J. C. Saut [3,4]). 

Under the hypotheses of Theorem 1.2, let 2 be an eigenvalue of A, there 
exists aA > 0 such that for II, 6 i < n Oc, 

for A”<1<2ft”, 

Zl,qS(t) = e-yi'qSm + 

e-2vA"l 

v(A" - A) 

n,B(dm, 4") + O(e-(2""~+z~)'), 

for 2A” =A, 

(The 0( ) are understood w.r.t. the D(A)-norm). For the proof, the reader 
is refered to J. M. Ghidaglia [7]. 1 

1.3.2. Behaviour in E,. We denote by V, the scale of Hilbert spaces 
endowed with the norm 1) 4 lJm = ( Ami2 4 1. 

We introduce a family of Hilbert spaces E,, m E IQ, with 

E rn+,~-L Vm E N the injection being continuous, (1.59) 

VP?I is a closed subspace of E,, Qm E N the norm induced by 

E, on V,, being equivalent to (/.I) m. (1.60) 



LONG TIME BEHAVIOIJR 283 

We assume that 

A-’ is continuous from E,,, into E,,, + 2 n V, Vm 2 0, (1.61) 

E,=H, E,=D(A). (1.62) 

We make the following assumptions on B: 

B is continuous from E, x E2 and E, x E, into E,, from 
E2 x Ez into El and from E, x E,, , into E,, Vm>2. (1.63) 

Theorem 1.2 gives the behaviour of 4(t) in D(A). With the previous 
assumptions we are able to state 

THEOREM 1.3. The hypotheses are the same as in Theorem 1.2. For every 
(j,m)~NxN wehave 

Proof: We prove this theorem 

djj-( -vAm)jq500e 

According to Theorem 1.2, (~9 )? 
established with k32. We have 

by induction. Let us denote by 
v/i”r in Ek (ml, 

is proved. Let us suppose that ( sP)~ is 

-VA#j=dj+l+ B(d,, 4,- ,I. 

From (1.63) and (X )k we find that 

B(4,, dieI) = O(ee2”‘I’) in E,_ 1, 

4 ,+,~(-~/i~)~‘~‘~~e~“~“inE~~,. 

Now 
-vAdi-(-vAw)‘+’ 4”e-“““‘in Ek -1, 

and according to (1,61), (.X)k+, is proved. 1 

2. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF 
THEZRMO-HYDRAULIC AND M.H.D. EQUATIONS 

2.1. Thermo-Hydraulic Equations 

We consider the motion of a viscous fluid, subjected to thermal effects, 
which fills some bounded region Q. In the Boussinesq approximation the 

505 hl’?-IO 
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velocity U(X, t), pressure p(x, t) and temperature (3(x, t) are determined, 
in case of homogeneous boundary conditions, by the equations (see 
Chandrasekhar [ 21): 

div u = 0, (2.1) 

u(x, t) = 0 ondQxR+, 

6(x, t) = 0 0naC?xx+. 

Where K denotes Fourier’s coefficient of the fluid and 0 is a fixed vector in 
lFY’, parallel to the descending vertical. 

We assume that Q is an open connected bounded set in [Wd (d= 2 or 3) 
and let r be its boundary: 

r is a manifold of class C” of dimension d- 1 and 52 is locally 
located on one side of l7 (2.2) 

Let H and V be the closures in L2(Q)d and Ham, respectively, of 

“f = {u E 9(Q)“, div u = 0}, 

where H:(Q) denotes the closure of 9(Q) (the space of Vz functions with 
compact support in 52) in the Sobolev L*-space H”(Q) of order m. The 
spaces H and V are endowed with the scalar products 

(u, u) = Jo u,ui dx 

and 

respectively. We set also 1 U) = (u, u)“* and I( u II = ((u, u))“*. The injection 
from V into H is dense, continuous and compact (thanks to Rellich’s 
lemma). Let A be the operator from V into I/’ defined by 

