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Abstract

Identifying homology relationships between sequences is fundamental to biological research. Here we provide a
novel orthogroup inference algorithm called OrthoFinder that solves a previously undetected gene length bias in
orthogroup inference, resulting in significant improvements in accuracy. Using real benchmark datasets we demonstrate
that OrthoFinder is more accurate than other orthogroup inference methods by between 8 % and 33 %. Furthermore,
we demonstrate the utility of OrthoFinder by providing a complete classification of transcription factor gene families in
plants revealing 6.9 million previously unobserved relationships.
Background and rationale
Identifying homology relationships between sequences is
fundamental to all aspects of biological research. In
addition to the pivotal role these inferences play in
furthering our understanding of the evolution and diver-
sity of life, they also provide a coherent framework for
the extrapolation of biological knowledge between or-
ganisms. In this context, orthology inference underpins
genome and transcriptome annotation and provides the
foundation on which synthetic and systems biology is
built. Given the importance of this process to biological
research there has been a rich heritage of methodology
development in this area with the production of several
effective orthology databases and algorithms.
The most widely used methods for orthology inference

can be classified into two distinct groups. One group of
methods approaches the problem by inferring pairwise
relationships between genes in two species, and then
extending orthology to multiple species by identifying
sets of genes spanning these species in which each gene-
pair is an orthologue. Popular methods that adopt this
approach include MultiParanoid [1] and OMA [2]. A
confounding factor to these approaches is that gene dupli-
cations cause orthology relationships that are not one-to-
one [3] and so orthology is not a transitive relationship
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(for example, if gene A is an orthologue of gene B, and
gene B is an orthologue of gene C, it is not necessarily true
that gene A is an orthologue of gene C) [4]. This lack of
transitivity means that to capture all pairwise orthology
relationships individual genes must be allowed to be
members of more than one set [2], or the gene sets must
be restricted to subsets of species that share the same last
common ancestor [1]. Methods that adopt these pairwise
approaches have high levels of precision in recovering
orthologues, however, they suffer from low rates of recall
in discovering the complete orthogroup due to these
complications arising from gene duplications.
The second group of methods do not adopt this pair-

wise strategy but rather attempt to identify complete
orthogroups; an orthogroup is the set of genes that are
descended from a single gene in the last common ances-
tor of all the species being considered [2, 5–9]. Here an
orthogroup by definition contains both orthologues and
paralogues, and in this context is frequently used as a
unit of comparison for comparative genomics [10–12].
In this work we follow this latter approach as it is a
logical extension of orthology to multiple species. The
most widely used orthogroup inference method is
OrthoMCL [13] (usage assessed by citations n = 870
Scopus citations at the time of writing this article).
OrthoMCL uses BLAST [14] to compute sequence simi-
larity scores between sequences in multiple species and
then uses the MCL clustering algorithm [15] to identify
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Fig. 1 Analysis of gene length dependency of BLASTp scores. a
BLAST log10(bit score) for all hits between Homo sapiens
(Homo_sapiens.GRCh37.60.pep.all, 21,841 sequences) and Mus
musculus (Mus_musculus.NCBIM37.60.pep.all, 23,111 sequences). b
–log10(e-value) for all hits between and Homo sapiens and Mus
musculus. To avoid infinite values, BLAST scores of zero have been
replaced with the lowest obtainable value 10−180. The heat map in
both cases goes from blue (lowest density of hits) to red (highest).
c The F-score (red), recall (blue) and precision (green) of orthogroup
inference using OrthoMCL plotted as a function of sequence length.
The sequences were sorted according to length and divided into four
bins with the same number of sequences in each. The F-score, recall
and precision were calculated for each bin and the scores plotted
against the geometric mean of the length of the sequences in each
bin. The error bars show the lower and upper limits of sequence
lengths for the shortest and longest sequences in each bin and the
dot shows the geometric mean of these lengths. d Histogram of all
protein-coding gene lengths in Homo sapiens is provided for reference
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highly-connected clusters (groups of highly similar se-
quences) within this dataset.
In addition to the approaches discussed above, several

