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In this paper, a new chaotic system is proposed that consists of six terms including one multiplier and one
quadratic term. The characteristics of this system are examined by theoretical and numerical analysis,
such as equilibria, their stabilities, Lyapunov exponents and Lyapunov dimension, dissipativity, as well
as, Poincaré maps, bifurcations, waveforms, power spectrums are performed. In addition, the forming
mechanisms of compound structures of the new chaotic attractor are investigated.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

In this paper, a new chaotic system is proposed that consists of
three first-order autonomous ordinary differential equations hav-
ing six terms on their right-hand side that contain one multiplier
and one quadratic term. This system is characterized with a butter-
fly-shaped attractor.

For this system, the dynamic properties of this attractor are
examined in detail theoretically and numerically. These dy-
namic properties include equilibria with their stabilities,
Lyapunov exponents, Lyapunov dimension, Poincaré maps, and
bifurcation diagram. In addition, we also present the forming
mechanisms of its compound structures obtained by merging
together two simple attractors after performing one mirror
operation.

2. Theoretical analysis of the new chaotic attractor

The proposed chaotic system has the governing equations as the
following:

_x ¼ aðy� xÞ
_y ¼ xzþ by

_z ¼ �x2 � cz

ð1Þ
where x ¼ ðx; y; zÞT 2 R3 denotes the state variables of the system,
with a, b and c representing real constants.

It has six terms on the right-hand side of the governing equa-
tions, and relies on one multiplier (xz) and one quadratic term
(x2) to introduce the nonlinearity necessary for folding trajectories.

2.1. Symmetry and invariance

The system (1) is symmetrical on the z-axis as it has the
transformation:

ðx; y; zÞ ! ð�x; �y; zÞ

It implies that this system is invariant for all values of the
parameters a, b, c and that the z-axis itself is an orbit that goes to-
ward the origin at t ? 0.
2.2. Equilibria and stability

The equilibria of the system (1) are found by using the following
equations:

aðy� xÞ ¼ 0;

xzþ by ¼ 0;

�x2 � cz ¼ 0:

ð2Þ

Equations (2) lead to three equilibrium points,
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For these equilibrium points, we investigate stability of the sys-
tem (1). To this end, we use the method of linearization (see for in-
stance [1,2]). The system (1) is linearized at the equilibrium
O(0,0,0)to obtain the Jacobian matrix as follows:

J0 ¼
�a a 0
Z b x

�2x 0 �c

2
64

3
75

0

¼
�a a 0
0 b 0
0 0 �c

2
64

3
75 ð4Þ

By letting jkI � J0j ¼ 0; the characteristic equation of J0 is obtained
as the following:

ðkþ aÞðk� bÞðkþ cÞ ¼ 0;

which leads to the eigenvalues of J0

k1 ¼ �a; k2 ¼ b; k3 ¼ �c ð5Þ

For a, c > 0 and b < 0, the equilibrium O(0,0,0) is stable; whereas, for
either a < 0 or b > 0 or c < 0, the equilibrium O(0,0,0) is unstable. In
the case that ReðkiÞ is zero, the stability could further be analyzed by
other methods such as the center manifold theory and Lyapunov
stability theory (see for instance [1,2]).

In the same way, the stability at P+ and P� can also be examined.
Now that the invariance of this system under the transformation
ðx; y; zÞ ! ð�x;�y; zÞ; that is, the stabilities of both are alike, we
have only to consider the stability at P+. The Jacobian matrix of
the system (1) at Pþð
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Letting jkI � Jpþ
j ¼ 0; one can obtain the characteristic equation of

Jpþ
as follows:

ðk2 þ ðaþ cÞkþ ac � 2a
ffiffiffiffiffi
bc
p
Þðk� bÞ ¼ 0

The eigenvalues corresponding to equilibrium Pþð
ffiffiffiffiffi
bc
p

;
ffiffiffiffiffi
bc
p

; �bÞ
are
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Fig. 1. A new chaotic attractor. (a) three-dimensional
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; k3 ¼ b ð7Þ

For (a + b) > 0 and b < 0, the equilibrium P+ is stable; whereas for
(a + b) < 0 or b > 0, the equilibrium P+ is unstable. But, if a + b = 0
or b = 0, that is ReðkiÞ is zero, the stability cannot be analyzed by lin-
earization. For further analysis in this case, the center manifold the-
ory or Lyapunov stability theory could be employed.