(‘4% fJ> = ((K u)), 

For U, u, w in H1(Q)d we set 

vu, 2, E v. (2.3) 

(B(4 U), W > = JQ u,j(DjUh) wk dx. 
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Since no confusion is possible, we also denote by I* 1 the norm on I?(Q) 
and 118 1) = 1 VB) on HA(Q), 

Let A, be the operator -A on HA(O) and B, E U( Vx HA(Q), H-~ l(Q)): 

Let P be the orthogonal projector in L2(Q)” onto H, we introduce the 
operator C defined by 

C e = pm, e E fqS2). 

With the previous notations Eqs. (2.1) reads 

du 
z+v~U+~(u, q+ce=o, 

(2.4) 

(2.5) 

(2.6) 

We study now the Cauchy Problem for (2.5), (2.6) and set 

e(o) = 80 E H;(Q), u(0) = UOE v. (2.7) 

Equations (2.5)-(2.7) possess at least a weak solution which satisfies the 
inequality of energy. Moreover, after some transient period, say t 3 to, u 
and 0 become regular (i.e., (u,e)~C([t~, +co[; H’(12)d+‘)). Since 
Eqs. (2.5), (2.6) are autonomous, we can take the origin of time to be t, 
and then (u, e) lies in C%( 10, + cc [, H2(12)rl+ ‘) and 

I +m (IhI + IAq*+ lA,el+ lA,el*jds< +CO. 
0 

(2.8) 

These results are well known in the case of Navier-Stokes equations 
(J. Leray [ 15, 161, J. L. Lions [ 173, R. Temam [21],...); the details of the 
similar results for the thermo-hydraulic equations are given in [6, 71. 

Equations (2.5), (2.6) can also be written as a single equation but the 
operator G? = (“,” KA, r ) which occurs, is not self-adjoint unless D = 0. Thus 
the results of paragraph 1 seem not to apply to this situation. We shall 
show that we can, however, obtain the exact asymptotic behaviour of u and 
8 by proceeding directly. 

THEOREM 2.1. For every (u’, 8’) E Vx HA(Q) with 8’ # 0, the ratios 
(log ) u(t) 1)/t and (log I e(t)l)/t converge, respectively, to some limit denoted 
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-vnm and -rcwm, where either A” 2 ICO~/V, or A” is an eigenvalue of A 
smaller than uww/v. Furthermore there exists urn # 0 and 8” # 0 such that 

e(t)-e”ecK@~ in H2(Q), -de” = wmey 8” E H#2) f3 H2(Q); 

(i) ifvAoo <kwm 

z4(t)~z4aZeCYna’ in IVIES, 

(ii) ifvAm 4 kw” there exists some PE N such that 

u(t)- -fPume-YA” in ZI!‘(SZ)~. 

Remark 2.1. (i) uoo is an eigenfunction of A associated with Am when 
Aa < (K/V) wm. 

(ii) The equivalences obtained in Theorem 2.1 are also valid in H”(Q), 
Vm20. 

Proof. We begin by making two remarks. First, when cs #O, the 
operator C is injective and 

ce=o=-e=o. (2.9) 

Second, the operator 1 and A satisfy: 

CA,e=ACe, ve E H2(sZ) n H#2). (2.10) 

(1) The case v#lc. 
We set S = A ~ ’ C and we shall use the new function: 

se(t) tl(t)=u(t)----& 

According to (2.5), (2.6) we have 

se 
-, ,+--/J-s4 (u+--$+) 
U-V 

=((vAS-k-SA,)/K-v+C)8. (2.11) 

And now by (2.10), the r.h.s. of (2.11) vanishes. 
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Let us denote by C$ = (u, e), A = ({ &‘bA,)r 

se2 -, v,+- 02 
W4, > 42) = 

K-V 1 (2.12) 

Equations (2.6) and (2.11) read 

(2.13) 

