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Abstract

We discuss a recently developed concept of limiting phase trajectories (LPTs) allowing a unified description of resonance, highly

non-stationary processes for a wide range of classical and quantum dynamical systems with constant and varying parameters. This

concept provides a far going extension and adequate mathematical description of the well-known linear beating phenomenon to a

diverse variety of nonlinear systems ranging from classical multi-particle models to nonlinear quantum tunneling. While stationary

(and non-stationary, but non-resonant) oscllations can be described in the framework of non-linear normal modes (NNMs) concept,

it is not so in the considered case of resonant non-stationary processes. In the latter case which is characterized by intense energy

exchange between different parts of a system, an additiional slow time scale appears. The energy exchange proceeds in this time

scale and can be identified as strong modulation of the fast oscillations. The aforementioned resonant non-staionary prcesses

include, e.g., targeted energy transfer, non-stationary vibrations of carbon nanotubes, quantum tunneling, auto-resonance and non-

conventional synchronization. Besides the non-linear beating, the LPT concept allows one to find the conditions of transition from

intense energy exchange to strongly localized (e.g. breather-like) excitations. A special mathematical technique based on the non-

smooth temporal transformations leads to the clear and simple description of strongly modulated regimes. The role of LPTs in the

theory of resonance non-stationary processes turns out to be similar to that of NNMs in stationary case.

As an example we present results of analytical and numerical study of planar dynamics of a string with uniformly distributed

discrete masses without a preliminary stretching. Each mass is also affected by grounding support with cubic characteristic (which

is equivalent to transversal unstretched string). We consider the most important case of low-energy transversal dynamics. This

example is especially instructive because the considered system cannot be linearized. Adequate analytical description of resonance

non-stationary processes which correspond to intensive energy exchange between different parts of the system (clusters) in low

frequency domain was obtained in terms of LPTs. We have revealed also in these terms the conditions of energy localization on

the initially excited cluster. Analytical results are in agreement with the results of numerical simulations. It is shown that the

considered system can be used as an efficient energy sink.
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1. Introduction

The accepted classification of the problems of mathematical physics (in application to models of the oscillation

and wave theory) draws first of all a sharp distinction between linear and nonlinear model1,2,3,4,5. Such a distinction

is caused by understandable mathematical reasons including absence of superposition principle in the nonlinear case.

However it was recently shown6,7,8,9,10,11,12,13 that in-depth physical analysis allows us to introduce other basis for

classification of the oscillation problems, focusing on the difference between stationary (or non-stationary, but non-

resonance) and resonance non-stationary processes. In the latter case a discrimination of linear and nonlinear problems

is not fundamental if we deal with regular (non-chaotic) motions, and a specific technique has been developed which

is efficient in the same degree for description of both linear and nonlinear resonance non-stationary processes. The

existence of two alternative approaches in the framework of linear theory seems unexpected. Really, the superposition

principle allows us to find a solution describing arbitrary non-stationary oscillations as a combination of linear normal

modes which correspond to stationary processes. However, in the systems of weakly coupled oscillators, in which res-

onance non-stationary vibrations can occur, other type of fundamental solution exists. It describes strongly modulated

non-stationary oscillations characterized by the maximum possible energy exchange between the oscillators or the

clusters of the oscillators (effective particles). Such solutions are referred to as Limiting Phase Trajectories (LPTs).

It was demonstrated that the LPT concept suggests a unified approach to the study of highly non-stationary processes

in a wide range of classical and quantum dynamical systems with constant and time-varying parameters12. The de-

velopment and use of analytical tool based on the LPT concept is motivated by the fact that resonance non-stationary

processes occurring in a broad variety of finite dimensional physical models are beyond the well-known paradigm of

nonlinear normal modes (NNMs), fully justified only for quasi-stationary and non-stationary, but non-resonance pro-

cesses. While the NNMs approach has been proved to be an effective tool for the analysis of stationary regimes, their

instability and bifurcations (see, e.g., 2,3), the use of the LPTs concept provides the adequate procedures for studying

strongly non-stationary regimes as well as the transitions between different types of non-stationary motions, including

propagation of localized excitations7,8. It makes possible, at the first time, to extend the notion of beating phenomenon

to the systems with many degrees of freedom. Moreover, the concept of the limiting phase trajectories allows the pre-

diction of the new type of synchronization (LPT-synchronization) in the system of weakly coupled autogenerators9

and this is in contrast to the conventional NNM-synchronization14. Note that, along with the well-known asymptotic

methods, the investigation of the phenomena under discussion has required the application of the special technique

of non-smooth temporal transformations providing a simple description of strongly modulated and transient regimes.