methods have also been developed that incorporate gene
synteny/co-linearity information to assist in the inference
of orthogroups [16, 17]. For groups of organisms such as
the Kinetoplastids, where gene synteny/co-linearity is well
conserved [18] it can provide valuable additional informa-
tion. However, synteny is not conserved over large evolu-
tionary distances and thus can provide little assistance to
the identification of related genes between distantly re-
lated groups such as plants and metazoa. Moreover,
synteny is unavailable for de novo assembled transcrip-
tomes and for fragmented, low-coverage genome assem-
blies. Thus there is a need to have accurate methods of
orthogroup inference that do not require gene synteny
information.
Here we present OrthoFinder, a novel method that in-

fers orthogroups of protein coding genes. It is fast, easy
to use and scalable to thousands of genomes. In tests
using real benchmark datasets OrthoFinder outperforms
all other commonly used orthogroup inference methods
by between 8 % and 33 %. We further demonstrate the
utility of OrthoFinder through the inference and analysis
of plant transcription factor orthogroups. Here we use
phylogenetic methods to validate the orthogroups and
show that using OrthoFinder to infer orthogroups iden-
tifies millions of previously unobserved relationships.
Further information about the algorithm can be found at
[19] and a standalone implementation of the algorithm
is available under the GPLv3 licence at [20].

Problem definition, method evaluation and comparison
to other approaches
Gene length bias in BLAST scores affects the accuracy of
orthogroup detection
The inference of orthogroups across multiple species
requires a fast method to measure pairwise sequence
similarity between all sequences in the species being
considered. BLAST [14] is the most widely used method
to identify and measure similarity between sequences
and thus it underpins the majority of orthologue identifi-
cation methods [9, 13, 21–23]. Analysis of the pairwise
BLAST scores that are produced when the full set of
protein sequences from one species is BLAST searched
against those from another species revealed that there is
a clear length dependency in the scores that are obtained
(Fig. 1a and b). Short sequences cannot produce large
bit scores or low e-values (Fig. 1a and b, respectively),
whereas long sequences produce many hits with scores
better than those for the best hits of short sequences
(Fig. 1a and b). Thus, methods that construct orthogroups
by evaluation of BLAST scores in the absence of gene
length information should result in a large number of
missing genes (low recall) from orthogroups that contain
short genes and a large number of incorrectly clustered
genes (low precision) in orthogroups that contain long
genes.
To determine if this was the case we assessed the

performance of OrthoMCL using the OrthoBench data-
set [5]. OrthoBench is the only publicly available bench-
mark dataset of manually curated orthogroups. The
dataset consists of 70 orthogroups of protein coding
genes covering 12 species within the Metazoa where
each orthogroup contains all the genes derived from a
single gene in the last common ancestor of the 12 spe-
cies considered. For further details concerning the
construction, species range and complexity of each
orthogroup see [5]. The recall and precision of
OrthoMCL was assessed as a function of gene length in
this dataset. This revealed that there were strong de-
pendencies between the performance characteristics of
OrthoMCL and the length of the gene that was being



Fig. 2 The gene length and phylogenetic distance normalisation
procedure for a single species pair. a BLAST bit scores for all hits
between Homo sapiens and Mus musculus. b BLAST bit scores for
the top 5 % of BLAST hits with least-squares fit of the equation
log10Bqh = a log10Lqh + b., where Bqh is the bit score for the hit
between sequence q and sequence h and Lqh is the product of the
gene lengths (measured in amino acids). c Gene length and
phylogenetic distance normalised BLAST bit scores. Note that
there are a large number of poor scoring hits for long sequences
due to these hits exceeding the BLAST search e-value cutoff. d
The same top 5 % of BLAST hits as shown in (b) after normalisation
for reference
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clustered (Fig. 1c, Additional file 1: Table S1). Specifically,
short sequences suffer from low recall rate (that is, many
short sequences fail to be assigned to an orthogroup) and
long sequences suffer from low precision (that is, many
long sequences are assigned to the incorrect orthogroup)
as predicted from the analysis of BLAST scores above. To
put these results in perspective the distribution of protein
lengths in Homo sapiens is provided in Fig. 1d.