LEMMA 2.1. Under the assumptions of Theorem 2.1, there exists (2, 6) 
such that T # 0 and 

e”‘qS( t) converges to (6, fY)zJ in D(A)xD(A,), AG=lfi,~A,B=L?& 

Proof of Lemma 2.1. We denote by V = Vx HA(O), H = H x L*(Q). By 
classical estimates (see R. Temam [23] for instance) we have 

I B(u, 9 u2)l+ I B(u29 ~1 )I d CI I Au, I II ~2 II 7 vu; E D( A ), 

I~,(~~~)l~~Czl~~l Il~ll, Vu E D(A), t/O E H;(Q), 

IAS@I <cc3 lOI, Vf3 E H;(Q). 

It follows then from (2.8) that Theorem 1.2 applies and Lemma 2.1 is 
proved. l 

By the same procedure it follows also from (2.8) that Theorem 1.1 applies 
to Eq. (2.6) and thus there exists (urn, P) such that 

e Kc*zfe(t) converges to 8” in HA(Q), 

A,B” =0~0~ #O. 

(2.14) 

(2.15) 

From (2.14) and Lemma 2.1 we deduce that 

u(t)=Ee-“I+ 
Sll ___ e ~ “21 + o(e - “A), 

U-V 
(2.16) 

(j(t) = & -~ vJr + o(e - d/) = pe ~ K<ol+ o(e ~ d-l). 

(i) If V;i # KOG, from (2.16) and 8” # 0 it results that 8= 0. Then 
C#O and vH<Ko~, AC= Jfi: in this case point (i) of Theorem 2.1 is 
proved with ;i z 2, fi E vz. 
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(ii) If vii= ICON, from (2.16), 8= 0” and from (2.16): 

se” 
u(t)= iT+- e 

i ) 
- KO”I + qe ~ .W%), 

K-V 

When v”+ (&‘P/K~v) E uco #O, point (ii) of Therem 2.1 is proved with 
/5 = Am and p = 0. When v” + (SP/lc - v) = 0, we need the subsequent 
terms in the expansion of u(t). We introduce with C. Foias and 
J. C. Sam [S] the additive semi-group generated by the {n,},a, (eigen- 
values of A): {pjlj3 ,. 

According to [S], there exist polynomes (tij(t)} of degree j - 1 with 
values in D(A) such that for every N> 1, 

6(t)= 2 dj(t) eCpj’+ O(e-(pN+EN)‘), 
j=l 

(2.17) 

where sN>O and ~ji+l>~j. 
Henceforth, denoting dj = (u,, f3,), u(t) admits a similar asymptotic 

expansion with 

If we show that there exists some integer j such that uj(t) is not identically 
zero then the point (ii) of Theorem 2.1 will be proved. We argue by con- 
tradiction, if 

‘JPER.3 u(t) = O(eek’) in D(A), (2.18) 

then from (2.5) and (2.14) we deduce that 

In particular, (d/dt)(u, x P)w Ix 8” 1’ eeKo’ then for t sufficently large 
(say t> T) 

by integration from t to + cc (t B T), 

which contradicts (2.18) and prove our claim. 
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(2) The case v = K. 

We now set v(t) = u(t) + t C e(t). 
As in the previous case we deduce point (ii) of Theorem 2.1 (for further 

details, the reader is refered to J. M. Ghidaglia [7]. Note that (2.9) is useful 
to prove that C 8” #O because 8” ZO). 

In all cases, thanks to the asymptotic expansions we obtained, we deduce 
that the ratios (log 1 u(t)l)/t and (log 1 e(t)l)/t converge, respectively, to 
-v/l” and -KKW~. 1 

The space periodic case. Instead of Dirichlet boundary conditions, let us 
consider another boundary condition, namely the space periodic one: 

24(x + L,e,) = u(x, t), 0(x + Lkek, t) = e(x, t), VX, t, 

where e,, -, ed is a basis of IW“ and L, the period in the kth direction. In 
this case we obtain the same result (Theorem 2.1) with the only difference 
that if 0 is parallel to one of the ek’s, C is not injective. 