This technique was initially elaborated for description of vibro-impact (or close to them) processes15.

In this paper we demonstrate the role of the LPT concept in Non-stationary Resonance Dynamics and its relation

to the NNM concept on the example of unstretched string with grounding cubic supports undergoing predominant

transversal motion. It was shown recently16 that in the limit of low energy a fixed-fixed chain of linearly coupled

particles performing in-plane transverse oscillations possesses strongly nonlinear dynamics and acoustics due to geo-

metric nonlinearity, forming a nonlinear acoustic vacuum. This designation denotes the fact that the speed of sound as

defined in the sense of classical acoustic theory is zero in that medium, so the resulting equations of motion lack any

linear stiffness components. A significant feature of that system was the presence of strongly non-local terms in the

governing equations of motion (in the sense that each equation directly involves all particle displacements), in-spite

of the fact that the physical spring-mass chain has only local (nearest-neighbor) interactions between particles. These

non-local terms constitute a time-dependent ‘effective speed of sound’ for this medium, which is completely tunable

with energy. A rich structure of resonance manifolds of varying dimensions were identified in the nonlinear sonic

vacuum, and 1:1 resonance interactions are studied asymptotically to prove the possibility of strong energy exchanges

between nonlinear modes.

One of the distinctive features of a chain without grounding support was that its nonlinear normal modes – NNMs3

could be exactly determined. Moreover, the analysis has shown that the number of NNMs in the sonic vacuum is

equal to the dimensionality of the configuration space and that no NNM bifurcations are possible. In addition, the

most intensive 1:1 resonance intermodal interaction was the one realized by the two NNMs with the highest wave

numbers. Hovewer, the unstretched string model considered in16 is in some sense a special case, since one of the most

significant features of dynamical systems with homogeneous potentials is that the number of NNMs may exceed the

number of degrees of freedom due to mode bifurcations1. One can expect that such NNM bifurcations will also lead
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to drastic modification of the non-stationary resonance dynamics of the sonic vacuum described by LPTs. Thus it is

of great interest to consider an extension of the nonlinear sonic vacuum developed in16 so that the modified system

has the capacity to undergo NNM bifurcations. Such a study can provide us with the opportunity to investigate how

these bifurcations can affect the non-stationary resonant dynamics corresponding to resonant energy exchange and

localization.

These questions were discussed in our paper devoted to unstretched string with grounding support but carrying

only two discrete masses17. Here we present an extension to a more complicated system with an arbitrary but finite

number of discrete masses.

2. The model and equations of motion

Let’s consider an unstretched string with uniformly distributed equal masses and returning forces, proportional to

cubes of deformations (see Fig. 1). The equations of motion are

m
d2U j

dt2
+ T j cos θ j − T j+1 cos θ j+1 = 0; j = 1, . . . ,N,

m
d2Vj

dt2
+ cV3

j + T j sin θ j − T j+1 sin θ j+1 = 0; j = 1, . . . ,N,

(1)

with U j,Vj being the longitudinal and transversal displacements of j-th mass respectively; θ j is angle between j-th
segment and its equilibrium position. Tensile forces are proportional to deformations and may be written as

T j = K
1

l

[
(U j − U j−1) +

1

2l
(Vj − Vj−1)2

]
,

with l being equilibrium length of one segment and K being stiffness coefficient.