A novel score transform eliminates gene length bias in
orthogroup detection
Given that orthogroup inference shows a clear gene
length dependency, we sought to develop a transform of
the BLAST scores that would reduce the impact of gene
length on clustering accuracy. To do this we developed a
novel method that determines the gene length depend-
ency of a given pairwise species comparison from an
analysis of the bit scores from an all-versus-all BLAST
search between the two species. Bit scores were used in
place of e-values as the e-value calculation enforces a
limit of 1×10−180 and thus all scores below this floor are
given the same value (that is, 0) (Fig. 1b) and thus length
bias in e-values is non-uniform and irreversible. As bit
scores do not have a threshold value, and they have been
previously shown to be capable of facilitating accurate
inference of phylogenetic trees [24], they were selected
as the raw data for the development of a novel score
transform.
In brief, for each species-pair in turn, the all-vs-all

BLAST hits (Fig. 2a) were divided into equal sized bins
of increasing sequence length according to the product
of the query and hit sequence lengths. The top 5 % of
hits in each bin (ranked according to BLAST bit score)
were used to represent ‘good’ hits for sequences of that
length bin between the given species pair (Fig. 2b). A
linear model in log-log space was used to fit a line to
these scores using least squares fitting (Fig. 2b). All of
the BLAST bit scores that were obtained from each
species-pair all-vs-all BLAST search are then trans-
formed using this model so that the best hits between
sequences in this species pair have equivalent scores that
are independent of sequence length (Fig. 2c and d).
Following the transform the poor quality hits for longer
sequences were no longer better than the best quality
hits for short sequences (Fig. 2c). This normalisation
procedure is applied to each pairwise species compari-
son independently as the behaviour of the BLAST scores
is different for each pairwise species comparison
(Additional file 2: Figure S1). Importantly, this pairwise
length normalisation between species also normalises for
phylogenetic distance between species (See ‘Gene length
and phylogenetic distance normalisation’ & Additional
file 2: Figure S1). Specifically, the normalisation ensures
that the best scoring hits between distantly related
species achieve the same scores (on average) to the best
scoring hits between closely related species (Additional
file 2: Figure S1). These length and phylogenetic distance
normalised scores were then used as the measure of se-
quence similarity on which all subsequent analysis and
clustering were performed.
Application of this novel score transform prior to clus-

tering of the OrthoBench dataset resulted in a dramatic
reduction in the length dependency of the clustering
results (Fig. 3). Unlike OrthoMCL (Fig. 3a), neither
precision, recall nor F-score displayed any dependency
on gene length (Fig. 3b). Moreover, precision was sub-
stantially increased over the entire range of sequence
lengths (Fig. 3b).

An improved method for orthogroup delimitation
improves overall accuracy
Given that we had reduced gene length bias and that
precision was high but recall was low, we assessed
whether a method that could identify a higher propor-
tion of cognate gene-pairs prior to clustering could
produce an overall increase in clustering accuracy. Many
orthology assignment methods make use of reciprocal
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Fig. 3 Comparison of OrthoFinder to other orthogroup inference methods. a The length dependency of OrthoMCL. b The length dependency of
OrthoMCL using our normalised similarity scores. c The length dependency of the complete OrthoFinder algorithm. For A-C scores were calculated as
in Fig. 1c. d Comparison of the results of OrthoFinder F-score with all other methods tested in OrthoBench. e As in (d) but for recall. f As in (d) but for
precision. The error bars show the lower and upper limits of sequence lengths corresponding to the shortest and longest sequences in each bin and
the dot shows the geometric mean of these lengths
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best BLAST hit (RBH) as it is widely regarded as a
high precision method for the identification of ortho-
logues gene-pairs [25–27]. Therefore we also sought
to use reciprocal best BLAST hits using our new
length-normalised score to assist in construction of
the orthogroup graph. Henceforth, we refer to a
reciprocal best hit that is obtained using the length-
normalised score as an RBNH (reciprocal best nor-
malised hit).
In brief, for each gene that had successfully identi-

