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Abstract

We prove a version of the Atiyah}Segal completion theorem for proper actions of an in"nite discrete group
G. More precisely, for any "nite proper G-CW-complex X, KH(EG]

G
X) is the completion of KH

G
(X) with

respect to a certain ideal. We also show, for such G and X, that K
G
(X) can be de"ned as the Grothendieck

group of the monoid of G-vector bundles over X. ( 2001 Elsevier Science Ltd. All rights reserved.
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Let G be any discrete group. For such G, a G-CW-complex is a CW-complex with G-action which
permutes the cells such that an element g3G sends a cell to itself only by the identity map.
A G-CW-complex X is proper if all of its isotropy subgroups have "nite order, and is xnite if it is
made up of "nitely many orbits of cells. A G-CW-pair is a pair of G-spaces (X,A), where X is
a G-CW-complex and A is a G-invariant subcomplex.

The main results of this paper are Theorems 3.2 and 4.3 below. The "rst says that equivariant
K-theory KH

G
(!) can be de"ned on the category of "nite proper G-CW-pairs using ("nite

dimensional) G-vector bundles, in the sense that this does de"ne an equivariant cohomology
theory. In particular, for any X, K

G
(X) is just the Grothendieck group of the monoid of G-vector

bundles over X.
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The second theorem is an extension of the Atiyah}Segal completion theorem to this situation. It
says that for any "nite proper G-CW-complex X, KH(EG]

G
X) is the completion of KH

G
(X) with

respect to a certain ideal. In particular, when the universal proper G-space EFIN(G) ("E
M
G in the

notation of Baum and Connes [7]) has the homotopy type of a "nite G-CW-complex, then this
completion is taken with respect to the augmentation ideal of K

G
(EFIN(G)). For example, when

X"EFIN(G), Theorem 4.3 implies that KH(BG) is the completion of KH
G
(EFIN (G)) with respect to

the augmentation ideal in K
G
(EFIN (G)).

There are two ways in which the proofs of these theorems, when G is in"nite and discrete, diverge
from the usual proofs for "nite group actions. First, since the category of spaces with proper
G-action does not contain cones or suspensions ("xed points are not allowed), we need to "nd other
ways to de"ne K

G
(X,A) and K~n

G
(X). This is easily handled. A more crucial di!erence is that special

constructions are needed, carried out in Section 2, to get around the lack of `su$ciently manya
product bundles. This second di$culty is illustrated by the fact that both of these theorems fail in
general when G is a positive dimensional noncompact Lie group. This is discussed in detail, with
examples, in Section 5. Examples which show that K

G
(!) de"ned using G-vector bundles is not an

equivariant cohomology theory in this situation were originally due to Phillips [15], who instead
de"ned K

G
(!) using in"nite dimensional G-vector bundles with Hilbert space "bers (see also

[17]).
In a separate paper, we will construct an equivariant cohomology theory KH

G
(!) for arbitrary

(not necessarily proper) G-CW-complexes using spectra. More precisely, this will be done using
Or(G)-spectra: contravariant functors from the orbit category of G to spectra. We will also
construct an equivariant Chern character for proper G-C=-complexes which takes values in
equivariant Bredon cohomology, and which is rationally an isomorphism for "nite proper G-C=-
complexes.

Let KH
G
(X) be the Grothendieck group of ("nite-dimensional) G-vector bundles over X. There is

a natural transformation u
G
:KH

G
(X)PKH

G
(X), which is an isomorphism for "nite proper G-CW-

complexes. In the nonequivariant case, this is well known to be an isomorphism for any "nite
dimensional CW-complex X (since any map XPB; factors through some B;(n)). But even for
"nite GO1, Example 3.11 below shows that KH

G
is not a cohomology theory on the category of all

"nite dimensional proper G-CW-pairs.
The paper is organized as follows:

1. G-vector bundles over proper G-CW-complexes,
2. Constructions of G-vector bundles,
3. Equivariant K-theory for "nite proper G-CW-complexes,
4. The completion theorem,
5. Proper actions of Lie groups,

References.

1. G-vector bundles over proper G-CW-complexes

Throughout this section G is a Lie group. We collect here some basic facts about G-vector
bundles over proper G-CW-complexes.
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A G-CW-complex X is a space with G-action, which is "ltered by its `skeletaa X(n), such that
X has the weak topology as the union of the X(n), and such that each X(n) is obtained from X(n~1) by
attaching orbits of cells G/H

i
]Dn via attaching maps G/H

i
]Sn~1PX(n~1). (Here X(~1)"0.)

When G is discrete, a G-CW-complex can be thought of as a CW-complex with G-action which
permutes the cells, such that an element g3G sends a cell to itself only by the identity map. Note
that the orbit space of a G-CW-complex inherits the structure of an (ordinary) CW-complex.
For more details about G-CW-complexes, see, e.g., [9, Sections II.1 and II.2] or [13, Sections I.1
and I.2].

A G-CW-complex X is xnite if it is made up of "nitely many orbits of cells G/H]Dn, or
equivalently if X/G is a "nite CW-complex. A G-CW-complex X will be called proper if all of its
isotropy subgroups are compact. (For G-CW-complexes, this is equivalent to the various de"ni-
tions of proper actions which have been given in more general situations.)

A G-vector bundle over a G-CW-complex X consists of a (complex) vector bundle p :EPX,
together with a G-action on E such that p is G-equivariant and each g3G acts on E and X via
a bundle isomorphism. We let ED

x
denote the "ber over a point x3X. A map of G-vector bundles

from p :EPX to p@ :E@PX@ is just a map ( fM , f ) of vector bundles, such that fM : EPE@ and f : XPX@
are G-equivariant. Here, we assume only that fM restricts to a linear map ED

x
PE@D

f(x)
for each x3X.

We call ( fM , f ) a strong map if fM restricts to a linear isomorphism ED
x
"
P E@D

f(x)
for each x3X. This is

clearly equivalent to the condition that p:EPX is isomorphic to the pullback of p@ :E@PX@ over f.
Most of the properties of G-vector bundles over G-CW-complexes we need will be easy

consequences of the following elementary lemma.

Lemma 1.1. (a) Any G-vector bundle over an orbit of cells G/H]Dn is isomorphic to G]
H
(<]Dn) for

some H-representation <.
(b) For any G-CW-complex X, both X and X/G are paracompact.
(c) Fix a G-vector bundle p : EPX over a G-CW-complex X. Let X(n) be the n-skeleton of X, and set

E
n
"p~1(X(n)). Then the squares

are pushout squares for each n. Also, X and E have the weak topology with respect to the subspaces
X(n) and E

n
, respectively. More generally, if MX

i
N
i|I

is any set of subcomplexes which cover X, then
X and E have the weak topology with respect to the subspaces X

i
and p~1(X

i
), respectively.

(d) For any G-CW-pair (X, A), there is a neighborhood = of A in X, which can be chosen to be
closed or open, such that A is an equivariant strong deformation retract of =.

Proof. (a) Note that for any G-map p : XPG/H, the canonical map G]
H
p~1(eH)PX is a G-

homeomorphism. (This will be used frequently throughout the paper.) It thus su$ces to show that
any H-vector bundle over Dn is isomorphic to the product bundle <]Dn for some H-representa-
tion <, and this follows from [3, Proposition 1.6.2].
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(c) The pushout square for X(n), and the fact that X has the weak topology with respect to its
skeleta, follow from the de"nition of a G-CW-complex. In particular, a function XP> (for any
space >) is continuous if and only if its composite with each equivariant cell G/H]DnPX is
continuous; and from this one sees immediately that X has the weak topology with respect to any
covering set of subcomplexes. The G-pushout property for E

n
follows the pushout property for X(n),

together with (a) and [13, Lemma 1.26].
We now claim for any X, any vector bundle p : EPX, and any covering X"6

i|I
X

i
by closed

subspaces, that E has the weak topology with respect to its subsets p~1(X
i
) if X has the weak

topology with respect to the X
i
. Upon restricting to a neighborhood of any given x3X, this is

reduced to the case where E is a product bundle; and the result then follows easily since the "bers
are locally compact.

(b) Given an open covering U of X or of X/G, a partition of unity subordinate to U can be
constructed by applying Zorn's lemma to the set of such partitions of unity over subcomplexes of
X (and using (c) above). For more details (in the case of a nonequivariant CW-complex), see [14,
Theorem II.4.2].

(d) For each n, one easily constructs a collar neighborhood <
n

of X(n) in X(n`1) (open or closed),
together with an equivariant deformation retraction o

n
:<

n
PX(n), which restricts to a deformation

retraction of o~1
n

(B) to B for any B-X(n). Now set

=
~1

"A, =
n
"AXo~1

n
(=

n~1
WX(n)) (all n*0), and ="

=
Z
n/0

=
n
,

let r
n
:=

n
P=

n~1
be the identity on A and o

n
on =

n
CA, and let r:=PA be the composite of

the r
n
. h

The next three results, which list some of the standard properties of G-vector bundles, are easy
consequences of Lemma 1.1. We begin with homotopy invariance. As usual, I denotes the unit
interval [0,1].

Theorem 1.2. Let X be a proper G-CW-complex, let p : EPX]I be a G-vector bundle, and set

E
0
"ED

XC0
, regarded as a G-vector bundle over X. Then there is an isomorphism o : E "P E

0
]I of

G-vector bundles, which is the identity on E
0

and covers the identity on X]I. If, in addition, A-X is
any G-invariant subcomplex, then o can be chosen to extend any given isomorphism

o
A

: ED
ACI
"
P E

0
D
ACI

.

Proof. Using Lemma 1.1(c), this is quickly reduced to the case where (XQ , A)"
(G/H]Dn,G/H]Sn~1). By Lemma 1.1(a), E"G]

H
(<]Dn]I). Thus, o

A
is equivalent to a map

o@ : Sn~1]IPAut
H
(<) which sends Sn~1]0 to the identity, and this can be extended to Dn]I since

Sn~1PDn is a co"bration. h

The proof of the next two lemmas is similiar to that of Theorem 1.2.

Lemma 1.3. Let (X,A) be a proper G-CW-pair, and let E and E@ be G-vector bundles over X. Then any
map f : E@D

A
PED

A
of G-vector bundles over A extends to a map fM :E@PE of G-vector bundles over X.
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Proof. Via Lemma 1.1, it su$ces to prove this when (X, A)"(G/H]Dn,G/H]Sn~1),
E"G]

H
(<]Dn), and E@"G]

H
(<@]Dn). A map E@PE of G-vector bundles thus corresponds to

an H-map DnPHom
H
(<@,<), and any map over A extends to a map over X since Hom

H
(<@,<) is

contractible. h

Lemma 1.4. Let (X,A) be a proper G-CW-pair, and let E be a G-vector bundle over X. Then any
G-invariant Hermitian metric of ED

A
extends to a G-invariant Hermitian metric on E.