The mechanism of nonlocal force formation was discussed in the paper16. According to this mechanism, the tensile

forces in all segments are approximately equal to their mean value:

T =< T j >=
1

N + 1
K

1

2l2

N∑
s=0

(Vs+1 − Vs)
2

Introducing the “slow” time scale τ0 = εt, where small parameter ε describes the relative smallness of tranversal

frequencies (ε = a/l, with a being an amplitude of transversal oscillations), we obtain the following equation system

for transversal motion (parameter μ = K
Cl3 describes relation between contributions of string itself and grounding

supports):

d2v j

dτ2
0

+
1

μ
v3

j +
1

2(N + 1)

N∑
s=0

(vs+1 − vs)
2
(
2v j − v j+1 − v j−1

)
= 0; j = 1, . . . ,N, v0(0) = vN+1(0) = 0, (2)

where Vj = εv j, v j are normalized displacements, and ω0 =

√
K
lm .

3. Continuum limit

If we deal with the case N >> 1, the continuum limit is an adequate approximation. There are two possibilities. In

the case of long-wave length dynamics we introduce continuous length parameter ξ instead of discrete index parameter

j and continuous function v(t, ξ) (instead of v j(t)). Then the equations of motion turn into following PDE (L is

dimensionless length, L = N + 1):

∂2v
∂τ2

0

+
1

μ
v3 − 1

2L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
L∫

0

(
∂v
∂x

)2
dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
∂2v
∂ξ2
= 0; v(t, 0) = v(t, L) = 0. (3)
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Fig. 1. Oscillator chain with elastic support

However, for short-wave oscillations the value v j(τ0) changes quickly as a function of j, and the continuum de-

scription of displacements is not more valid. If we introduce a change such as v j = (−1) jw j (wj are ”invert variables

”), continuum description is again possible. The equations of motion transform in following manner:

d2wj

dτ2
0

+
1

μ
w3

j +
1

2(N + 1)

N∑
s=0

(ws+1 + ws)
2
(
2wj + wj+1 + wj−1

)
= 0; w0 = wN+1 = 0. (4)

These equations describe a modulation of quickly changing (along the length of the string) displacements. A

continuum version of the equations of motions for invert variables is as follows:

∂2w
∂τ2

0

+
1

μ
w3 +

1

2L

L∫
0

(
2w(x, τ0) +

∂w(x, τ0)

∂x

)2
dx
(
∂2w
∂ξ2
+ 4w

)
= 0; w0 = wL = 0. (5)

4. Two-mode approximation (case of short waves)

We consider the following two-mode approximation

w = am(τ0) sin
mπξ

L
+ an(τ0) sin

nπξ
L

; m = 2, n = 1,

which correspond to interaction of only the two highest NNMs. We denote for convenience nL =
πn

N+1
and mL =

πm
N+1

.

The equations obtained by projecting onto these modes are
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d2am

dτ2
0

+
3

4μ

(
a3

m + 2ama2
n

)
+

1

4

[(
4 + m2

L

)
a2

m +
(
4 + n2

L

)
a2

n

] (
4 − m2

L

)
am = 0,

d2an

dτ2
0

+
3

4μ

(
a3

n + 2ana2
m

)
+

1

4

[(
4 + m2

L

)
a2

m +
(
4 + n2

L

)
a2

n

] (
4 − n2

L

)
an = 0.

(6)

Because the considered NNMs interact strongly, it is necessary to introduce ”cluster” variables Y1 =
am+an

2
,Y2 =

am−an
2

, characterizing the dynamics of weakly interacting domains of the system (”clusters”).

In these new variables we deal with the system:

d2Y1

dτ2
0

+ MY1

(
3Y2

1 + Y2
2

)
+

A
8

Y3
1 +

3C
8

Y2
1 Y2 +

B
8

Y1Y2
2 +

C
8

Y3
2 = 0,

d2Y2

dτ2
0

+ MY2

(
3Y2

2 + Y2
1

)
+

A
8

Y3
2 +

3C
8

Y2
2 Y1 +

B
8

Y2Y2
1 +

C
8

Y3
2 = 0.