2.3. Dissipativity and the existence of attractor

In order to prove that the system (1) is a dissipative system, the
divergence of flow of the system is examined as:

1
V

dV
dt
¼ divV ¼ @

_x
@x
þ @

_y
@y
þ @

_z
@z
¼ �aþ b� c 6 0 ð8Þ

VðtÞ ¼ Vð0Þeð�aþb�cÞt ð9Þ

Hence, the system (1) is dissipative if and only if (�a + b�c) < 0 with
an exponential rate of contraction as

dV
dt
¼ e�aþb�c ð10Þ

An initial volume element V(0) shrinks exponentially by the
flow to a volume element V(0)e(�a+b�c)t as time goes. That is, each
volume containing the system trajectory becomes zero as t !1.
Every trajectory is eventually confined to a specific zero-volume
limit set and the asymptotic motion settles onto an attractor of
the system (1). This means that the dynamics go toward the attrac-
tor as t !1.

3. Numerical analysis of the new chaotic attractor

3.1. Phase portraits

With the parameters a ¼ 30; b ¼ 15; c ¼ 11; the system (1) is
dissipative and its three equilibrium points are all unstable. With
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initial conditions ðx0; y0; z0Þ ¼ ð1;2;10Þ; this system has a single 2-
scroll chaotic attractor that exhibits abundant complex behaviors
of chaotic dynamics. Fig. 1(a) shows the trajectory of the system
(1) plotted for a three-dimensional view, whereas Fig. 1(b–d) show
its projections onto an x–y plane, an x–z plane, y–z plane, respec-
tively. A notable feature is that the attractor has the butterfly
shape, but as shown in Fig. 1(c) it has an upside-down shape of that
of the family of the Lorenz-like systems.

3.2. Lyapunov exponents and Lyapunov dimension

Lyapunov exponent is a quantity that characterizes the rate of
separation of infinitesimally close trajectories. In other words, it
indicates the average exponential rates of divergence or conver-
gence of adjacent trajectories in phase space. An attractor with
one or more positive Lyapunov exponents is said to be chaotic [3].

By using the Wolf algorithm proposed in [3], Lyapunov expo-
nents of the system (1) are calculated after 105 iterations with a
normalized step-sized 0.05 as follows:

kL1 ¼ 0:9727; kL2 ¼ �0:0720; kL3 ¼ �26:9007

Since kL1 is positive, the system (1) possesses expanding nature of
different directions in phase space; whereas negative kL2; kL3 means
the contracting nature of different direction in phase space.

The Lyapunov dimension of the system (1), a quantity of fractal
dimension of an attractor [4], is described as

DL ¼ k þ 1
jkkþ1j

Xk

i¼1

kLi ¼ 2 þ kL1 þ kL2

jk3j
¼ 2:0335

where k is the maximum value of i such that ni ¼ kL1 þ � � � þ kLi > 0:
As a chaotic attractor always has non-integer dimension,

namely, fraction dimension, the attractor of the system (1) is of
fraction dimension.
(a) (

Fig. 2. (a) Bifurcation diagram of ‘x max’, (b) Lyapunov expo

(a) (b

Fig. 3. (a) Bifurcation diagram of ‘x max’, (b) Lyapunov expo
3.3. Bifurcation analysis

A bifurcation is a change in qualitative behavior of a system as a
parameter varies [5]. The bifurcation diagrams of the system (1)
can be obtained by examining the peak of state x versus each of
the parameters a, b, c respectively while the others are fixed.

First, the chaotic dynamics of the system versus varying param-
eter b is investigated. Figs. 2(a–b) shows the bifurcation diagram of
state x and the Lyapunov-exponent spectra versus increasing
parameter b, respectively, with fixed values of a = 30, c = 11. It is
observed that the bifurcation diagram well coincides with the
spectra of the Lyapunov exponents.

The representative dynamical routes are summarized as
follows:

(1) 0 < b < 12.5: kL1;2;3 < 0; the system (1) is stable.
(2) 12.56; b < 17.4: kL1 > 0; kL2 � 0; kL3 < 0; the system (1) is

chaotic. But there are some periodic windows in the chaotic
band.

(3) 17.4 6 b < 25: kL1 ¼ 0; kL2 < 0; kL3 < 0; there is a very long
period-doubling bifurcation window.

