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We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition 
of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance 
parameter ε), it is easier for the scalar hair to form as the parameter ε (or α2) becomes larger, but the 
condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the 
gap frequency in conductivity to the critical temperature decreases with the increase of ε and α2, but 
increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc ≈ 8
obtained in the Einstein gravity and Cai’s result ωg/Tc ≈ 13 found in a Hořava–Lifshitz gravity with the 
condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive 
at the value of the BCS theory ωg/Tc ≈ 3.5 by taking proper values of the parameters.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The AdS/CFT correspondence [1–3] relates a weak coupling 
gravity theory in an anti-de Sitter space to a strong coupling con-
formal field theory in one less dimensions. Recently it has been 
applied to condensed matter physics and in particular to super-
conductivity [4,5]. In the pioneering papers Gubser [4,5] suggested 
that near the horizon of a charged black hole there is in opera-
tion a geometrical mechanism parameterized by a charged scalar 
field of breaking a local U (1) gauge symmetry. Then, the gravita-
tional dual of the transition from normal to superconducting states 
in the boundary theory was constructed. This dual consists of a 
system with a black hole and a charged scalar field, in which the 
black hole admits scalar hair at temperature lower than a critical 
temperature, but does not possess scalar hair at higher tempera-
tures [6]. In this system a scalar condensate can take place through 
the coupling of the scalar field with the Maxwell field of the back-
ground. Much attention has been focused on the application of 
AdS/CFT correspondence to condensed matter physics since then 
[7–19].

Hořava [20,21] proposed a new class of quantum gravity. The 
key property of this theory is the three-dimensional general covari-
ance and time re-parameterization invariance. It is this anisotropic 
rescaling that makes Hořava’s theory power-counting renormaliz-
able. Therefore, many authors pay their attention to this gravity 
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theory and its cosmological and astrophysical applications, and 
found many interesting results [22–35]. These investigations im-
ply that there exists the distinct difference between the Hořava–
Lifshitz theory and Einstein’s gravity.

In the Hořava–Lifshitz gravity, Kiritsis and Kofinas [36], Kimp-
ton and Padilla [37] proposed the non-relativistic matter. They 
constructed the most general action of matter coupled to gravity 
with the foliation-preserving diffeomorphism. The action obeys the 
usual power-counting renormalizability conditions used in Hořava–
Lifshitz gravity and assuming the temporal derivatives are as in the 
relativistic theory.

Recently, in order to see what difference will appear for the 
holographic superconductivity in the Hořava–Lifshitz theory, com-
paring with the case of the relativistic general relativity, Cai et 
al. [38] studied the phase transition of planar black holes in the 
Hořava–Lifshitz gravity with the condition of the detailed balance 
in which the metric function is described by f (r) = x2 − √

c0x. 
They argued that the holographic superconductivity is a robust 
phenomenon associated with asymptotic AdS black holes. And they 
also got a relation connecting the gap frequency in conductivity 
with the critical temperature, which is given by ωg

Tc
≈ 13, with the 

accuracy more than 93% for a range of scalar masses. More re-
cently, Lin, Abdalla and Wang [39] generalized the investigation 
to the holographic superconductors related to the non-relativistic 
matter in the Schwarzschild black hole in the low energy limit of 
Hořava–Lifshitz spacetime.

Note that the Hořava–Lifshitz black hole without the condition 
of the detailed balance has rich physics [40–42], i.e., changing the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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parameter of the detailed balance ε from 0 to 1 it can produce the 
different black holes for the Hořava–Lifshitz theory and Einstein’s 
gravity, and the non-relativistic matter in Hořava–Lifshitz gravity 
has new properties. In this paper we will extend the study to case 
of the non-relativistic matter in a Hořava–Lifshitz black hole with-
out the condition of the detailed balance, and investigate how the 
parameter of the detailed balance and non-relativistic parameters 
influence on the scalar condensation formation, the electrical con-
ductivity, and the ratio ωg/Tc which connects the gap frequency 
in conductivity with the critical temperature.

The paper is organized as follows. In Section 2 we present black 
hole with hyperbolic horizons in Hořava–Lifshitz gravity in which 
the action without the condition of the detailed balance. In Sec-
tion 3 we explore the condensation of the relativistic matter in the 
Hořava–Lifshitz black hole background by numerical approach. In 
Section 4 we study the electrical conductivity and find ratio of the 
gap frequency in conductivity to the critical temperature. We sum-
marize and discuss our conclusions in the last section.