Proof. Again, it su$ces to prove this when (X,A)"(G/H]Dn,G/H]Sn~1), and
E"G]

H
(<]Dn). A Hermitian metric over X then corresponds to a map DnPHerm

H
(<) (the

space of H-invariant Hermitian metrics over <); and any such map on Sn~1 can be extended to one
on Dn since Herm

H
(<) is convex (and hence contractible). h

To "nish the section, we check that a pushout of G-vector bundles is a G-vector bundle over the
pushout of the base spaces. This will, of course, be used to prove excision in Section 3.

Lemma 1.5. Let u : (X
1
,X

0
)P(X,X

2
) be a map of G-CW-pairs, set u

0
"uD

X0
, and assume that

X+X
2
6r0

X
1
. Let p

1
: E

1
PX

1
and p

2
: E

2
PX

2
be G-vector bundles, let u6

0
: E

1
D
X0

PE
2

be a
strong map covering u

0
, and set E"E

2
6r6 0 E1

. Then p"p
1
Xp

2
:EPX is a G-vector bundle over X.

Proof. The only problem is to show that p : EPX is locally trivial (in a non-equivariant sense).
Since E

1
is locally trivial, so is ED

XCX2
+E

1
D
X1

CX0
. So it remains to "nd a neighborhood of X

2
over

which E is locally trivial. Choose a closed neighborhood=
1

of X
0

in X
1

for which there is a strong
deformation retraction r :=

1
PX

0
(Lemma 1.1(d)). By the homotopy invariance for

nonequivariant vector bundles over paracompact spaces (cf. [10, Corollary 3.4.5]), r is covered by
a strong map of vector bundles r6 : E

1
D
W1

PE
0

which extends iM
1
. Set ="X

2
6r0
=

1
. Then

r6 extends, via the pushout, to a strong map of vector bundles ED
W
PE

2
which extends iM

2
, and hence

ED
W

is locally trivial. h

Let p : EPB be a G-vector bundle over a proper G-CW-complex. Each orbit Gx-X has
a G-invariant neighborhood;

x
such that Gx is an equivariant retract of;

x
, and the neighborhood

can in fact be chosen such that the retraction is covered by a strong map ED
Ux

PED
Gx

. There is thus
a G-covering U of X such that each ED

U
(for;3U) is `triviala in the sense that it is the pullback of

a bundle over a (proper) orbit. Also, since X/G is paracompact by Lemma 1.1(b), U is G-numerable
in the sense that there is a locally "nite partition of unity Mt

U
D;3UN by G-invariant functions

t
U

with supp(t
U
)-;. Hence our notion of G-vector bundles agrees with that of tom Dieck in [9,

Section I.9]. For these same reasons, the results of this section can easily be extended to proper
G-spaces which have paracompact quotients (any such space has tubes, i.e., equivariant neighbor-
hood retracts of orbits).

2. Constructions of G-vector bundles

The main result in this section is Theorem 2.6. Given a discrete group G, a G-CW-complex X,
and a family M<

H
N of representations of the isotropy subgroups in X, we would like to be able to
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construct a G-vector bundle EPX whose "ber over any x3X is isomorphic to <
Gx

. This is in
general not possible, even for "nite G, for reasons discussed at the end of the section. What we show
here is that we can do this, assuming certain conditions on X and the <

H
, but only after replacing

the <
H

by some iterated direct sum (<
H
)k, or by some iterated tensor product (<

H
)ck. These

bundles are the crucial ingredients in the proof that G-vector bundles de"ne an equivariant
cohomology theory (Theorem 3.2), and the proof of the completion theorem (Theorem 4.3).

Throughout the "rst part of the section, G and C will denote arbitrary Lie groups. A family F of
subgroups of G is a set of (closed) subgroups of G which is closed under conjugation. We will need
to work with some classifying spaces and universal spaces: "rst for (proper) G-actions and then for
bundles.

De5nition 2.1. For any family F of subgroups of G, let EF (G) denote the topological category
whose objects are the pairs (G/H,gH) for H3F and g3G, and where Mor((G/H,gH),(G/K,g@K)) is
the set of G-maps G/HPG/K which send gH to g@K (a set of cardinality at most one). Let EF(G) be
the realization of the nerve of EF (G), considered as a G-CW-complex:

EF (G)"A
=Z

n/0

Z
G@H0?2?G@Hn

G/H
0
]DnBN&,

where the identi"cations are those induced by the obvious face and degeneracy maps.

As usual, we are assuming that EF (G) has the weak topology with respect to its cellular structure.

Lemma 2.2. Fix a Lie group G and a family F of subgroups of G.
(a) For any K3F, (EF (G))K is contractible.
(b) Let (X,A) be any G-CW-pair such that G

x
3F for all x3X. Then any G-map f

A
:APEF(G),

extends to a G-map f
X
:XPEF (G), and any two such extensions are G-homotopic relative A.

Proof. (a) For any K-G, (EF(G))K is the nerve of the full subcategory of EF(G) with objects those
(G/H,gH) such that K-gHg~1. And if K3F, then this category has the initial object (G/K, eK).

(b) This follows immediately from point (a) (see [13, Proposition 2.3 p. 35]). h

A G-equivariant C-bundle (or (G,C)-bundle for short) consists of a C-principal bundle p:EPX,
together with left G-actions on E and X, such that p is G-equivariant, and such that the left
G-action and the right C-action on E commute. We let Bdl

G,C
X denote the set of isomorphism

classes of (G,C)-bundles over the G-space X.
One natural example of this is the case C";(n). A (G,;(n))-bundle EPX is just the principal

bundle associated with the G-vector bundle E]
U(n)

CnPX. Similarly, a (G,&
n
)-bundle is the

principal bundle associated with a G-equivariant n-sheeted covering space. In the constructions
below, we will have to consider (G,C)-bundles for certain "nite subgroups C-;(n).

Now "x a family F of compact subgroups of G. For each H3F, set RepC(H)"
Hom(H,C)/Inn(C); i.e., the set of conjugacy classes of homomorphisms from H to C. For example,
Rep

U(n)
(H) is the set of isomorphism classes of n-dimensional complex representations of H, and
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Rep&n
(H) is the set of isomorphism classes of H-sets of order n. Note that for any H and C, there are

natural bijections

RepC(H)+Bdl
H,C

(pt)+Bdl
G,C

(G/H). (2.3)

We need a way to specify the isomorphism types of the "bers of a (G,C)-bundle. Suppose we are
given an element

A"(a
H
)3 lim$&

H|F

RepC (H)- <
H|F

RepC (H),

where the limit is taken with respect to all homomorphisms induced by inclusions and conjugation

in G. This is equivalent to an element in lim
Q

OrF (G)
Bdl

G,C
(!), where Bdl

G,C
(!) is considered as

a contravariant functor (via pullback) on the orbit category OrF (G). If X is a G-space all of whose
isotropy subgroups lie in F, then we de"ne a (G,A)-bundle over X to be a (G,C)-bundle such that
the "ber over any point x3X is isomorphic to (C, a

Gx
), regarded as a (G

x
, C)-bundle over a point

(see (2.3)). When C";(n), this corresponds to those G-vector bundles whose "bers are isomorphic
to certain given representations of the isotropy subgroups.

We want to de"ne classifying spaces for (G,C)-bundles and for (G,A)-bundles. In fact, these are
just the universal (G]C)-CW-complexes with respect to appropriate families.

De5nition 2.3. Let F be a family of compact subgroups of G. De"ne

EF (G,C)"EFC
(G]C) and BF(G,C)"EF (G,C)/C,

where

FC"MH-G]C D pr
1
(H)3F, HW(1]C)"1N.

For any element

A"(a
H
)3 lim$&

H|F

RepC(H)- <
H|F

RepC (H),

de"ne

FA"MH-G]C D H"graph (a : KPC), some K3F, some a conjugate to a
K
N,

and set

EF (G,A)"EFA
(G]C) and BF(G,A)"EF (G,A)/C.

In the above situation, if E p
P X is any (G,C)-bundle, where X is a proper G-CW-complex all of

whose isotropy subgroups lie in F, then E is a proper (G]C)-CW-complex all of whose isotropy
subgroups lie in FC . Conversely, if E is any proper (G]C)-CW-complex all of whose isotropy
subgroups lie in FC , then E/C is a proper G-CW-complex all of whose isotropy subgroups lie in F,
and the projection EPE/C is a (G,C)-bundle. Similarly, for any A, there is a correspondence
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between (G,A)-bundles and (G]C)-CW-complexes all of whose isotropy subgroups lie in FA . This
leads to the following:

Lemma 2.4. Fix a family F of compact subgroups of G, and an element

A"(a
H
)3 lim$&

H|F

RepC(H),

where the limit is taken with respect to inclusions and conjugation in G. Then the following hold:

(a) For each H3F, let CC(a
H
) denote the centralizer of the image of a

H
: HPC (well dexned up to

conjugacy). Then there is a homotopy equivalence

(BF(G,A))HKBCC(a
H
),

which is natural with respect to maps induced by homomorphisms CPC@.
(b) The (G,A)-bundle

EF (G,A)PBF(G,A)

is the universal (G,A)-bundle in that it dexnes, via pullbacks, a bijection

[X,BF(G,A)]
G
PBdl

G,A
(X),

for any proper G-CW-complex X all of whose isotropy subgroups are in F.

Proof. (a) Fix H, and write C"CC (a
H
) for short. Consider the (G,A)-bundle

G]
H
(EC]

C
C)PG/H]BC,

where H acts on EC]
C
C via h(x, c)"(x, a

H
(h)c). The classifying map for this bundle restricts to

a map

BCP(BF (G,A))H.

Similarly, the restriction of the universal (G,A)-bundle over (BF(G,A))H is an (H, a
H
)-bundle over

a space with trivial H-action, and hence has structure group C"CC(a
H
). It is thus classi"ed by

a map

(BF(G,A))HPBC,

and the above two maps are homotopy inverses by the universal properties of the spaces.
(b) This follows immediately from Lemma 2.2(b). h

We now assume, throughout the rest of the section, that G is discrete. We need to construct maps
to the classifying spaces de"ned in De"nition 2.3. The obstructions to doing so lie in certain Bredon
cohomology groups.