fied one or more RBNHs, the scores for these RBNHs
were used to delimit an inclusion threshold (see
methods). As all scores are normalised for gene
length and phylogenetic distance, hits to other genes
(in any species) that had scores above this inclusion
threshold were included as putative cognate gene-
pairs and added to the orthogroup graph that was
subjected to MCL clustering (for further details see
methods). This novel data selection criterion resulted
in a dramatic improvement in overall clustering ac-
curacy while maintaining gene length independence
(Fig. 3c). The overall results for OrthoFinder, were
0.85 precision, 0.81 recall and 0.83 F-score.
OrthoFinder outperforms all other methods from the
OrthoBench analysis
Given that OrthoFinder exhibited high accuracy on the
benchmark dataset we sought to determine the relative
performance to other commonly used methods for
orthogroup inference. OrthoFinder outperformed all
other methods that have been applied to OrthoBench [5]
as measured by F-score (Fig. 3d), performing 8 % better
than TreeFam (the next best method) 25 % better than
OrthoMCL (the most widely used method), and 33 %
better than OMA (the lowest scoring method in this
test). Importantly, the precision and recall of OrthoFin-
der were balanced, demonstrating that the method is not
biased towards over- or under-clustering of sequences. It
should be noted that OMA exhibits a low recall in this
test as its goal is to identify orthologues instead of
complete orthogroups and thus paralogues will be ab-
sent from the orthologue groups identified by this
method. OMA is included here for completeness as it
was included in the original OrthoBench analysis [5].
In addition to accuracy, a number of other criteria