Remark 2.2. If 8’ = 0, then by uniqueness of strong solutions, t3( t) = 0 
for every t 3 0. Equations (2.5), (2.6) reduce to Navier-Stokes equations: 

~+vh+B(u, u)=O. (2.19) 

It is known (see C. Foias and J. C. Saut [3,4]), that u(t) behaves exactly 
like Uoce-“na’ w.r.t. the H’-norm where Amum = /ioozP. C. Guillopt [11] 
proved that this behaviour is also valid w.r.t. the H*-norm for every m. 
Taking E, = H”‘(0)dn V, and applying Theorem 1.3 we recover these 
results by a slightly less technical proof. 

Remark 2.3. The result mentioned in the previous remark extends to 
Navier-Stokes equations on a compact Riemannian manifold without 
boundary (such a situation occurs in Meteorology). In this case we can 
take E,,, = V, = O(A”“) and the proof can be done directly from 
Theorem 1.1 without using the results of section 1.3 (see J. M. Ghidaglia 
C71). 

2.2. Magnetohydrodynamic Equations 

We consider the motion of a viscous incompressible and resistive fluid. 
The velocity u(x, t), pressure p(x, t) and the magnetic field B(x, t) are 
determined by the equations (see L. Landau and E. Lifchitz [ 123) 
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~+(u.v)u-~du-(B.v)B+v p+p =o, 
( 1 

~+(U.v)B+&curl(curlB)-(B.v)U=o, 

div u = 0, div B = 0, (2.20) 

u=O, B. n, and (curlB)xn=Oonf, 

where n is the unit outward normal on r. 

The two positive numbers Re and Rm appearing in (2.20) are, respectively, 
the Reynolds number and the magnetic Reynolds number. 

We assume that Q is simply connected (this assumption is not essential) 
and we introduce the space 

g= {BEH’(S2)d,div B=O, B.n=O}. 

If we denote by 4 the pair {u, B) and introduce the oeprators 

(@9,, CM, 43) = Hu, 3 ~254 - NB, 3 B,> 4 

+4u,, B,, Bd-HB,, ~294). 

Then d~.Lf(Vx p, v’x p) and B~di”((Vx 8)2, V’x 81). Equations 
(2.20) can be written with these notations in the form (see J. M. Ghidaglia 
161) 

(2.21) 

The study of the Cauchy’s problem for (2.21) leads to 

$4(O) = qs” E v x F (2.22) 

Arguying as for thermo-hydraulic equations, we know that (2.21), (2.22) 
possess at least a weak solution which satisfies the inequality of Energy. We 
change the origin of time so that 4 E Cm( ] 0, + 00 [; HZ(Q)2d) and 

Jo 
(2.23) 

where 1.1 is the norm on X=HxH. 
To apply the results of paragraph 1.3 we must check (1.59) to (1.63). 

These properties follow from regularity results of Stokes’ operator and 
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Maxwell’s operator (see R. Temam [21] and J. M. Ghidaglia [S] ) and 
from various estimates on b (see R. Temam [23]). Now applying 
Theorem 1.3 it follows 

THEOREM 2.2. There exists an eigenfunction (ur, B”) of d associated 
with the eigenvalue A” such that for every jE N and m E N, 

-(_V/im)/e~V,‘ZI(U’n,Boc) in Hm(Q)2d. 

Remark 2.4. When B” # 0, applying Theorem 1.1 to the equation 
satisfied by B, we have the existence of (A,, B) such that 

Bme V/ffiIfi in H’(R)! 

(i) If u5 #O, then A r GAB and u-ure ~-““-’ in H’(Q)J. 
(ii) If u “=O, then B”#O and P=A,. 