Let (X,A) be any G-CW-pair such that the isotropy group of each point in XCA lies in F. For
each n*0, let

C
M n

(X,A) : OrF(G)PAb
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denote the contravariant functor which sends G/H to C
n
(XH,AH). Here, C

n
(XH,AH) is the free

abelian group with one generator for each n-cell in XHCAH. For any contravariant functor
M : OrF (G)PAb, HomOrF (G)

(C
M n

(X, A),M) is the direct sum of one copy of M(G/H) for each orbit
G/H]Dn of n-cells in XCA. In particular, C

M n
(X,A) is projective in the category OrF(G)-mod of

contravariant functors OrF(G)PAb. The Bredon cohomology groups HH
G
(X,A;M) are thus the

homology groups of the cochain complex

0PHomOrF (G)
(C
M 0

(X,A),M) d
P HomOrF (G)

(C
M 1

(X,A),M) d
P HomOrF (G)

(C
M 2

(X,A),M) d
P 2.

Lemma 2.5. Assume that G is discrete. Fix a family F of xnite subgroups of G, a xnite group C, and
a system of representations

A"(a
H
)
H|F

3 lim$&

H|F

RepC(H).

Set B"BF(G,A), and let

bA : BPEF(G)

be any G-map. (This exists and is unique up to G-homotopy by Lemma 2.2(b), since all isotropy
subgroups for B lie in F.) Let Z denote the mapping cylinder of bA . Let M : OrF (G)PAb be any
contravariant functor. Then for each n*0,

DCDn )Hn
G
(Z,B; M)"0.

Proof. There is a cohomology spectral sequence

Ep,q
2

"ExtpOrF (G)
(H

1 q
(Z,B),M) N Hp`q

G
(Z,B;M),

where H
1 p

(Z,B) denotes the functor OrF(G)PAb which assigns to G/H the abelian group
H

p
(ZH,BH). It is induced by the double complex HomOrF (G)

(C
M q

(Z,B), I
p
), where MI

p
N is any injective

resolution in OrF(G)-mod of M. We have just seen that the C
M q

(Z,B) are all projective in
OrF(G)-mod. This category does have enough injectives by, e.g., [19, Example 2.3.13].

Since ZHK(EF(G))H is contractible by Lemma 2.2(a), we conclude from Lemma 2.4(a) that

H
q
(ZH,BH)+HI

q~1
(BH)+HI

q~1
(CC(a

H
)).

In particular, since CC (a
H
)-C, this shows that

DCD )H
H
(ZH,BH)"0.

So DCD annihilates all terms in the above spectral sequence, and hence (since Ep,0
2

"0) DCDn
annihilates Hp

G
(Z,B;M). h

Given any A"(a
H
)3 lim$&

H|F

RepC (H), and any homomorphism o : CP;(n), there is a natural map

o
H

:BF(G,A)PBF(G,o"A) where o"A"(o"a
H
)3 lim$&

H|F

Rep
U(n)

(H);

and o
H

commutes with the maps bA and bo"A to EF (G).
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Theorem 2.6. Assume that G is discrete. Fix any family F of xnite subgroups of G, and let

V"(<
H
)3 lim$&

H|F

Rep
U(n)

(H)

be any system of compatible n-dimensional representations. Assume that there is a xnite group C,
a system

A"(a
H
)3 lim$&

H|F

RepC(H),

and a homomorphism o : CP;(n) such that V"o"A. Then for any d'0 there is an integer
k"k(d)'0, such that for any d-dimensional G-CW-complex X all of whose isotropy subgroups lie in
F, there are G-vector bundles E,E@PX such that the xbers ED

x
and E@D

x
over each point x3X are

isomorphic as G
x
-representations to (<

Gx
)k and (<

Gx
)ck, respectively.

Proof. We only treat the case of direct sums here; the tensor product case is analogous. By the
universal property of EF (G) (Lemma 2.2(b)), it su$ces to prove this when X"EF(G)(d) (the
d-skeleton).

Write B"BF(G,A) and B@
k
"BF(G,Vk) for short (any k*1), and let Z be the mapping cylinder

of bA :BPEF(G). We must construct, for some k, a map Z(d)PB@
k
; and we will do so by extending

the map ok
H
:BPB@

k
. By Lemma 2.4(a), (B@

k
)HKBAut

H
(<k

H
) for each H3F, and is in particular

a product of B;(m)'s and hence simply connected. So there is no obstruction to extending
o1
H

: BPB@
1

to a map f
2

: BXZ(2)PB@
1
.

Assume inductively that f
d~1

: BXZ(d~1)PB@
r

has been constructed, (where r"k(d!1)). We
now apply standard equivariant obstruction theory. For each H3F, let

cd( f
d~1

)(G/H) : C
d
(ZH,BH)Pn

d~1
((B@

r
)H)

be the map which sends each generator, corresponding to a d-cell p in ZHCBH, to the element
f
d~1

(Lp). This is well de"ned independently of the basepoint, since (B@
r
)H is simply connected. By

naturality, this de"nes an element

cd( f
d~1

)3Cd
G
(Z,B; n

6 d~1
(B@

r
))"HomOrF (G)

(C
M d

(Z,B),n
6 d~1

(B@
r
)),

and f
d~1

can be extended to a map BXZ(d)PB@
r
if and only if cd( f

d~1
)"0. Furthermore, cd( f

d~1
) is

a cocycle by [20, Theorem V.5.6], and hence de"nes an element

od( f
d~1

)3Hd
G
(Z,B; n

6 d~1
(B@

r
)).

Finally, for any c8 3Cd~1
G

(Z,B;n
6 d~1

(B@
r
)), there is a map f @ : BXZ(d~1)PB@

r
such that f @ agrees with

f
d~1

on BXZ(d~2), and such that cd( f @)!cd( f
d~1

)"d(c8 ) (as in [20, Theorem V.5.6@]). So if
od( f

d~1
)"0, then f

d~1
DBXZ(d~2) can be extended to BXZ(d). For more details, see [20, Section

V.5], and also [8, Section II.1] (where equivariant obstruction theory is developed for actions of
a "nite group).
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By Lemma 2.5, Hd
G
(Z,B;n

6 d~1
(B@

r
)) has exponent DCDd. Furthermore, by Lemma 2.4(a) again,

n
6 d~1

(B@
r
) is the functor G/HCn

d~1
(BAut

H
(<r

H
)). Write m"DCDd for short, and consider the

homomorphisms

n
d~1

(BAut
H
(<r

H
))i1 ,

2,im&"
&"
$*!'

(n
d~1

(B Aut
H
(<r

H
)))m B^H

&" n
d~1

(B Aut
H
(<mr

H
)).

These are all homomorphisms of functors on OrF (G). Also, B=
H
"i
s
"B=

H
"i
1

for all s, since the
corresponding maps between spaces di!er by conjugation by an element of Aut

H
(<mr

H
) (and the

automorphism group is connected). Since diag"+m
s/1

i
s
, it follows that (B=

H
)"diag factors

through multiplication by m, and hence that the induced map

Hd
G
(Z,B; n

6 d~1
(B@

r
))

Dm
H

P Hd
G
(Z,B;n

6 d~1
(B@

mr
))

is zero. Here, Dm:;(rn)P;(mrn) denotes the diagonal inclusion. We can thus extend
Dm
H
"f
d~1

DBXZ(d~2) to a map

f
d
:BXZ(d)PB@

mr
"BF(G,Vmr).

Set k"k(d)"mr; the pullback to EF(G)(d)-Z(d) of the (G,Vk)-vector bundle

EF (G,Vk)]
U(nk)

CnkPBF(G,Vk)

now has the desired properties. h

As a "rst consequence of Theorem 2.6, we show the following result, which will be needed when
proving excision for equivariant K-theory de"ned via G-vector bundles.

Corollary 2.7. Assume that G is discrete, and let X be any xnite dimensional proper G-CW-complex
whose isotropy subgroups have bounded order. Then there is a G-vector bundle EPX such that for
each x3X, the xber ED

x
is a multiple of the regular representation of G

x
.

Proof. Let F be the family of isotropy subgroups in X, and let n be the least common multiple of
their orders. For each H3F, let <

H
be the free complex H-representation of dimension n, and let

a
H

: HPR
n

be a homomorphism corresponding to a free H-set of order n. Then

V"(<
H
)3 lim$&

H|F

Rep
U(n)

(H) and A"(a
H
)3 lim$&

H|F

RepR
n
(H),

and these satisfy the hypotheses of Theorem 2.6 (with C"R
n
). So by the theorem, there is some k,

and a G-vector bundle EPX, such that for each x3X, ED
x
+<k

Gx
is a multiple of the regular

representation of G
x
. h

An H-representation< will be called p@-free if for any subgroup K-H of order prime to p, <DK
is a multiple of the regular representation of K. This is equivalent to the condition that the
character of any element h3H not of p-power order is zero. The next result, a second consequence
of Theorem 2.6, is the main technical ingredient in our extension of the completion theorem of
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Atiyah and Segal from "nite groups and compact spaces to arbitrary discrete groups and "nite
proper G-CW-complexes.

Corollary 2.8. Assume that G is discrete, and let X be any xnite dimensional proper G-CW-complex
whose isotropy subgroups have bounded order. Then for any prime p, there is a G-vector bundle EPX
of dimension prime to p, such that for each x3X, ED

x
is p@-free as a G

x
-representation.

Proof. Let F be the family of isotropy subgroups in X, and let m be the least common multiple of
the DHD for H3F. For each H3F, let a

H
: HPR

m
be the homomorphism corresponding to any

free action of H on M1,2, mN. The a
H

clearly form an element

A"(a
H
)3 lim$&

H|F

RepR
m
(H).

Set n"DR
m
/Syl

p
(R

m
)D, let o : R

m
P;(n) be the corresponding permutation representation, and

(for each H) let <
H

be the n-dimensional representation de"ned by o"a
H
. By Theorem 2.6, there is

k'0 and a G-bundle EPX, such that the "ber ED
x

over any point x3X is isomorphic to (<
Gx

)ck.
This bundle has dimension nk, which is prime to p. Furthermore, for each H3F, and each
subgroup K-H of order prime to p, (<

H
)D
K

is a free C[K]-module by construction, and so the
same holds for (<ck

H
)D
K
. In other words, ED

x
is p@-free as a G

x
-representation for each x, and so E has

all of the required properties. This "nishes the proof of Corollary 2.8. h

In view of Theorem 2.6, the following question arises. Let X be a G-CW-complex. Given
a compatible family M<

H
N of representations of the isotropy subgroups of X, is there a G-vector

bundle EPX such that ED
x
+<

Gx
as G

x
-representations for each x3X? Here, `compatibleameans

that if a(K)-H, where a is an inner automorphism of G, then (aH<
H
)D
K
+<

K
. This question can

also be posed more generally, requiring di!erent representations on di!erent components of "xed
point sets.