2. Black hole with hyperbolic horizon in z = 3 Hořava–Lifshitz 
gravity

In non-relativistic field theory, space and time have different 
scalings, which is called anisotropic scaling, xi → bxi , t → bzt , 
i = 1, 2, 3, where z is called dynamical critical exponent. In order 
for a theory to be power counting renormalizable, the critical ex-
ponent has at least z = 3 in four spacetime dimensions. For z = 3, 
the action without the condition of the detailed balance for the 
Hořava–Lifshitz theory can be expressed as [40,41]

I =
∫

dt d3x[L0 + (1 − ε2)L1], (2.1)

with

L0 = √
gN

[
2

κ2
(Kij K i j − λK 2) + κ2μ2(�R − 3�2)

8(1 − 3λ)

]
,

L1 = √
gN

[
κ2μ2(1 − 4λ)

32(1 − 3λ)
R2

− κ2

2ω4

(
Cij − μω2

2
Rij

)(
C ij − μω2

2
Rij

)]
,

Kij = 1

2N
(ġi j − ∇i N j − ∇ j Ni),

C ij = ε ikl∇k

(
R j

l −
1

4
Rδ

j
l

)
= ε ikl∇k R j

l −
1

4
ε ikj∂k R,

where κ2, μ, �, and ω are constant parameters, ε is parameter 
of the detailed balance (0 < ε ≤ 1), Ni is the shift vector, Kij is 
the extrinsic curvature and Cij the Cotten tensor. It is interesting 
to note that the action (2.1) reduces to the action in Ref. [41] if 
ε = 0, and it becomes the action for the Einstein’s gravity if ε = 1.

From the action (2.1), Cai et al. [42] found a static black hole 
with hyperbolic horizon whose horizon has an arbitrary constant 
scalar curvature 2k with λ = 1. The line element of the black hole 
can be expressed as

ds2 = −N2(r)dt2 + dr2

f (r)
+ r2d�2

k , (2.2)

with

N2 = f = k + x2

1 − ε2
−

√
ε2x4 + (1 − ε2)c0x

1 − ε2
, (2.3)

where x = √−� r, k = −1, 0, 1, and c0 = [x4+ + 2kx+ + (1 −
ε2)k2]/x+ in which x+ is the horizon radius of the black hole, i.e., 
the largest root of f (r) = 0. Comparing with the standard AdS4
spacetime, we may set −�

1+ε = 1
L2

AdS
, where LAdS is the radius of 

AdS4. The authors in Ref. [42] also found that the solution has a 
finite mass M = κ2μ2�k

√−�c0/16. For ε = 0, the solution goes 
back to the solution in Ref. [41].

The Hawking temperature of the black hole is

T =
√−�

8π

3x4+ + 2kx2+ − (1 − ε2)k2

x+[x2+ + (1 − ε2)k] , (2.4)

which is always a monotonically increasing function of horizon ra-
dius x+ in the physical regime. This implies that the black holes 
with hyperbolic horizons in the Hořava–Lifshitz theory are ther-
modynamically stable.

3. Condensation for non-relativistic matter in Hořava–Lifshitz 
gravity

We now study the condensation for non-relativistic matter in 
the Hořava–Lifshitz gravity. For the Arnowitt–Deser–Misner metric

ds2 = −N2dt2 + γi j

(
dxi − Nidt

)(
dx j − N jdt

)
, (3.1)

the Lagrangian of complex scalar and electromagnetic fields for the 
non-relativistic matter in the Hořava–Lifshitz gravity can be ex-
pressed as [36]

LE
H = 2

N2
γ i j

(
F0i − Fki Nk

)(
F0 j − Flj N

l
)

− Fij F i j

− β0 − β1ai Bi − β2 Bi Bi − GE , (3.2)

LS
H = 1

2N2

∣∣∣∂t� − Ni∂i�

∣∣∣2 − 1

2
|∂�|2 − 1

2
V (|�|)

+ α2 |∂�|2 −HS , (3.3)

with

GE = β3

(
Bi Bi

)2 + β4

(
Bi Bi

)3 + β5
(∇i B j

)(
∇ i B j

)
+ β6

(
Bi Bi

)(∇k B j
)(

∇k B j
)