Next, the chaotic dynamics is investigated as c varies, with
a = 30, b = 11. Fig. 3 displays the bifurcation diagram of state x
and the Lyapunov-exponent spectra. In this case, too, the result
shows that the bifurcation diagram coincides well with the spectra
of the Lyapunov exponents

The representative dynamical routes are summarized as the
following:

(1) 0 < c < 0.3: kL1;2;3 < 0; the system (1) is stable.
(2) 0.3 6 c < 13.7: kL1 > 0; kL2 � 0; kL3 < 0; the system (1) is cha-

otic. But there are some periodic windows in the chaotic
band.
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Fig. 5. Wave forms of the signals of the system (1).
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(3) 13.7 6 c < 25: kL1 ¼ 0; kL2 < 0; kL3 < 0; there is a very long
period-doubling bifurcation window.

We omit the investigation of the chaotic dynamics of the sys-
tem versus varying parameter a.

3.4. Poincaré maps, wave forms and spectrum

The dynamical behaviors of the system (1) are further investi-
gated by means of Poincaré maps, wave forms and spectrum.
Fig. 4(a–c) shows the Poincaré maps in the planes where x = 0,
y = 0 and z = 0, respectively. It is observed that several sheets of
the attractors are separated symmetrically and folded. It is noticed
that the Poincaré map in plane where z = 0 shows a diagonal distri-
bution. We easily find out that the reason for it comes from the fact
that the wave forms of x(t) and y(t) have almost the same behavior
as shown in Fig. 5

Fig. 6(a) shows the power spectrum of the signal x(t) of the sys-
tem (1). In this system x has a bandwidth between about 0–8 Hz,
which is a little broader than that of the original Lorenz system
_x ¼ 10ðy� xÞ; _y ¼ 28x� y� xz; _z ¼ xy� ð8=3Þz as shown in Fig. (b).

4. Forming mechanisms of the new chaotic attractor

Compound structures of an attractor can be obtained by merg-
ing together two simple attractors after performing one mirror
operation, namely, a half-image operation to obtain only the left
or the right half-image attractors.

To perform one mirror operation, a controlled system inherited
from the system (1) is proposed. This controlled system equals to

_x ¼ aðy� xÞ _y ¼ xzþ byþ u _z ¼ �x2 � cz ð11Þ

where u is a control parameter.
Fig. 7(a) shows the bifurcation diagram versus varying u of the

controlled system. This diagram indicates that for about u < 42, the
controlled system maintains the two-lobed orbits of the original
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Fig. 4. Poincaré map in plane whe
system (1), whereas for about u P 42, the controlled system has
a period doubling bifurcation.

As shown in Fig. 7(b), there are some periodic windows, which
play a role

In the evolution of the complex dynamics for the controlled sys-
tem, near at 12:1 < u < 13; u ¼ 14:7 and u = 15.3. Maintaining that
a ¼ 30; b ¼ 15; c ¼ 11; ðx0; y0; z0Þ ¼ ð1;2;10Þ; we plot trajectories
on the x-z plane at specific values of the parameter u as follows:

� When u = 50, the attractor evolves into a period doubling bifur-
cation, which is shown in Fig. 8(a).
� When u = 42, the attractor of the controlled system is evolved

into the single right scroll attractor; it is only one half the origi-
nal system (1) as shown in Fig. 8(b).
� When u = �42, on the other hand, the attractor of the controlled

system is evolved into the single left scroll attractor; it is only
one half the original system (1) as shown in Fig. 8(c).
� When u = �50, the attractor evolves into a period doubling

bifurcation, as is shown in Fig. 8(d).
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Fig. 6. Power spectrum of the signal x(t) of (a) the system (1), (b) Lorenz system.
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Fig. 7. (a) Bifurcation diagram of ‘x max’, (b) Lyapunov exponent spectra; versus the control parameter c.
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It means that the reversed butterfly-shaped attractor of the sys-
tem (1) in Fig. 1(c) is a compound structure obtained by merging
together two simple attractors after performing one mirror
operation.

5. Conclusions

In this paper, we have proposed a new butterfly-shaped chaotic
attractor. The new attractor consists of six terms in three first-or-
der autonomous ODEs with one multiplier (xz) and one quadratic
term (x2). The new system has been analyzed both theoretically
and numerically by examining equilibria, stability, Lyapunov expo-
nents and Lyapunov dimension, dissipativity, as well as waveform,
power spectrum, Poincaré maps, bifurcations are studied. In addi-
tion, we have investigated the forming mechanisms of compound
structures of the new chaotic attractor.
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