It is in fact easy to "nd counterexamples to this question, even in the case where G is "nite. Fix

a "nite group G and a normal subgroup H¢G, and set I
H
"Ker[R(G) 3%4

PR(H)]. By a theorem of
Jackowski [11, Theorem 5.1 and Example 5.5], the pro-rings MK

G
(E(G/H)(n))N

nw1
and

MR(G)/(I
H
)nN

nw1
are isomorphic. In particular, for n su$ciently large, the "bers of any G-vector

bundle over E(G/H)(n), considered as H-representations, can always be extended to virtual G-
representations. On the other hand, any G/H-invariant H-representation<

H
de"nes a `compatible

familya of representations of the isotropy subgroups of E(G/H). It is not hard to "nd examples of
G and H where Im[R(G)PR(H)]uR(H)G@H, and hence of a compatible family which cannot be the
"bers of a G-vector bundle over the "nite G-CW-complex E(G/H)(n).

What we really would like to "nd is an example of an in"nite discrete group G, such that
EFIN(G) has the homotopy type of a "nite G-CW-complex, and for which not every compatible
family M<

H
N of representations of the "nite subgroups can be realized as a G-vector bundle over

EFIN(G) (not even stably). Presumably such examples exist, but we have so far been unable to "nd
any.
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3. Equivariant K-theory for 5nite proper G-CW-complexes

The main result in this section is that when G is discrete, G-vector bundles de"ne a Z/2-graded
multiplicative cohomology theory KH

G
(!) on the category of "nite proper G-CW-complexes. This

is summarized in Theorem 3.2 below.
The assumption here that G is discrete is essential, even in the case of "nite proper CW-

complexes. So this will be assumed throughout most of the section. The problems arising in the case
of positive dimensional Lie groups will be discussed in Section 5 below.

The usual way to de"ne K
G
(X, A), when G is "nite, is as the reduced K-theory of the mapping

cone of the inclusion of A in X (cf. [3] or [18]). That approach is not possible here, since the
mapping cone of a map of proper G-CW-complexes has a G-"xed point, and hence is not proper if
G is not compact. For the same reason, we are unable to use suspensions in this situation to de"ne
the groups K~n

G
(X,A). Instead, we make the following de"nitions:

De5nition 3.1. For any Lie group G and any proper G-CW-complex X, let K
G
(X)"K0

G
(X) be the

Grothendieck group of the monoid of isomorphism classes of G-vector bundles over X. De"ne
K~n

G
(X), for all n'0, by setting

K~n
G

(X)"Ker[K
G
(X]Sn)*/#-

H

P K
G
(X)].

For any proper G-CW-pair (X,A), set

K~n
G

(X,A)"Ker[K~n
G

(XX
A
X) i

H
2

P K~n
G

(X)].

When G is discrete and (X,A) is a xnite proper G-CW-pair, write

K
G
(X,A)"K

G
(X,A) and K~n

G
(X,A)"K~n

G
(X,A).

The pullback construction makes K~n
G

(!) and K~n
G

(!) into contravariant functors on the
categories of proper, or "nite proper, G-CW-pairs.

Note that we get a natural isomorphism

prH
X
=i:K0

G
(X)=K~n

G
(X) "P K0

G
(X]Sn),

where i is the inclusion and pr
X

the projection. We can now state the main theorem in this section.

Theorem 3.2. For any discrete group G, the groups K~n
G

(X,A) extend to a Z/2-graded multiplicative
equivariant cohomology theory on the category of xnite proper G-CW-pairs. In particular, KH

G
(!) is
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a homotopy invariant contravariant functor, satisxes excision, and there is an exact sequence

of KH
G
(X)-modules for any xnite proper G-CW-pair (X,A). For any pushout X"X

1
X

A
X

2
where

(X
1
,A) is a xnite proper G-CW-pair, all maps in the induced Mayer}Vietoris sequence are KH

G
(X)-

linear. For xnite subgroups H-G, there are natural isomorphisms K0
G
(G/H)+R(H), and

K1
G
(G/H)"0. If G is xnite and X is compact, this construction agrees with the classicial dexnition.

The proof of Theorem 3.2 will occupy most of the rest of the section. We "rst show some of the
properties of KH

G
(!) which hold for any Lie group G and any proper G-CW-complex X, beginning

with homotopy invariance.

Lemma 3.3 (Homotopy invariance). Let G be a Lie group. If f
0
, f
1
:(X,A)P(>,B) are G-homotopic

G-maps between proper G-CW-pairs, then

f H
0
"f H

1
: K~n

G
(>,B)PK~n

G
(X,A)

for all n*0.

Proof. When n"0 and A"B"0, this follows immediately from Theorem 1.2. The general case
then follows from the de"nition of K~n

G
(X,A). h

We next note the following relation between equivariant K-theory for di!erent groups.

Lemma 3.4 (Induction). Let H-G be an inclusion of Lie groups and let (X,A) be a proper
H-CW-pair. Then G]

H
(X,A) is a proper G-CW-pair, and there are isomorphisms

iG
H

: K~n
H

(X,A) "P K~n
G

(G]
H
(X, A))

(for all n*0) dexned by sending [E] to [G]
H
E].

Proof. This is clear when A"0. When AO0, it follows since

G]
H
(XX

A
X)+(G]

H
X)X

GCHA
(G]

H
X). h

The next two lemmas are also very elementary.

Lemma 3.5 (Free quotients). Let G be a Lie group. Let (X,A) be a proper G-CW-pair for which the
normal subgroup H¢G acts freely on X. Then the projection pr: XPX/H induces an isomorphism

prH: K~n
G@H

(X/H,A/H) "P K~n
G

(X,A).
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Proof. This is quickly reduced to the case n"0 and A"0, for which the inverse of the above map
is de"ned by sending [E]3K

G
(X) to [E/H]3K

G@H
(X/H). h

Lemma 3.6. Let G be a Lie group, and let (X,A) be a proper G-CW-pair. Suppose that X"Z
i|I

X
i
,

the disjoint union of open G-invariant subspaces X
i
( for any index set I), and set A

i
"AWX

i
. Then

there is a natural isomorphism

K~n
G

(X,A) "P <
i|I

K~n
G

(X
i
, A

i
)

induced by the inclusions of the components.

We now assume, throughout (most of) the rest of the section, that G is a discrete group. When
proving excision and constructing the exact sequences for equivariant K-theory, we need to know
when a G-vector bundle E

0
over a G-subspace A-X can be embedded as a summand of some

bundle E over X. Suppose for simplicity that X/G is compact. If G is a "nite group (or a compact
Lie group), then it is easy to "nd E, since any G-vector bundle over a compact G-CW-complex is
a summand of some product bundle. This is no longer the case when G is not compact, and instead
of product bundles we will construct E using the bundles constructed in Corollary 2.7.

Note that the following lemma does not hold when G is a noncompact Lie group of positive
dimension, even in the special case where X is "nite. In fact, Phillips [15, Section 9] has shown that
in this situation, equivariant K-theory de"ned via ("nite-dimensional) G-vector bundles need not
be an equivariant cohomology theory. We will discuss this in more detail in Section 5.

Lemma 3.7. Assume G is discrete, let u :XP> be an equivariant map between xnite proper
G-CW-complexes, and let E@PX be a G-vector bundle. Then there is a G-vector bundle EP> such
that E@ is a summand of uHE.

Proof. Let m be the maximum dimension of any "ber of E@. By Corollary 2.7, there is a G-vector
bundle FP> such that each "ber FD

y
is a multiple of the regular G

y
-representation. After possibly

replacing F by some iterated direct sum with itself, we can assume that for each x3X,
(uHF)D

x
+FDr(x) contains at least m copies of the regular representation of G

x
; and hence that there is

a G
x
-linear injection of E@D

x
into (uHF)D

x
. This extends to a monomorphism of G-vector bundles

from E@D
Gx

into (uHF)D
Gx

, which by Lemma 1.3 extends to a bundle map f
x
: E@PuHF covering the

identity on X. In particular, f
x

is a monomorphism over some open G-invariant neighborhood
;

x
of Gx in X.

Since X/G is compact, we can choose x
1
,2,x

n
3X such that X is covered by the sets

;
x1

,2,;
xn

. The sum of the f
xi

is then a monomorphism f : E@PuH(Fn) of bundles covering the
identity on X. The image of f is a G-invariant subbundle of uH(Fn) (cf. [3, Lemma 1.3.1]). And via
a Hermitian metric on F, it is seen to be a G-vector bundle summand. h

The Mayer}Vietoris exact sequence follows as a consequence of Lemma 3.7.
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Lemma 3.8 (Mayer}Vietoris sequence). Assume G is discrete. Let

be a pushout square of xnite proper G-CW-complexes, where i
1

and j
2

are inclusions of subcomplexes.
Then there is a natural exact sequence, inxnite to the left

2
d
~n~1

&" K~n
G

(X) j
H
1^j

H
2

&" K~n
G

(X
1
)=K~n

G
(X

2
) i

H
1~i

H
2

&" K~n
G

(A) d
~n

&"

2PK~1
G

(A) d
~1

&" K0
G
(X) j

H
1^j

H
2

&" K0
G
(X

1
)=K0

G
(X

2
) i

H
1~i

H
2

&" K0
G
(A). (1)

Proof. We "rst show that the sequence

K
G
(X)j

H
1^j

H
2

&" K
G
(X

1
)=K

G
(X

2
) i

H
1~i

H
2

&" K
G
(A) (2)

is exact, and hence that sequence (1) is exact at K~n
G

(X
1
)=K~n

G
(X

2
) for all n. Clearly the composite

in (2) is zero. So "x an element (a
1
, a

2
)3Ker (iH

1
!iH

2
). By Lemma 3.7, we can add an element of the

form ([ jH
1
E@], [ jH

2
E@]) for some G-vector bundle E@PX, and arrange that a

1
"[E

1
] and a

2
"[E

2
]

for some pair of G-vector bundles E
k
PX

k
. Then iH

1
E
1

and iH
2
E
2

are stably isomorphic, and after
adding the restrictions of another bundle over X (Lemma 3.7 again), we can arrange that
iH
1
E

1
+iH

2
E

2
. Lemma 1.5 now applies to show that there is a G-vector bundle E over X such that

jH
k
E+E

k
(k"1,2), and hence that ([E

1
],[E

2
])3Im (jH

1
=jH

2
).