+ β7
(∇i B j

)(
∇ i Bk

)(
∇ j B j

)
+ β8

(∇i∇ j Bk
)(

∇ i∇ j Bk
)

,

HS = α3 (���)2 + α4 (���)3 + α5��2�

+ α6 (���)
(
��2�

)
+ α7��3�, (3.4)

where GE and HS are the Hořava–Lifshitz higher order corrections, 
αi and βi can be taken as constants, Fij = ∂ j Ai − ∂i A j , V (|�|) =
m2|�|2, and Bi = 1

2
ε i jk√

γ F jk with the Levi-Civita symbol ε i jk . In this 
paper, we just consider the lower order terms of above equations, 
i.e., the higher order terms GE and HS are ignored.

The coupling between electromagnetic field and scalar field can 
be constructed and then the Lagrangian LS

H should be rewritten as 
[39]

L̃S
H = 1

2N2

∣∣∣∂t� − iq A0� − Ni (∂i� − iq Ai�)

∣∣∣2

−
(

1

2
− α2

)
|∂� − iq Ai�|2 − 1

2
V (|�|) − H̃S , (3.5)

where HS is replaced by H̃S with ∂i → ∂i − iq Ai . Therefore, the ac-
tion of coupling between complex scalar and electromagnetic fields 
for the non-relativistic matter in the Hořava–Lifshitz gravity can be 
taken as
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Fig. 1. (Color online.) The condensate as a function of the temperature with fixed values m2
eff L2

AdS = 0, −1 and arbitrary β2. The four lines from top to bottom correspond to 
increasing ε , i.e., 0 (blue), 0.1 (red), 0.5 (green) and 0.9 (black), respectively. It is shown that the condensation gap becomes smaller as ε (or α2) increases for the same m2

eff .
S H =
∫

dtd3xN
√

γ

(
1

4
LE

H + 2L̃S
H

)
, (3.6)

which will reduce into the model in general relativity when αi =
βi = 0.

In the background of the black hole described by Eq. (2.3) with 
k = 0, we focus our attention on the case that these fields are 
weakly coupled to gravity, i.e., they do not backreact on the metric 
of the spacetime. Thus, we can take the ansatz

Aμ = (φ(r),0,0,0),

ψ = ψ(r). (3.7)

This ansatz implies that the phase factor of the complex scalar field 
is a constant. Therefore, we may take ψ to be real. In the back-
ground of the black hole described by Eqs. (2.2) and (2.3) with 
k = 0, the equations of the scalar field ψ(r) and the scalar poten-
tial φ(r) are given by

ψ ′′ +
(

f ′

f
+ 2

r

)
ψ ′ + 1

1 − 2α2

(
φ2

f 2
− m2

f

)
ψ = 0, (3.8)

φ′′ + 2

r
φ′ − 2ψ2

f
φ = 0 , (3.9)

where a prime denotes the derivative with respect to r.
At the event horizon r = r+ , because f (r+) = 0, we must have

ψ(r+) = −3(1 − 2α2)r+ψ ′(r+)

2m2L2
,

φ(r+) = 0, (3.10)

because their norms are required to be finite, where L2 = L2
AdS/

(1 + ε). And at the asymptotic region (r → ∞), because f (r) → r2, 
we can get the solutions behave like

ψ = ψ−
rλ− + ψ+

rλ+ ,

φ = μ − ρ
, (3.11)
r

with

λ± = 1

2

⎛
⎝3 ±

√
9 + 4m2L2

AdS

1 − 2α2

⎞
⎠ , (3.12)

where μ and ρ are interpreted as the chemical potential and 
charge density in the dual field theory, respectively. Because the 
boundary is a (2 + 1)-dimensional field theory, μ is of mass di-
mension one and ρ is of mass dimension two. We can read off 
the expectation values of operator O dual to the field ψ . From 
Ref. [43], we know that for ψ , both of these falloffs are normal-
izable, and in order to keep the theory stable, we should either 
impose

ψ− = 0, and 〈O+〉 = ψ+, (3.13)

or

ψ+ = 0, and 〈O−〉 = ψ−. (3.14)

Note that the dimension of temperature T is of mass dimension 
one, the ratio T 2/ρ is dimensionless. Therefore increasing ρ while 
T is fixed, is equivalent to decrease T while ρ is fixed. In our cal-
culation, we find that when ρ > ρc , the operator condensate will 
appear; this means when T < Tc there will be an operator con-
densate, that is to say, the superconducting phase occurs. We will 
impose boundary condition ψ− = 0 in the following discussion.