were used to compare the performance of the different
inference methods in the OrthoBench paper. These
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criteria included the percentage of orthogroups pre-
dicted without any errors, the number of erroneously
assigned genes (that is, false positives, and thus also cap-
tured by the precision) and missing genes (that is, false
negatives, and thus also captured by recall) in the assign-
ment of genes to orthogroups and the proportion of
orthogroups affected by these false positive and false
negatives. The results for OrthoFinder according to
these criteria are reported in Additional file 3: Figure S2
and are consistent with the increased accuracy of Ortho-
Finder compared to other methods. Additionally, the 70
orthogroups that make up the OrthoBench dataset com-
prise 40 that represent particular biological or technical
challenges and 30 randomly chosen orthogroups. Add-
itional file 4: Figure S3 shows the F-scores for these two
categories separately to illustrate the difference in per-
formance of the method for ‘randomly selected’ and
‘difficult’ orthogroups. OrthoFinder outperformed all
other methods in both categories and achieved an F-
score of 81 % and 90 % on the difficult and randomly
selected orthogroups, respectively.
OrthoFinder is suitable for the analysis of incomplete
datasets
As many research groups are producing partial genome
assemblies and transcriptome resources it is to be ex-
pected that sequence datasets will be missing genes due
to incomplete assembly, low expression or errors in gene
prediction. To demonstrate the suitability of OrthoFin-
der for analysing these incomplete datasets we assessed
the performance of OrthoFinder with between 5 % and
60 % of genes deleted at random from the OrthoBench
input sequences. This revealed that the accuracy of
OrthoFinder is robust to missing data and that it
achieved an F-score of over of 0.75 even when 60 % of
the genes were missing from the input dataset
(Additional file 5: Figure S4). Thus OrthoFinder is suit-
able for orthogroup inference from partial and incom-
plete datasets.
OrthoFinder is fast and scalable
The number of species for which genome or transcrip-
tome sequence resources are available is increasing rap-
idly and there is a corresponding need to be able to infer
orthogroups using these datasets as they emerge. To
keep pace with these increasing demands the algorithm
utilises sparse matrices as the central data structure and
performs many steps using matrix operations. For
example, starting from pre-computed raw BLAST scores
the identification of orthogroups for the OrthoBench
dataset (12 species, 235,033 sequences) takes 14 min 20
s using OrthoFinder on a single core of an Intel Core i7-
4770 3.4GHz CPU. For comparison, OrthoMCL takes 20
h 12 min to perform the same operation using the same
CPU and MySQL for its relational database management
system. As the number of genomes that must be ana-
lysed increases, the scalability of the methods used
becomes increasingly important. To demonstrate the
scalability performance of OrthoFinder, the full set of
sequenced plant genomes from Phytozome version 9.0
(n = 41 [28]) were clustered and the results are shown in
Fig. 4. Plant genomes were selected for this test as they
are large with an average of 30,731 protein coding genes
per species in Phytozome version 9.0 and thus they
represent a stringent assessment of the scalability of
OrthoFinder. The memory (RAM) requirements in-
crease linearly with the number of species clustered
(Fig. 4a). This is despite the fact that the number of
BLAST hits increases quadratically with the number of
species (Fig. 4c). This linear scaling is achieved by pro-
cessing the BLAST hits for each species sequentially and
independently within OrthoFinder. Though the memory
requirements increase linearly, the time requirements
starting from pre-computed raw BLAST scores increases
quadratically with the number of species (Fig. 4b). This
is to be expected as the number of BLAST hits that
must be processed also increases quadratically. For ex-
ample, identifying the orthogroups for all 41 plant spe-
cies from Phytozome requires approximately 4 GB of
RAM and took approximately 3 h on a single CPU core.
Fitting the data to a line and extrapolating we estimate
that approximately 450 plant sized genomes can be clus-
tered on a linux computer with 64GB of RAM (Fig. 4a).
Thus OrthoFinder is capable of large analyses on con-
ventional computing resources. It should be noted here
that the BLAST searches incur the largest computational
cost in any orthogroup inference analysis and that this
cost is the same for all inference methods that use BLAST.
In summary OrthoFinder is fast and scalable to hundreds
of species on conventional computing resources.

Inference of high accuracy plant transcription factor
orthogroups
Given that OrthoFinder has increased accuracy over
other methods and that gene length bias has been elimi-
nated from orthogroup inference, we sought to provide
an additional demonstration of the utility of OrthoFinder
for the inference of orthogroups. To do this we selected
plant transcription factors as they are short genes and
will thus suffer from low rates of recall in assignment to
orthogroups in the absence of gene length bias correc-
tion. Moreover transcription factor genes are preferen-
tially retained following whole genome duplication
events [29, 30] and thus transcription factor orthogroups
are larger than average and contain multiple independ-
ent duplication events in multiple independent lineages
that can cause some inference methods to fail. Finally,



Fig. 4 Memory and time requirements of OrthoFinder. Sub-samples
of between two and 41 plant genomes from Phytozome version 9.0
given pre-calculated BLAST results. The average number of genes
per species was 30,731. a Maximum RAM requirements. b Time
requirements. c The number of BLAST hits that must be processed
for a given number of species (provided to place the time and
RAM requirements into context)
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previous efforts to define transcription factor orthogroups
have utilised OrthoMCL [31]. Thus current transcription
factor orthogroups will have low recall resulting in frag-
mented orthogroups spanning few species.
Using established rules for the identification and clas-