Assume now that A is a retract of X
1
. We claim that in this case,

Ker [K
G
(X) j

H
2

P K
G
(X

2
)] j

H
1

P

"
Ker [K

G
(X

1
) i

H
1

P K
G
(A)] (3)

is an isomorphism. It is surjective by the exactness of (2). So "x an element [E]!
[E@]3Ker ( jH

1
=jH

2
). To simplify the notation, we write ED

X1
"jH

1
E, ED

A
"iH

2
jH
2
E, etc. (But we are not

assuming that j
1

and i
2

are injective.) Let p
1

: X
1
PA be a retraction, and let p : XPX

2
be its

extension to X. Using Lemma 3.7, we can arrange that ED
Xk

+E@D
Xk

for k"1,2. Upon applying
Lemma 3.7 to the retraction p : XPX

2
, we obtain a G-vector bundle F@PX

2
such that E@ is

a summand of pHF@. Upon stabilizing again, we can assume that E@+pHF@, and hence that F@+E@D
X2

and E@D
X1

+pH
1
(F@D

A
)+pH

1
(E@D

A
). Fix isomorphisms t

k
: ED

Xk
PE@D

Xk
covering Id

Xk
. The automor-

phism (t
2
D
A
)"(t

1
D
A
)~1 of E@D

A
pulls back, under p

1
, to an automorphism u of E@D

X1
; and by

replacing t
1

by u"t
1

we can arrange that t
1
D
A
"t

2
D
A
. Then t

1
Xt

2
is an isomorphism from E to

E@, and this proves (3).
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We now return to the general case. For each n*1,

K~n
G

(A)"Ker [K
G
(A]Sn)PK

G
(A)]

+Ker [K
G
(XX

ACv(A]Sn)) */#-
H

&" K
G
(X)] (by (3))

+Ker [K
G
((X

1
]Dn)X

ACS
n~1(X2

]Dn))(~,f)H&" K
G
(X)], (hty. invar.)

the last step since ((X
1
]f)X(A]Dn)) is a strong deformation retract of X

1
]Dn. De"ne

d~n : K~n
G

(A)PK~n`1
G

(X) to be the homomorphism which makes the following diagram commute:

We have already shown that sequence (1) is exact at K~n
G

(X
1
)=K~n

G
(X

2
) for all n. To see its

exactness at K~n`1
G

(X) and K~n
G

(A) (for any n*1), apply the exactness of (2) to the following split
inclusion of pushout squares:

The upper pair of squares induces a split surjection of exact sequences whose kernel yields the
exactness of (1) at K~n`1

G
(X). And since

Ker [K
G
((X

1
]Sn)X

ACv(X
2
]Sn))PK

G
(X)]

+Ker [K
G
((X

1
]Sn)P (X

2
]Sn))PK

G
(X

1
PX

2
)]+K~n

G
(X

1
)=K~n

G
(X

2
)

by (3), the lower pair of squares induces a split surjection of exact sequences whose kernel yields the
exactness of (1) at K~n

G
(A). h

Excision, and the long exact sequence for a pair, follow as immediate consequences of the
Mayer}Vietoris sequence.

Lemma 3.9 (Excision). Assume G is discrete. Let

u : (X,A)P(>, B)
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be a map of xnite proper G-CW-pairs, such that >+BXr@AX. Then

uH : K~n
G

(>,B)PK~n
G

(X,A)

is an isomorphism for all n*0.

Proof. For each n, the square

is a pushout, and X is a retract of XX
A
X. So its Mayer}Vietoris sequence splits into short exact

sequences

0PK~n
G

(>X
B
>)PK~n

G
(XX

A
X)=K~n

G
(>)PK~n

G
(X)P0.

And hence K~n
G

(>,B)+K~n
G

(X,A). h

Lemma 3.10 (Exactness). Assume G is discrete, and let (X, A) be a xnite proper G-CW-pair. Then the
following sequence, extending inxnitely far to the left, is natural and exact:

2
d~n~1

P K~n
G

(X,A) i
H

P K~n
G

(X) j
H

P K~n
G

(A) d
~n

P K~n`1
G

(X,A) i
H

P

2
d~1

P K0
G
(X,A) i

H

P K0
G
(X) j

H

P K0
G
(A).

Proof. This follows immediately from the Mayer}Vietoris sequence for the square

In the nonequivariant case, K(X)+K(X) for any "nite dimensional CW-complex X: since any
map XPB; factors through some B;(n). The following example shows that this is no longer true
in the equivariant case, even for actions of "nite groups: the Mayer}Vietoris sequence need not be
exact in this situation.

Example 3.11. Fix any "nite group GO1. De"ne X"(G]R)/&, where (g, n)&(1, n) for any g3G
and any n3Z. For each n3Z, set A

n
"(G][n!1

2
, n#1

2
])/(G]MnN). Set X

1
"

Z
n|Z

A
2n

, X
2
"Z

n|Z
A

2n`1
, and X

0
"X

1
WX

2
. Let i

k
:X

k
PX and j

k
: X

0
PX

k
(k"1,2)
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denote the inclusions. Then the sequence

K
G
(X)(i

H
1 ,iH2 )
P K

G
(X

1
)=K

G
(X

2
) j

H
1~j

H
2

&" K
G
(X

0
)

is not exact.

Proof. For each n, K
G
(A

n
)+R(G) (each A

n
is equivariantly contractible); and the kernel of the

restriction map K
G
(A

n
)PK

G
(A

n
WX

0
) is (under this identi"cation) the augmentation ideal IR(G).

Choose representations <
n
, =

n
(all n3Z) such that dim (<

n
)"dim (=

n
), Hom (<

n
,=

n
)"0, and

Mdim (<
n
)N is unbounded. Then the element

(M[<
2n

]A
2n

]![=
2n

]A
2n

]N
n|Z ,M[<

2n`1
]A

2n`1
]![=

2n`1
]A

2n`1
]N

n|Z
)

lies in Ker ( jH
1
!jH

2
), but not in Im (iH

1
, iH
2
). h

We now consider products on KH
G
(X) and on KH

G
(X,A). For any proper G-CW-complex X,

tensor product of G-vector bundles makes K
G
(X) into a commutative ring, and all induced maps

f H : K
G
(>)PK

G
(X) are ring homomorphisms. For each n,m*0,

K~n~m
G

(X)+Ker [K~m
G

(X]Sn)PK~m
G

(X)]

"Ker [K
G
(X]Sn]Sm)PK

G
(X]Sn)=K

G
(X]Sm)],

where the "rst isomorphism follows from the usual Mayer}Vietoris sequences. Hence

K
G
(X]Sn)?K

G
(X]Sm).6-5 " (pH1cp

H
2 )&&&&" K

G
(X]Sn]Sm)

restricts to a homomorphism

K~n
G

(X)?K~m
G

(X)PK~m~n
G

(X).

By applying the above de"nition with n"0 or m"0, the multiplicative identity for K
G
(X) is

seen to be an identity for KH
G
(X). Associativity of the graded product is clear, and graded

commutativity follows upon showing (using a Mayer}Vietoris sequence) that composition with
a degree !1 map SnPSn induces multiplication by !1 on K~n(X). This product thus makes
KH

G
(X) into a ring. Clearly, f H : KH

G
(>)PKH

G
(X) is a ring homomorphism for any G-map f : XP>.

For a "nite proper G-CW-pair (X,A), KH
G
(XX

A
X)PKH

G
(X) is a split surjection and ring

homomorphism (and split by a ring homomorphism), and so its kernel is a KH
G
(X)-module. For any

X"X
1
X

A
X

2
, where (X

1
, A) is a "nite proper G-CW-pair, the boundary map in the correspond-

ing Mayer}Vietoris sequence is KH
G
(X)-linear, since it is de"ned via a certain map between spaces

which commutes with their (split) projections onto X. And hence the boundary maps in the long
exact sequence for a pair (X,A) are KH

G
(X)-linear, since they are de"ned to be the boundary maps of

a certain Mayer}Vietoris sequence all of whose spaces map to X.

It remains to prove Bott periodicity in this situation. Recall that KI (S2) $%&"

Ker [K(S2)PK(pt)]+Z, and is generated by the Bott element B3KI (S2): the element
[S2]C]![H]3KI (S2), where H is the canonical complex line bundle over S2"CP1. For any
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"nite proper G-CW-complex X, there is an obvious pairing

K~n
G

(X)?KI (S2) c
P Ker [K~n

G
(X]S2)PK~n

G
(X]pt)]+K~n~2

G
(X),

induced by (external) tensor product of bundles. Evaluation at the Bott element now de"nes
a homomorphism

b"b(X) :K~n
G

(X)PK~n~2
G

(X),

which by construction is natural in X. And this is then extends to a homomorphism

b"bH(X,A) : K~n
G

(X,A)PK~n~2
G

(X,A)

de"ned for any "nite proper G-CW-pair (X,A) and all n*0.

Theorem 3.12 (Equivariant Bott periodicity). Assume G is discrete. Then the Bott homomorphism

b"b(X,A) : K~n
G

(X,A)PK~n~2(X,A)

is an isomorphism for any discrete group G and any xnite proper G-CW-pair (X,A) (and all n*0).

Proof. Assume "rst that X">Xr(G/H]Dm), where H-G is "nite and u : G/H]Sm~1P> is
a G-map; and assume inductively that b(>) is an isomorphism. Since

K~n
G

(G/H]Sm~1)+K~n
H

(Sm~1) and K~n
G

(G/H]Dm)+K~n
H

(Dm),

the Bott homomorphisms b(G/H]Sm~1) and b(G/H]Dm) are isomorphisms by the equivariant
Bott periodicity theorem for actions of "nite groups [4, Theorem 4.3]. The Bott map is natural, and
compatible with the various boundary operators in the Mayer}Vietoris sequence (in nonpositive
degrees) for>, X, G/H]Sm~1, and G/H]Dm; and so b(X) is an isomorphism by the 5-lemma. The
proof that b(X,A) is an isomorphism for an arbitrary proper "nite G-CW-pair (X,A) now follows
immediately from the de"nitions of the relative groups. h

We are now ready to prove the main theorem. De"ne, for all n3Z,

Kn
G
(X,A)"G

K0
G
(X,A) if n is even,

K~1
G

(X,A) if n is odd.

For any "nite proper G-CW-pair (X,A), de"ne the boundary operator dn : Kn
G
(A)PKn`1

G
(X,A) to

be d :K~1
G

(A)PK0
G
(X,A) if n is odd, and to be the composite

K0
G
(A) b

P

"
K~2

G
(A) d~2

P K~1
G

(X,A)

if n is even.