Eqs. (3.8) and (3.9) can be solved numerically by doing in-
tegration from the horizon out to the infinity with the bound-
ary conditions mentioned above. Changing the values of the bal-
ance parameter ε and non-relativistic parameter α2, we present 
in Fig. 1 the influence of the parameters ε and α2 on the con-
densation with fixed values m2

eff L2
AdS = 0, −1 (here and hereafter 

m2
eff = m2

1−2α2
) and arbitrary β2, and in Fig. 2 the critical temper-

ature as a function of the balance parameter and non-relativistic 
parameter α2 with fixed values m2

eff L2
AdS = 0, −1 and arbitrary β2. 

In Table 1 we present the critical temperature obtained by the nu-
merical method. We know from the figures and the table that as 
the parameter of the detailed balance increases with fixed non-
relativistic parameter α2 and effective mass of the scalar field, 



J. Jing et al. / Physics Letters B 749 (2015) 376–382 379
Fig. 2. (Color online.) The critical temperature as a function of the balance parameter (or non-relativistic parameter) with fixed values m2
eff L2

AdS and arbitrary β2. The two 
lines from top to bottom correspond to m2

eff L2
AdS = −1 (red) and 0 (blue), respectively.
Table 1
The critical temperature Tc obtained by numerical method.

ε = 0.0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 0.9

α2 = 0

m2
eff L2

AdS = 0 0.0499 0.0502 0.0510 0.0545 0.0599

m2
eff L2

AdS = −1 0.0563 0.0589 0.0622 0.0740 0.0914

α2 = 0.1

m2
eff L2

AdS = 0 0.0527 0.0557 0.0591 0.0706 0.0874

m2
eff L2

AdS = −1 0.0596 0.0623 0.0657 0.0782 0.0966

α2 = 0.2

m2
eff L2

AdS = 0 0.0567 0.0598 0.0635 0.0759 0.0938

m2
eff L2

AdS = −1 0.0640 0.0669 0.0707 0.0840 0.1038

α2 = 0.4

m2
eff L2

AdS = 0 0.0746 0.0788 0.0835 0.0999 0.1235

m2
eff L2

AdS = −1 0.0842 0.0881 0.0930 0.1106 0.1366

the condensation gap becomes smaller, corresponding to larger 
the critical temperature, which means that the scalar hair can be 
formed easier for the larger ε . Similarly, the scalar hair can be 
formed easier as the non-relativistic parameter α2 becomes larger 
with fixed balance parameter and effective mass of the scalar field. 
And the figures and table also show that, for the same ε or α2, 
the condensation gap becomes larger if m2

eff becomes less nega-
tive, which means that it is harder for the scalar hair to form as 
the effective mass of the scalar field becomes larger. We should 
point out that the parameter β2 dose not affect the condensation 
in this model.

4. Electrical conductivity in Hořava–Lifshitz black-hole 
background

In the study of (2 + 1)- and (3 + 1)-dimensional superconduc-
tors in Einstein gravity, Horowitz et al. [8] got a universal relation 
connecting the gap frequency in conductivity with the critical tem-
perature Tc , which is described by

ωg ≈ 8, (4.1)

Tc
with deviations of less than 8%. This is roughly twice the BCS value 
3.5 indicating that the holographic superconductors are strongly 
coupled. The authors in Refs. [16,44] found that this relation is not 
stable in the presence of the Gauss–Bonnet correction terms. And 
Cai et al. [38] got a relation

ωg

Tc
≈ 13, (4.2)

with the accuracy more than 93% for a planar Hořava–Lifshitz 
black hole with the condition of the detailed balance for the rela-
tivistic matter.