(7)

We consider 1:1 resonance on the frequency ω and re-write the system (7) in the following form:

d2Y1

dτ2
0

+ ω2Y1 = −ε1γ

(
MY1

(
3Y2

1 + Y2
2

)
+

A
8

Y3
1 +

3C
8

Y2
1 Y2 +

B
8

Y1Y2
2 +

C
8

Y3
2 − ω2Y1

)
,

d2Y2

dτ2
0

+ ω2Y2 = −ε1γ

(
MY2

(
3Y2

2 + Y2
1

)
+

A
8

Y3
2 +

3C
8

Y2
2 Y1 +

B
8

Y2Y2
1 +

C
8

Y3
2 − ω2Y2

)
.

(8)

Combination in the right hand side should be small (since we consider a system near resonance). It is achieved by

introducing the small parameter ε1 � 1. We introduce a parameter γ = ε−1
1 to provide an equivalence of systems (7)

and (8). We introduce also complex variables: ψ j = dYj/dτ0 + iωYj (and ψ∗j = dYj/dτ0 − iωYj), j = 1, 2. Then

Yj =
ψ j − ψ∗j

2iω
,

dYj

dτ0

=
ψ j + ψ

∗
j

2
, j = 1, 2. (9)

Applying a procedure of multiscale expansion we introduce a super-slow time scale τ1 = ε1τ0. Taking into account

that d
dτ0
= ∂
∂τ0
+ ε1

∂
∂τ1
+ . . . , we are looking for a solution in the following form: ψ j = ψ j0 + ε1ψ j1 + . . . , j = 1, 2. We

substitute this expansion into the system (8), keeping in mind (9) and equating the terms of each order by parameter ε1

to zero. In the first approximation we get: ψ j0 = eiωτ0ϕ j(τ1), j = 1, 2. We substitute this expression into the equation

for complex variables and consider next order of smallness. To avoid appearance of secular terms while integrating

over time τ0, coefficient before eiωτ0 should be zero. Thus we obtain the system which determines the ”amplitude”

functions ϕ j(τ1), j = 1, 2 in super-slow time τ1:

dϕ j

dτ1

= γ
(
3

Mi
8ω3

(
9ϕ j|ϕ j|2 + ϕ∗jϕ2

3− j + 2ϕ j|ϕ3− j|2
)
+

+
1

64

(
3Aϕ j|ϕ j|2 + 3Cϕ∗3− jϕ

2
j + 3Cϕ3− j|ϕ3− j|2 + 6Cϕ3− j|ϕ j|2 + 2Bϕ j|ϕ3− j|2

)
− iω

2
ϕ j

)
, j = 1, 2.

This techniques is described in details in the paper18.

The obtained system is integrable because besides the integral of energy it possesses a second integral

N = |ϕ1|2 + |ϕ2|2, (10)

what can be verified directly. Due to existence of second integral it is possible to introduce angular variables:

ϕ1 =
√

N cos θeiδ1 ;ϕ2 =
√

N sin θeiδ2 .
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Fig. 2. Energy exchange and energy localization in initial variables and corresponding phase plane in angular variables.

Here θ and Δ = δ1−δ2 characterize relationship between amplitudes of two clusters and the phase shift between them.

For these variables, we obtain following system:

1

2
sin 2θΔ̇ = M

(
−7

4
sin 4θ +

1

4
sin 4θ cos 2Δ

)
− 1

2

(
3A
4

sin 4θ − B
4

sin 4θ(cos 2Δ + 2) − 3C cos 2θ cosΔ

)

θ̇ =
3

2μ

4 − n2
L

4 + n2
L

sin 2θ sin 2Δ +
1

2
(B sin θ cos θ sin 2Δ + 3C sinΔ) .

(11)

Where overdot denotes differentiation with respect to normalized (for convenience) time τ∗
1
=
γN

32ω3 τ1.

This first-order system of real equations possesses the energy integral:

H = −M
(

9

2
sin4 θ +

9

2
cos4 θ +

1

4
sin2 2θ(cos 2Δ + 2)

)
+

1

2

(
−3A

2
(sin4 θ + cos4 θ) − 3C sin 2θ cosΔ − B sin2 θ cos2 θ(cos 2Δ + 2)

)
,

(12)

hence it is integrable. In angular variables the stationary (equilibrium) points correspond to NNMs of initial system.