Proof of Theorem 3.2. We have already proven excision (Lemma 3.9) and homotopy invariance
(Lemma 3.3). The long exact sequence of a pair follows from that in negative degrees (Lemma 3.10),
and the fact that the Bott map is natural and commutes with the boundary operators d~n. The
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same holds for the product structure which comes from that on K~n
G

(X,A). For any X"X
1
X

A
X

2
,

the boundary map in the corresponding Mayer}Vietoris sequence is KH
G
(X)-linear, since it is

de"ned via a certain map between spaces which commutes with their (split) projections onto X.
And hence the boundary maps in the long exact sequence for a pair (X,A) are KH

G
(X)-linear, since

they are de"ned to be the boundary maps of a certain Mayer}Vietoris sequence all of whose spaces
map to X. The other claims are immediate. h

We next consider the Thom isomorphism theorem for proper actions of in"nite discrete groups.
This "rst requires a slight detour. The Thom class of a G-vector bundle E is an element in
K

G
(D(E),S(E)), where S(E)-D(E) denote the unit sphere and disk bundles in E (with respect to

some G-invariant metric). This is most easily de"ned in terms of a chain complex of vector bundles
over D(E), and we must "rst explain how such a chain complex determines an element in K-theory.

A G-vector bundle chain complex over a proper G-CW-pair (X,A) is a "nite dimensional chain
complex (C

H
, c
H
) of G-vector bundles over X whose restriction to A is acyclic. In other words, for

some N'0,

0PC
N

cN
P C

N~1
cN~1
P 2

c3
P C

2
c2
P C

1
c1
P C

0
P0

is a sequence of G-vector bundles and bundle maps, such that c
n~1

"c
n
"0 for all n, and such that

restriction to the "bers over any x3A is exact. When G is compact, the monoid of G-vector bundle
chain complexes over (X,A), modulo an appropriate submonoid, is isomorphic to K

G
(X, A) by

a theorem of Segal [18, Proposition 3.1]. In a later paper, we will prove this in our present setting,
for proper actions of in"nite discrete groups. But for now, all we need to know is that any such
complex de"nes an element of K

G
(X,A) in a natural (functorial) way.

Fix a G-vector bundle chain complex (C
H
, c
H
) over (X,A). For each n, set C@

n
"

Im(c
n`1

D
A
)"Ker(c

n
D
A
). Each C@

n
-C

n
is a G-invariant subbundle: this follows by induction

on n, since the kernel of the surjection C
n
D
A

cn
P C@

n~1
is a subbundle (cf. [12, Theorems 5.13 and

6.3]). Let CA
n
-C

n
D
A

be any G-invariant complementary bundle to C@
n
; de"ned, for example, using

a G-invariant Hermitian metric on C
n
. Thus, for each n, c

n
sends CA

n
isomorphically to C@

n~1
. Set

C
0$$

"=
n|Z

C
2n`1

and C
%7
"=

n|Z
C

2n
, let f

C
:C

0$$
D
A
PC

%7
D
A

be the sum of the isomorphisms

C@
2n`1

(c2n`2 )~1

&&"
"

CA
2n`2

and CA
2n`1

c2n`1
&&"
"

C@
2n

.

Finally, de"ne

[C
H
, c
H
]"[C

0$$
X

fC
C

%7
]![C

%7
X

I$
C

%7
]3Ker[K

G
(XX

A
X) i

H
2

P K
G
(X)]"K

G
(X,A).

This is independent of the choice of CA
n
, since there is an a$ne structure on the space of all

complementary bundles (and hence a homotopy between any two of them).
Now let p : EPX be an n-dimensional G-vector bundle over a proper G-CW-complex X, and set

p
D
"pDD(E). Consider the cochain complex of G-vector bundles (KkpH

D
E, d) over (D(E),S(E)), which
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over any v3D(E) takes the form

0PK0E
p(v)

\v
P K1E

p(v)
\v
P K2E

p(v)
\v
P 2

\v
P KnE

p(v)
P0.

Here, 'v denotes the exterior product with the element v3E
p(v)

. One easily checks that this
sequence is exact for all v not in the zero section of E.

There is a technical problem here: D(E) and S(E) do not have natural structures as G-CW-
complexes, and so KH

G
(D(E),S(E)) is not de"ned in De"nition 3.1. It is not di$cult, however, to

modify the de"nitions (and the proof of Theorem 3.2) to include this case: either by showing that
(D(E),S(E)) has the G-homotopy type of a "nite proper G-CW-pair, or via a more general de"nition
of equivariant cellular complexes, or by constructing KH

G
(!) as an equivariant cohomology theory

for all proper G-spaces with compact quotient. This last approach will be taken by the authors in
a later, more technical, paper. For now, we just assume that equivariant K-theory has been de"ned,
in some way or other, for disk and sphere bundles of G-vector bundles over "nite proper
G-CW-complexes.

De5nition 3.13. For any G-vector bundle E over X, the Thom class of E is the element

j
E
3K0

G
(D(E),S(E)),

de"ned to be the class of the cochain complex (KH(pH
D
E), d) over (D(E),S(E)) as de"ned above. The

Thom homomorphism is the composite

¹
E
:KH

G
(X) p

H
D

P

"
KH

G
(D(E)) >jE

P KH
G
(D(E),S(E)),

where the second map is multiplication with the Thom class.

Theorem 3.14 (Thom isomorphism theorem). Assume G is discrete. Then for any G-vector bundle
p : EPX over a xnite proper G-C=-complex X, the Thom homomorphism

¹
E

: KH
G
(X) "P KH

G
(D(E),S(E))

is an isomorphism.

Proof. Assume "rst that X"G/H]>, where >"Sn~1 or Dn, and where ED
Y
+<]> for some

H-representation <. Then

Kn
G
(X)+Kn

G
(G/H]>)+Kn

H
(>);

and

Kn
G
(D(E),S(E))+Kn

G
(G]

H
(D(<)]>),G]

H
(S(<)]>))

+Kn
H
(D(<)]>,S(<)]>)

(the last step by Lemma 3.4). So in this case, ¹
E

is an isomorphism by the Thom isomorphism
theorem for actions of "nite groups [4, Theorem 4.3].
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Now assume that X">Xr (G/H]Dn), where H is "nite, u : G/H]Sn~1P> is a G-map, and
¹

E@Y
is an isomorphism. There is a relative Mayer}Vietoris sequence involving the groups

KH
G
(D(ED

A
),S(ED

A
)) for A"X, >, G/H]Dn, and G/H]Sn~1: this follows immediately from the

usual Mayer}Vietoris sequence and our de"nition of the relative groups. Since all maps in both
Mayer}Vietoris sequences * for X and for (D(E),S(E)) * are KH

G
(X)-linear (Lemma 3.8), they

commute with the Thom homomorphisms. So ¹
E

is an isomorphism by the "ve-lemma. h

So far, we have worked entirely with complex K-theory. To "nish the section, we note that the
results of this section all hold in the real case as well. De"ne KO

G
(X), for any discrete G and any

"nite proper G-CW-complex X, to be the Grothendieck group of real G-vector bundles over X, and
extend this to a functor KO~n

G
(X,A) as in De"nition 3.1. The key to proving the exactness

properties of K
G

was Lemma 3.7 (given u :XP>, any bundle over X is contained in the pullback
of a bundle over >); and this automatically holds in the real case using the forgetful and induction
functors between complex and real G-vector bundles. Bott periodicity still holds, but with period
eight: just as in the complex case, this reduces to the Bott periodicity theorem for KO

G
(!) when

G is a "nite group, which was shown in [4, Theorem 6.1]. We thus get:

Theorem 3.15. For any discrete group G, the groups KO~n
G

(X,A) extend to a multiplicative equivariant
cohomology theory on the category of xnite proper G-CW-pairs. In particular, KOH

G
(!) is a homotopy

invariant contravariant functor, satisxes excision, and there are exact sequences

2PKOn
G
(X,A)PKOn

G
(X)PKOn

G
(A)PKOn`1

G
(X,A)P2.

There are natural Bott periodicity isomorphisms KOn
G
(X)b(X)

P

"
KOn~8

G
(X). For any xnite subgroup

H-G, there are natural isomorphisms KOH
G
(G/H)+KOH

H
(pt), and in particular KO0

G
(G/H)+RO(H).

4. The completion theorem

Given a discrete group G, we prove here a completion theorem, analogous to that of Atiyah and
Segal [6] for actions of compact Lie groups. We show that for any "nite proper G-CW-complex X,
KH(EG]

G
X) is the completion of KH

G
(X) with respect to a certain ideal. When the universal space

EFIN(G) (see De"nition 2.1) for the family FIN of "nite subgroups of G has the G-homotopy
type of a "nite-dimensional G-CW-complex, and there is an upper bound on the order of "nite
subgroups of G, then the ideal in question is that generated by the augmentation ideal of
K

G
(EFIN(G)).

In fact, as in the theorem of Atiyah and Segal, we prove an isomorphism not just of inverse limits,
but also of inverse systems. This has the advantage that it gives a stronger result (Theorem 4.3), and
it easily implies that M(EG]

G
X)(n)N satis"es the Mittag-Le%er condition and has vanishing lim

Q

. It

is also needed in the proof of Theorem 4.3, which is carried out by induction over the number of
cells using a version of the "ve-lemma.

We "rst "x our notation for handling pro-groups (by which we always mean pro-abelian groups).
For the de"nitions in full generality, see [6, Section 2]. For simplicity, all pro-groups dealt with
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here will be indexed by the nonnegative (or positive) integers. We write (G, a) for the inverse system

a3
P G

3
a2
P G

2
a1
P G

1
a0
P G

0
,

and also write aj
i
"a

i
"2"a

j~1
: G

j
PG

i
for j*i (ai

i
"Id

Gi
). For the purposes here, it will su$ce

(and greatly simplify the notation) to work with `stricta pro-homomorphisms: homomorphisms
f : (G, a)P(H,b) such that f

i
:G

i
PH

i
, and b

i~1
"f
i
"f

i~1
"a

i~1
, for all i. Kernels and cokernels of

strict homomorphisms are de"ned in the obvious way.
A pro-group will be called pro-trivial if for each i*0, there is some j*i such that aj

i
"0. A strict

homomorphism f : (G, a)P(H,b) is a isomorphism of pro-groups if and only if Ker( f ) and Coker( f )
are both pro-trivial, or, equivalently, for each i*0 there is some j*i such that Im(bj

i
)-Im( f

i
) and

Ker( f
j
)-Ker(aj

i
). A sequence of strict homomorphisms

(G, a) f
P (G@, a@) f{

P (GA,aA)

will be called exact if f
i
@"f

i
"0 for each i, and if the pro-group MKer(f

i
@)/(f

i
)N

iw0
is pro-trivial. The

following result will be needed.

Lemma 4.1. Fix any commutative noetherian ring A, and any ideal I-A. Then for any exact sequence
M@PMPMA of xnitely generated A-modules, the sequence

MM@/InM@NPMM/InMNPMMA/InMAN

of pro-groups (pro-A-modules) is exact.

Proof. It su$ces to prove this when the sequence is short exact. Regard M@ as a submodule of M,
and consider the exact sequence

0PG
(InM)WM@

InM@ HPMM@/InM@NPMM/InMNPMMA/InMANP0.