We now study this relation for the non-relativistic matter in 
the Hořava–Lifshitz gravity. In order to compute the electrical con-
ductivity, we should study the electromagnetic perturbation in this 
Hořava–Lifshitz black hole background, and then calculate the lin-
ear response to the perturbation. In the probe approximation, the 
effect of the perturbation of metric can be ignored. Assuming that 
the perturbation of the vector potential is translational symmetric 
and has a time dependence as δAx = Ax(r)e−iωt , we find that the 
equation of motion for Ax in the Hořava–Lifshitz black hole back-
ground reads

A′′
x + f ′

f
A′

x + 2

2 + β2

[
ω2

f 2
− 2(1 − 2α2)ψ

2

f

]
Ax = 0 , (4.3)

where a prime denotes the derivative with respect to r. An ingoing 
wave boundary condition near the horizon is given by

Ax(r) ∼ f (r)
− 2iωL2

3r+
√

1+β2/2 . (4.4)

In the asymptotic AdS region (r → ∞), the general behavior should 
be

Ax = A(0) + A(1)

r
+ · · · . (4.5)

By using AdS/CFT correspondence and the Ohm’s law, we know 
that the conductivity can be expressed as [8]

σ = 〈 J x〉
Ex

= − i〈 J x〉
ωAx

= A(1)

iωA(0)
. (4.6)

In Figs. 3 and 4 we plot the frequency dependent conductivity 
obtained by solving the equation of motion (4.3) numerically for 
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Fig. 3. (Color online.) The conductivity of the superconductors for ε = 0, 0.2 and 0.9 with β2 = 0, α2 = 0 and m2
eff L2

AdS = 0, −1, −2. The solid (blue) line represents the real 
part of the conductivity, Re(σ ), and dashed (red) line is the imaginary part of the conductivity, Im(σ ).
Table 2
The ratio ωg/Tc for different values of the parameters ε , α2 and β2 with m2

eff L2
AdS =

0, −1 and −2.

α2 = 0, β2 = 0

ε = 0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 0.9 ε = 0.99

m2
eff L2

AdS = 0 14.6 13.9 13.2 11.3 9.0 8.6

m2
eff L2

AdS = −1 13.8 13.2 12.6 10.8 8.6 8.2

m2
eff L2

AdS = −2 12.9 12.4 11.9 10.3 8.4 8.1

α2 = 0.2, β2 = 0

ε = 0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 0.9 ε = 0.99

m2
eff L2

AdS = 0 13.0 11.8 11.5 9.7 7.8 7.2

m2
eff L2

AdS = −1 11.2 10.5 10.1 9.1 7.2 6.9

m2
eff L2

AdS = −2 10.3 9.7 9.3 8.6 6.8 6.5

α2 = 0.47, β2 = 0

ε = 0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 0.9 ε = 0.99

m2
eff L2

AdS = 0 6.9 6.4 5.8 5.0 4.3 4.1

m2
eff L2

AdS = −1 6.5 5.9 5.4 4.8 4.0 3.8

m2
eff L2

AdS = −2 5.6 5.3 5.0 4.6 3.7 3.5

α2 = 0.1, ε = 0.1

β2 = 0 β2 = 0.5 β2 = 1 β2 = 1.5 β2 = 2 β2 = 2.5

m2
eff L2

AdS = 0 13.0 13.5 14.0 14.5 15.0 15.8

m2
eff L2

AdS = −1 12.2 12.8 13.2 13.6 14.0 14.5

m2
eff L2

AdS = −2 11.4 11.8 12.1 12.3 12.5 12.8

ε = 0, 0.5 and 0.9 (or 0.99) with β2 = 0, α2 = 0, 0.2, 0.47 and 
m2

eff L2
AdS = 0, − 1 and −2. We find that, for the same value of 

m2
eff L2

AdS , the gap frequency ωg decreases with the increase of the 
parameters ε or α2. In each plot, the real part of the conductivity, 
Re[σ ], approaches to a limit when the frequency grows. The limit 
for the case ε = 0 and α2 = 0 is one, but generally it increases as 
parameters ε or α2 increases. The imaginary part of conductivity 
Im[σ ] becomes zero when ω → ∞, but it goes to infinity when 
the frequency approaches zero.

In Fig. 5 we plot the frequency dependent conductivity for 
β2 = 0, 1 and 2 with α2 = 0.1, ε = 0.1 and m2

eff L2
AdS = 0, −1 , −2. 