If (B” . V) B” is not a gradient, then using the expansion (2.17) we can 
argue as in the proof of Theorem 2.1 and conclude that there exist p E N 
and ii # 0 such that 

u(t)-tPlle vnrr in H’(Q)4 

If (B” . V) B” is a gradient, one needs to consider further terms in the 
expansion of B in (2.17). 

2.3. Applications to Scalar Inequalities 

Let R be a bounded open set in [Wd with smooth boundary I-. Let also be 
given a family of hermitian n x n tensors a,(x, t), (x, t) E S? x R + such that 

vi, j, ajiE W’([w + ; Lo(Q)), (2.24) 

and such that there exists q > 0, 

a&, t) b ~6, uniformly w.r.t. (x, t) E !Z x [w + . 

We denote by cc(t) the function of L’(K! + ): 

a(t)= sup 
Igi<jGn I I 

2 a,(‘, t) 
L”(R)’ 

by H = L’(Q), V= HA(Q) and finally A(t) is defined by 

(2.25) 

(A(t) u, v)+1= 1 au av 
al,(xT t) F F dx, Vu, v E H,$2). 

R 
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Thanks to Poincare’s inequality, H,!,(Q) can be endowed with the norm 
(jQ IVz# dx)“* and it is classical that 

D(A(t)) = H*(SZ) n Hi. 

Applying Theorem 1.1 to this situation one obtains 

THEOREM 2.3. Let u(x, t) be a solution of 

with uE~([W+;H~(Q))nL:,,([W+;H*(SZ)), (du(t)/dt)+A(t)u(t)EL*(Q) 
for a.e. ta0, where nEL2((W+)nL1([W+). 

Zf a (see (2.25)) satisfies jO+m (j:” tl(s) ds) dt < + 00, there exists 
urn E H*(Q) and Am > 0 such that 

lim I/e”‘%(., t)-u”(.)IIHICRj=O. 1 
19 too 

(2.26) 

This theorem improves, as far as we know, previous results (see 
P. D. Lax [ 131, M. H. Protter [20], M. Lees [ 14],...) where only lower 
bounds for jn 1 u I* dx were derived. Let us also note that our assumptions 
on differentiability with respect to t on the coefficients a& .; ) are weaker 
than those used in these references. 

Remark 2.5. According to (2.25), the family { A( 1)) I .,, converges as 
t + + CC with respect to the .Y( V, V’)-norm to some elliptic operator A”. 
Theorem 1.1 shows that Am@ = nooum. 

Remark 2.6. (Non self-adjoint case). Let b,(x, t) satisfying b,- bjiE iw. 
Define P(t)=SUPl<i<n I(aa,/axj)(., t)lLyR) . . with ali = (b,+ bji)/2. Then if 
u(x, t) is solution of 

jl u-6,&, 
R at 1 J 

*dx<m2(t)jD$$dx 

under the same hypothesis on ati and n = m + /l the conclusion (2.26) of 
Theorem 2.3 holds. 

Remark 2.7. (i) We have presented the case of homogeneous Dirichlet 
boundary condition. Theorem 2.3 is also applicable to the homogeneous 
Neumann boundary condition and to the more general case of oblique 
derivative problem (with suitable restrictions). Note that in this last case 
D(A(t)) could depend on t. 

(ii) In this section we only dealt with second order operators. The 
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results of the first part apply to higher order operators. As an example we 
can consider the Kurarmoto-Sivashinsky equation (see B. Nicolaenko, 
B. Scheurer, and R. Temam [ 191): 

au 
at 

+ 
a% 
ax4 

ah I au 2 
+axz+2 ax ( 1 

= 0. 

The boundary condition is periodicity w.r.t. x E 10, L [. In the case: 
0 < L < 2x it can be shown that there exists aa: E @, k” E H such that 

u(x, t)-Re [a~eC((2~/~)k”)2-((2~/L)k~)41~+(2i~~lkm/L)x 1 

with respect to the H”-norm for every m 2 0. 
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