By [5, Theorem 10.11, p. 107], the "ltrations M(InM)WM@N and MInM@N of M@ have `bounded
di!erencea: i.e., there exists k'0 such that (In`kM)WM@-InM@ for all n. The "rst term in the
above exact sequence is thus pro-trivial, and so the remaining terms de"ne a short exact sequence
of pro-groups. h

To avoid ambiguity, for any proper G-CW-complex X, the augmentation ideal IK
G
(X)-K

G
(X) is

de"ned to be the set of elements represented by virtual G-vector bundles of dimension zero on all
connected components. In other words,

IK
G
(X)"KerCKG

(X)$*.P <
n0 (X)@G

ZD,
where the ring homomorphism dim sends [E] to the map from n

0
(X)/GPZ which assigns to

the G-orbit through a path component CLX the dimension of the "ber E
x

for any point x3C.
Given a G-map f : XP>, the ring homomorphism f H : K

G
(>)PK

G
(X) induces a map
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f H : IK
G
(>)PIK

G
(X). Similarly, when working with ordinary nonequivariant K-theory, we de"ne

IKH(X)"KerCKH(X) R%4P <
n0 (X)

KH(pt)D.
Lemma 4.2. Let X be a CW-complex of dimension n!1. Then any n-fold product of elements in
IKH(X) is zero.

Proof. Write X">XA, where > and A are closed subsets, > contains X(n~2) as a deformation
retract, and A is a disjoint union of (n!1)-disks. Fix elements v

1
, v

2
,2, v

n
3IKH(X). We can

assume by induction that v
1
2v

n~1
vanishes after restricting to>, and hence that it is the image of

an element u3KH(X,>). Also, v
n
clearly vanishes after restricting to A, and hence is the image of an

element v3KH(X,A). Their product is thus the image in KH(X) of the element uv3KH(X,>XA)"0
(cf. [12, Section 5.8]), and so v

1
2v

n
"0. h

Fix any "nite proper G-CW-complex X, and any map f : XP¸ to a "nite dimensional proper
G-CW-complex ¸ whose isotropy subgroups have bounded order. Regard KH

G
(X) as a module over

the ring K
G
(¸). Set I"IK

G
(¸). For any n*0, the composite

In )KH
G
(X)-KH

G
(X)130+

H

P KH
G
(EG]X)PKH(EG]

G
X)

3%4
P KH((EG]

G
X)(n~1)) "P KH((EG]

G
X)(n~1))

is zero, since the image is contained in IKH((EG]
G
X)(n~1))n"0 which vanishes by Lemma 4.2.

(Recall that KH(>)+KH(>) for "nite dimensional >, since any map >PB; factors through some
B;(n).) This thus de"nes a homomorphism of pro-groups

jX,f : MKH
G
(X)/In )KH

G
(X)N

nw1
PMKH((EG]

G
X)(n~1))N

nw1
.

As usual, (!)
IK

denotes completion with respect to an ideal I.

Theorem 4.3 (Completion theorem). Let G be a discrete group. Fix a xnite proper G-C=-complex
X, a xnite dimensional proper G-C=-complex ¸ whose isotropy subgroups have bounded order, and
a G-map f : XP¸. Regard KH

G
(X) as a module over K

G
(¸), and let I"IK

G
(¸) be the augmentation

ideal. Then

jX,f:MKH
G
(X)/In )KH

G
(X)N

nw1
PMKH((EG]

G
X)(n~1))N

nw1
.

is an isomorphism of pro-groups. Also, the inverse system MKH((EG]
G
X)(n))N satisxes the Mittag}

Le{er condition. In particular,

lim1
Q

KH((EG]
G
X)(n))"0,

and jX,f induces an isomorphism

KH
G
(X)

IK
"
P KH(EG]

G
X)+lim

Q

KH((EG]
G
X)(n)).
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Proof. Assume that jX,f is an isomorphism. Then the system MKH((EG]
G
X)(n))N

nw1
satis"es the

Mittag}Le%er condition because MKH
G
(X)/InN does. In particular, lim1

Q

KH((EG]
G
X)(n))"0, and so

KH(EG]
G
X)+lim

Q

KH((EG]
G
X)(n)) (cf. [6, Proposition 4.1]).

It remains to show that jX,f is an isomorphism.
Step 1: Assume "rst that X"G/H, for some "nite subgroup H-G. Then the following diagram

commutes

where ev
f(eH)

sends the class of a G-vector bundle EP¸ to the class of the "ber ED
f(eH)

considered
as an H-representation and the other maps are the obvious ones. Also, pr

2
induces an isomorphism

of pro-groups

MKH
H
/IR(H)n )KH

H
(*)Nnw1

PMKH((BH)(n~1))N
nw1

by the theorem of Atiyah and Segal [6] (where IR(H) denotes the augmentation ideal of R(H)). We
want to show that pr

1
induces an isomorphism of pro-groups

MKH
G
(G/H)/In )KH

G
(G/H)N

nw1
PMKH((EG]

G
G/H)(n~1))N

nw1
.

So we must show that for some k, IR(H)k-I@ $%&" ev
f(eH)

(I).

This means showing that the ideal IR(H)/I@ is nilpotent; or equivalently (since R(H) is noetherian)
that it is contained in all prime ideals of R(H)/I@ (cf. [5, Proposition 1.8]). In other words, we must
show that every prime ideal of R(H) which contains I@ also contains IR(H). Fix any prime ideal
P-R(H) which does not contain IR(H). Set f"exp(2pi/DHD), and A"Z[f]. By a result of Atiyah
[2, Lemma 6.2], there is a prime ideal p-A and an element s3H such that

P"Mv3R(G) D s
v
(s)3pN.

Also, sO1 since PV. IR(H). Set p"char(A/p) (possibly p"0). By [2, Lemma 6.3], we can assume
that s has order prime to p.

By Corollary 2.8 (or Corollary 2.7 if p"0), there is a G-vector bundle EP¸ such that pdim(E),
and such that (ED

x
)D
WsX

is a multiple of the regular representation of SsT. In particular, s
E@x

(s)"0.
Set k"dim(E), and v"[Ck]![ED

x
]3R(H). Then ([Ck]¸]![E])3I, so v3I@. Also, s

v
(s)"kNp,

so vNP, and thus PV. I@.
Step 2: We now prove the theorem by induction over the dimension of X and the number of cells

in a given dimension. It holds when dim(X)"0 by Step 1. So assume that dim(X)"m'0. Write
X">Xr(G/H]Dm), for some attaching map u :G/H]Sm~1P>, where jY,L is an isomorphism.
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Consider the Mayer}Vietoris sequence of Lemma 3.8:

PKH
G
(X)PKH

G
(>)=KH

G
(G/H]Dm)P3KH

G
(G/H]Sm~1)P

for X as a pushout of > and G/H]DmKG/H over G/H]Sm~1. All terms in this sequence are
K

G
(X)-modules and all homomorphisms K

G
(X)-linear, and the K

G
(¸)-module structure on each

term is induced from the K
G
(X)-module structure. So if we let I@-K

G
(X) be the ideal generated by

the image of I, then dividing out by (I@)n is the same as dividing out by In for all terms. In addition,
K

G
(X) is noetherian (in fact, a "nitely generated abelian group), and so the Mayer}Vietoris

sequence above induces an exact sequence of pro-groups

PMKH
G
(X)/InN

nw1
PMKH

G
(>)/In=KH

G
(G/H]Dm)/InN

nw1

PMKH
G
(G/H]Sm~1)/InN

nw1
P

by Lemma 4.1. (We write here M/In for M/InM for short.) Since the obvious strict map of
progroups

MKH((EG]
G
X)(n~1))N

nw1
PMKH(EG(n~1)]

G
X)N

nw1

is an isomorphism of progroups, the various long exact Mayer}Vietoris sequences of the push-
outs EG(n~1)]

G
X"EG(n~1)]

G
>X

I$CGr(EG(n~1)]
G
(G/H]Dm)) yield a long exact sequence of

progroups

PMKH((EG]
G
X)(n~1))N

nw1

PMKH((EG]
G
>)(n~1))=KH((EG]

G
(G/H]Dm))(n~1))N

nw1

PMKH((EG]
G
(G/H]Sm~1))(n~1))N

nw1
P

The "ve-lemma for pro-groups (whose proof is essentially the same as that of the usual 5-lemma),
together with the induction hypothesis applied to > and G/H]Sm~1, and Step 1 applied to
G/H]DmK

G
G/H, now proves that jX,f is an isomorphism of pro-groups. h

As one immediate consequence of Theorem 4.3, we get:

Theorem 4.4. Let EFIN(G) be the universal space for the family FIN of xnite subgroups of G
(introduced in Dexnition 2.1). Set I"IK

G
(EFIN(G)).

(a) If EFIN(G) has the G-homotopy type of a xnite dimensional G-CW-complex and there is an upper
bound on the orders of the xnite order subgroups of G, then for any xnite proper G-CW-complex X,

KH(EG]
G
X)+KH

G
(X)

IK
.

(b) If EFIN(G) has the G-homotopy type of a xnite G-CW-complex, then

KH(BG)+KH
G
(EFIN(G))

IK
.

Note that when G is "nite, EFIN(G)K* and K
G
(EFIN(G))+R(G). So in this case, Theorem 4.4 is

exactly the theorem of Atiyah and Segal. If G is torsion free, then any proper G-action is free, and so
Theorems 4.3 and 4.4 follow immediately from Lemma 4.2.
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Notice that the formulation in Theorem 4.4 does not apply to all discrete groups G, but only to
those with bounded torsion and for which EFIN(G) is "nite dimensional. One of the interesting
features of Theorem 4.3 is that one does not complete with respect to one single canonical ideal of
K

G
(X), but rather an ideal which depends on the choice of another space ¸. Thus, di!erent choices

of ideals yield the same result. In an attempt to give an intrinsic choice of ideal, we give the
following third formulation of the completion theorem.

Theorem 4.5. Let X be any xnite proper G-complex. Dexne

S"Mx3IK
G
(X) D res

X
H(x)3Im[R(H)PK

H
(XH)], all ,nite H-GN.

Here, R(H)PK
H
(XH) sends a representation to the product bundle. Let I be the ideal generated by S.

Then

KH(EG]
G
X)+KH

G
(X)

IK
.