We note that, for the same values of ε , α2 and m2
eff L2

AdS , the gap 
frequency ωg increases with the increase of the parameters β2. 
That is to say, the ratio of the gap frequency in conductivity ωg

to the critical temperature Tc increases as the parameters β2 in-
creases with fixed α2, ε and m2

eff .
In Table 2 we also present how the ratio ωg/Tc relate to the 

balance parameter and non-relativistic parameter with fixed val-
ues m2

eff L2
AdS = 0, −1 and −2, which shows that the ratio ωg/Tc

decreases with the increase of the balance parameter or the non-
relativistic parameter α2, but increases with the increase of the 
parameter β2.

From Figs. 3, 4 and 5 and Table 2, we find that the ratio of the 
gap frequency in conductivity ωg to the critical temperature Tc in 
this black hole reduces to Cai’s result ωg/Tc ≈ 13 [38] found in the 



J. Jing et al. / Physics Letters B 749 (2015) 376–382 381
Fig. 4. (Color online.) The conductivity of the superconductors for ε = 0, 0.2, 0.9 and 0.99 with β2 = 0, α2 = 0.2, 0.47 and m2
eff L2

AdS = 0, −1, −2. The solid (blue) line 
represents the real part of the conductivity, Re(σ ), and dashed (red) line is the imaginary part of the conductivity, Im(σ ).
Hořava–Lifshitz gravity with the condition of the detailed balance 
for the relativistic matter when ε = 0, β2 = 0 and α2 = 0, while it 
tends to the Horowitz–Roberts relation ωg/Tc ≈ 8 obtained in the 
Einstein gravity as ε → 1 with α2 = 0 and β2 = 0. Especially, the 
ratio can arrive at the value of the BCS theory ωg/Tc ≈ 3.5 if we 
take right value for ε , α2, β2 and m2

eff , say ε = 0.99, α2 = 0.47, 
β2 = 0 and m2

eff L2
AdS = −2.

5. Conclusions

The behavior of the holographic superconductors in the Hořava–
Lifshitz gravity has been investigated in this manuscript by intro-
ducing the non-relativistic scalar and electromagnetic fields in a 
planar black-hole background. We first present a detailed anal-
ysis of the condensation of the operator O+ by the numerical 
method for the Hořava–Lifshitz black hole without the condition 
of the detailed balance. It is found that, as the parameter of the 
detailed balance ε increases with fixed the non-relativistic param-
eter α2 and effective mass of the scalar field m2

eff , the condensation 
gap becomes smaller, corresponding to the larger critical temper-
ature, which means that the scalar hair can be formed easier for 
the larger ε . Similarly, the scalar hair can be formed easier as 
the non-relativistic parameter α2 becomes larger with fixed de-
tailed balance ε and effective mass of the scalar field. And it is 
also shown that, for the same ε or α2, the condensation gap 
becomes larger if m2 becomes less negative, which means that 
eff
it is harder for the scalar hair to form as the effective mass of 
the scalar field becomes larger. It is interesting to note that the 
parameter β2 does not affect the condensation. We then stud-
ied the electrical conductivity for the non-relativistic matter in 
the Hořava–Lifshitz black-hole background and find that the ratio 
of the gap frequency in conductivity to the critical temperature, 
ωg/Tc , decreases with the increase of the balance parameter ε or 
the non-relativistic parameter α2, but increases with the increase 
of the parameter β2. The ratio reduces to Cai’s result ωg/Tc ≈ 13
[38] found in a Hořava–Lifshitz gravity with the condition of the 
detailed balance for the relativistic matter when ε = 0, α2 = 0 and 
β2 = 0, while it tends to the Horowitz–Roberts relation ωg/Tc ≈ 8
[8] obtained in the Einstein gravity if we take ε → 1, α2 = 0 and 
β2 = 0. Especially, the ratio can arrive at the value of the BCS the-
ory ωg/Tc ≈ 3.5 if we take right values of ε , α2, β2 and m.
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Fig. 5. (Color online.) The conductivity of the superconductors for β2 = 0, 1 and 2 with α2 = 0.1, ε = 0.1 and m2
eff L2

AdS = 0, −1, −2. The solid (blue) line represents the real 
part of the conductivity, Re(σ ), and dashed (red) line is the imaginary part of the conductivity, Im(σ ).
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