5. Phase plane

Due to existence of the integral of motion the simplest way of investigation is to study a topology of phase plane. By

comparing phase planes for different values of parameter μ we reveal two dynamical transitions, which are reflected in

the phase plane topology. The first one is caused by instability and bifurcation of the highest NNMs. When μ > μcr1

(as in a particular case when 1/μ = 0, that is there is no grounding supports), there are four critical points. When

μ < μcr1, a bifurcation is observed: the point (θ = π/4,Δ = 0) (corresponding to in-phase motion of clusters) becomes

unstable and two additional equilibrium points appear. The first topological transition caused by bifurcation of the

NNM and appearance of new NNMs, is a significant stage of the system evolution (in parametric space). This stage

precedes to second topological transition which leads to spontaneous energy localization on initially excited cluster,

when μ < μcr2 (complete energy exchange becomes impossible). It is possible to find a critical value μcr2 analytically
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Fig. 3. Poincares’ section for the case of (a)no support (μ = ∞); (b) μ = 2; (c) μ = 1.2.

from the condition of coincidence of separatrix and LPT: H(π/4, 0) = H(0, π). Hence

μcr2 =
6
(
n4

L − 4
)

(n2
L + 4)(16m2

L − 3m4
L − 16n2

L + 2m2
Ln2

L + n4
L)
.

For two highest NNMs μcr2 = 1.35 if N = 10.

The obtained results are confirmed by numerical integration of the initial system (2) with initial conditions cor-

responding to excitation of one cluster which is formed by resonance interaction of the two highest modes (v j =

sin
π j(N−1)

N+1
+ sin

π jN
N+1

). When μ < μcr2 the energy localization is realized; when μ > μcr2 we observe complete energy

exchange.

6. Poincaré section

Since the initial system after projection onto the two highest NNMs remains non-integrable, it is of great interest

to investigate Poncaré sections corresponding to (7).

Consider the set of trajectories with same value of energy. The section plane is taken as v̇2 = 0. The points of

intersection of trajectories and section plane are projected onto the plane (v1, v̇1). The LPT can be obtained from

trajectories corresponding to excitation of one cluster.

The obtained sections are shown in the Fig. 3. One can note that these sections correspond to phase portraits

presented above. It’s very important that topological transitions predicted in the course of asymtotical analysis, are

also observed in the initial non-integrable system, and that their appearance can be predicted analytically. It’s rather

unexpected that there is no chaotic behaviour for any value of μ. This can be explained by closeness to the degenerate

system16.

7. Conclusions

Adequate analysis of strongly modulated processes in nonlinear dynamics goes out of framework of the existing

paradigm. The concept of Limiting Phase Trajectories which turns out to be an alternative to the Nonlinear Normal

Modes concept gives an efficient tool for such analysis. The mathematical content of this concept is closely connected

with non-smooth transformations which were used earlier in the study of vibro-impact processes.

In particular, we reveal that for a string with arbitrary number of discrete masses in conditions of acoustic vac-

uum, there exists a regular regime of complete energy exchange between different domains of the string (clusters) and

nonstationary energy localization on the excited cluster, alongside NNMs and stationary energy localization. These

regimes have been described analytically, and corresponding thresholds in parametric space were defined. Possibil-

ity of existence of different regimes in the same system is due to nonlinear grounding support, which also enables

widening of the resonance domain. Therefore, the considered string can be used as an efficient energy sink.

Finally, we conclude with a tabulated comparison of two basic concepts of finite dimensional nonlinear dynamics.
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Table 1. Comparison of two nonlinear dynamics basic concepts.

Nonlinear Normal Mode Limiting Phase Trajectories

elementary stationary process elementary strongly non-stationary process

is not involved into processes of energy exchange describes maximum possible (under given conditions) energy exchange

between different parts of the system

can be localized (localized NNM – stationary localization) can be localized (localized LPT – non-stationary localization)

can bifurcate (transformation to localized NNMs) can bifurcate (transformation to localized LPT)

in the presence of forcing is transformed into steady-state oscillations in the presence of forcing is transformed into LPT describing maximum

possible taking away from the energy source

can be attractor in active system can be attractor in active system

can be presented by a sine-like basic functions can be presented by non-smooth basic functions
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