Proof. Let F be the family of subgroups of isotropy subgroups of X, and let ¸ be the
(dim(X)#1)-skeleton of EF(G). Choose any G-map f : XP¸ (unique up to homotopy by Lemma
2.2(b)). Let J-K

G
(X) be the ideal generated by f H(IK

G
(¸)). Then J-I-IK

G
(X). So

MKH((EG]
G
X)(n))N

nw1
+MKH

G
(X)/Jn )KH

G
(X)N

nw1
+MKH

G
(X)/IK

G
(X)n )KH

G
(X)N

nw1
,

as inverse systems by Theorem 4.3, and so they are all isomorphic to the inverse system

MKH
G
(X)/In )KH

G
(X)N

nw1
.

The result now follows upon taking inverse limits. h

The completion theorem, in the above forms, also holds for KO
G
(X), as described in Theorem

3.15. This can be proven in the same way as Theorem 4.3 above, but the classifying spaces for real
G-vector bundles do not have simply connected "xed point sets, and hence a more complicated
form of the obstruction theory used in Section 2 is needed. Instead of including those details here,
we will prove this result in a di!erent way in a later paper, using an equivariant version of the
Chern character.

5. Proper actions of Lie groups

Recall (De"nition 3.1) that we write K~n
G

(!) to denote the graded functor de"ned via G-vector
bundles, also when G is a positive dimensional Lie group. Certain properties of K~n

G
(!), such as

homotopy invariance (Lemma 3.3), were shown to hold in this generality. It was our proof of
excision, and of the long exact sequence for a proper G-CW-pair, which required the assumption
that G is discrete. In order to help explain exactly what goes wrong for Lie groups, we now exhibit
an explicit example of a group G for which K~n

G
is not a cohomology theory, and for which the

completion theorem fails: even after replacing K~n
G

by the `correcta equivariant K-theory.
Phillips [15] has constructed an equivariant cohomology theory KH

G
(!), for any second

countable locally compact group G, on the category of proper locally compact G-spaces. This is
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done using in"nite dimensional G-vector bundles with Hilbert space "bers. When G is a Lie group
(or in any situation where G-vector bundles are de"ned), there is an obvious natural transformation

u
G
(X) : KH

G
(X)PKH

G
(X)

for proper G-CW-complexes. Phillips [15, Example 9.11] also constructs G and X for which not all
elements of K0

G
(X) are represented by ("nite-dimensional) G-vector bundles over X; i.e., for which

u
G
(X) is not surjective. In these terms, what we have shown in Section 3 is that u

G
(X) is an

isomorphism whenever G is discrete and X is a "nite G-CW-complex. (Since it is an isomorphism
for orbits: K

G
(G/H)+R(H)+K

G
(G/H) for any "nite H-G.) In a later, more technical paper, we

will extend this result (still for discrete G) to arbitrary proper G-spaces with compact orbit space.
Phillips has also shown [16, Theorems 3.3 and 5.3] that u

G
(!) is an isomorphism whenever the

space of connected components of G is compact, and that the completion theorem holds for
K

G
(!) whenever G is a Lie group with "nitely many connected components. The key to showing

this is a theorem of Abels [1], which says that any such group G contains a maximal compact
subgroup K, such that any proper G-space X with paracompact orbit space maps to the quotient
G/K. This means that X+G]

K
> for some K-space >, and hence that K

G
(X)+ K

K
(>)+

K
K
(>)+K

G
(X) if X/G is compact.

In order to explain from our point of view what goes wrong for nondiscrete groups, we now
construct a Lie group G, which is somewhat simpler than that used by Phillips, together with
examples to show that KH

G
satis"es neither excision nor exactness. In particular, KH

G
is not

a cohomology theory, and so u
G
(!) is not in general an isomorphism. We also show that the

completion theorem fails for K
G
(!).

Set ¹"S1]S1, the 2-torus, and let a3Aut(¹) be the automorphism a(x, y)"(x,xy). Write
G"¹

aJ Z: the semidirect product determined by a. We also need to consider the subgroup

K"1]S1"Mg~1 ) a(g) D g3GN

(note that G/K+(¹/K)]Z).

Lemma 5.1. Let X be any proper connected (G/¹)-CW-complex. Then for any G-vector bundle EPX,
K acts via the identity on E. In particular, for any closed G-invariant subcomplex A-X,
KH

G
(X,A)+KH

G@K
(X,A).

Proof. For each x3X, the "ber ED
x

is a ¹-representation. Since X is connected, these representa-
tions are all isomorphic to some given ¹-representation <. Also, < and aH< are ¹-isomorphic,
because multiplication with the generator z3Z de"nes an a-equivariant linear isomorphism from
ED

x
to ED

zx
. For any irreducible ¹-representation =, with character s

W
3Hom(¹,S1), either the

s
W

"an are all distinct, or s
W
"s

W
"a and K"Mg~1a(g) D g3GN-Ker(s

W
). Since dim(<)(R, this

shows that<must be a sum of irreducible (¹/K)-representations, and thus that K acts on each "ber
of E via the identity.

The last statement now follows immediately from the de"nitions. h

It is now easy to see that Lemma 3.7 fails for G. For example, set (X, A)"(R,Z) with the G-action
induced by the translation action of Z"G/¹, and let < be a ¹-representation upon which K does

W. Lu( ck, B. Oliver / Topology 40 (2001) 585}616 613



not act trivially. Then G]
T
< is a G-vector bundle over A"Z+G/¹, and it cannot be embedded

into any G-vector bundle over X"R since K acts nontrivially.
More generally, let G be any Lie group and let (X,A) be any "nite G-CW-pair. If E

0
PA is any

G-vector bundle, then an obvious necessary condition for being able to embed it in a G-vector
bundle over X is to be able to choose the "bers: to "nd for each x3X a G

x
-representation<

x
, such

that E
0
D
x

embeds into <
x

for each x3A, and such that the <
x

in any connected component of
XH (for any H-G) are all isomorphic as H-representations. For discrete G, we can always choose
the <

x
to be appropriate multiples of the regular representation of G

x
, and this was the "rst (and

easiest) step towards proving Lemma 3.7. In contrast, for the group G"¹ aJ Z, the above example
shows that this "rst step of the proof fails: we cannot even choose the representations <

x
.

Given this example, it is not at all surprising that excision and exactness fail for KH
G
(!). By

homotopy invariance,

KH
G
(R,Z)+KH

G
(R, [0, 1

2
]#Z) and KH

G
(Z]I,Z]LI)+KH

G
([1

2
, 1]#Z, M0, 1

2
N#Z),

and hence these should be isomorphic if excision holds for KH
G
(!). However:

Example 5.2. For G as above,

K~n
G

(R,Z)+G
R(¹/K) if n is odd

0 if n is even
and K~n

G
(Z]I,Z]LI)+G

R(¹) if n is odd,

0 if n is even.

Thus, excision does not hold for KH
G
(!). Furthermore,

K~n
G

(R)+R(¹/K) (for all n) and K~n
G

(Z)+G
R(¹) if n is even

0 if n is odd,

and so there is no long exact sequence in KH
G

for the pair (RZ).

Proof. By Lemmas 3.5 and 5.1,

K~n
G

(R,Z)+K~n
G@K

(R,Z)+K~n
(T@K)CZ (R,Z)

+K~n
T@K

(R/Z,pt)+K~n~1
T@K

(pt)+G
R(¹/K) if n is odd

0 if n is even;

and

K~n
G

(R)+K~n
G@K

(R)+K~n
(T@K)CZ(R)+K~n

T@K
(R/Z)+K~n

T@K
(pt)=K~n~1

T@K
(pt)+R(¹/K)

(for all n). Also, by Lemma 3.4,

K~n
G

(Z]I,Z]LI)+K~n
T

(I,LI)+K~n~1
T

(pt)+G
R(¹) if n is odd

0 if n is even;

and similarly

K~n
G

(Z)+K~n
T

(pt)+G
R(¹) if n is even,

0 if n is odd.
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All of these groups are R(¹/K)-modules (via the isomorphism G/(K]Z)+¹/K), and all natural
maps between them are R(¹/K)-linear. But there is no R(¹/K)-linear exact sequence
K0

G
(R)PK0

G
(Z)PK~1

G
(R,Z), since the middle term is in"nitely generated and the others "nitely

generated. h

In fact, u
G
(R) is an isomorphism in this case; i.e., K0

G
(R)+K0

G
(R)+R(¹/K). To see this, consider

the composite

K0
G
(R)rG (R)

P K0
G
(R) i

H

P K0
G
(Z),

where i : ZPR denotes the inclusion. Under the identi"cations K0
G
(R)+R(¹/K) (see Example 5.2)

and K0
G
(Z)"K0

G
(G/¹)+R(¹), iH"u

G
(R) corresponds to the inclusion R(¹/K)6R(¹) de"ned by

regarding ¹/K-representations as ¹-representations. We have seen, in the proof of Lemma 5.1, that
R(¹/K)"R(¹)a: the subgroup of elements "xed by composition with a3Aut(¹). The map iH is
injective since K0

G
(R,Z)+K0

G
(Z]I,Z]LI)"0. Hence it remains to show that the image of iH is

contained in R(¹)a. This follows since the action of a on K0
G
(Z)"K0

G
(G/¹)+R(¹) corresponds to

the map tH:K0
G
(Z)PK0

G
(Z) induced by the G-map t:nCn#1, and since the analogous G-map

t:RPR is G-homotopic to the identity.
This can now be used to show that the completion theorem (stated in terms of KH

G
or KH

G
) fails for

this group G. Consider the space X"Z. Since RH"R is contractible for any compact subgroup
H-G, RKECPCT(G) is a universal proper G-CW-complex. Then

Im[K
G
(R) i

H

&" K
G
(Z)+R(¹)]"R(¹/K),

while

K0(EG]
G
Z)+K0(B¹)+R(¹)

IR(T)Y OR(¹)
IR(T@K)Y +K0

G
(Z)

IR(T@K)Y .

Here, the completions of R(¹) with respect to IR(¹) and IR(¹/K) are distinct since

R(¹)
IR(T)Y +Z[[x, y]]tZ[[x]][t, t~1]+R(¹)

IR(T@K)Y (where y"t!1).

In the example constructed above, the reason for the failure of representing K
G
(!) by G-vector

bundles and of the completion theorem comes down to the fact that the isotropy subgroup in
question is positive dimensional, and hence has in"nitely many irreducible representations. For
example, one of the key lemmas which makes possible our results for actions of a discrete group
G is that any "nite proper G-CW-complex has a G-vector bundle over it whose "bers are free as
representations of the isotropy subgroups* and this makes sense only if the isotropy subgroups
are "nite. It is thus natural to ask whether these results hold for any Lie group G and any "nite
proper G-complex X all of whose isotropy subgroups are "nite. This does, in fact, turn out to be the
case * K

G
(X)+K

G
(X) and K(EG]

G
X) is a completion of K

G
(X) * but proving it requires

working out the details of obstruction theory for Lie group actions, which is more complicated
than that used in Section 2.
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