sification of transcription factors [31] we identified and
typed all of the transcription factors present in the 41
genomes present in Phytozome v9. The complete pre-
dicted proteomes from these 41 genomes were then
subject to clustering using OrthoFinder and OrthoMCL
and the distribution of transcription factors in the result-
ant orthogroups were analysed. OrthoMCL was used
here as it is the method by which all transcription factor
families are currently classified [31]. Consistent with the
increased recall rate for OrthoFinder, analysis of the
resulting orthogroups revealed that 8.5 % more tran-
scription factors were placed in orthogroups using
OrthoFinder than OrthoMCL (Fig. 5a, 97.6 % and 89.1
%, respectively, n = 52,744). Also consistent with the
increased recall rate is that these orthogroups were less
fragmented than those that were produced by OrthoMCL
(Fig. 5b, 897 and 3,024 orthogroups, respectively). Import-
antly, the orthogroups inferred using OrthoFinder were
missing fewer RBHs (Fig. 5c, 2.15 % and 5.77 %, respect-
ively) and clustered more of the same type of transcription
factor together (Fig. 5d and e). A major difference between
those orthogroups inferred using OrthoFinder and
OrthoMCL is that those produced by OrthoFinder en-
compass a larger number of species than those recovered
by OrthoMCL (Fig. 5f), thus orthogroups produced by
OrthoFinder encompass greater phylogenetic distances.
As OrthoFinder clustered the transcription factors to-

gether into far fewer orthogroups than OrthoMCL (897
versus 3024) we sought to demonstrate that it was cor-
rect in doing so. To do this we used gene-tree/species-
tree reconciliation to determine if the orthogroups were
true orthogroups if they incorrectly clustered sequences
that are separated by a gene duplication event that
occurred before the last common ancestor of the species
in the analysis. Overall, 858 of the 897 OrthoFinder
orthogroups (96 %) consisted entirely of genes that were
correctly clustered together and only 39 contained some
genes that were separated by a duplication prior to the
last common ancestor (Additional file 6: Table S2 and
Additional file 7: Table S3). Of the 897 OrthoFinder
orthogroups, 210 were identical to ones from OrthoMCL
and 471 OrthoFinder orthogroups were strict supersets of
2,271 OrthoMCL orthogroups (Additional file 6: Table S2
and Additional file 7: Table S3). Of these, 90 % (425) were
true orthogroups that each encompassed on average four
OrthoMCL orthogroups (1,709 in total).
An illustrated example showing an OrthoFinder

orthogroup and its constituent OrthoMCL orthogroups is
provided in Fig. 6. Here the OrthoFinder orthogroup (la-
belled bHLH 8 in Additional file 6: Table S2) contains all
known type IVc bHLH transcription factors [32]. Type
IVc bHLH transcription factors have previously been
shown to be conserved from green algae to land plants
and thus span the complete taxonomic range contained
in this analysis [32]. The OrthoFinder orthogroup cor-
rectly united eight paraphyletic OrthoMCL orthogroups
and included 36 transcription factors (highlighted in grey)
that were not clustered into any orthogroups by
OrthoMCL (Fig. 6). The phylogenetic tree shows that
there are no genes present in this OrthoFinder orthogroup
that were the product of a gene duplication event prior to
the divergence of the last common ancestor of all species
in the analysis. This is only one example and the complete
set of phylogenetic trees for each OrthoFinder transcrip-
tion factor orthogroup are provided in Additional file 6:
Table S2 along with the OrthoMCL subsets that comprise



Fig. 5 Inference of orthogroups of plant transcription factors. In all cases dark grey bars indicate the results for OrthoFinder and light grey bars
indicate the results for OrthoMCL. a Comparison of the fraction of transcription factors that are assigned to orthogroups by OrthoFinder and by
OrthoMCL. b Comparison of the number of transcription factor orthogroups identified using each method. c The percentage of RBNH/RBH (for
OrthoFinder/OrthoMCL) hits that are not contained in orthogroups identified using each method. d The number of transcription factors of the
same type that each transcription factor is connected to in the orthogroups produced by OrthoFinder. e as in (d) but for OrthoMCL. f Comparison of
species coverage for transcription factor orthogroups identified by each method. g The number of orthogroups for each transcription factor type
identified by OrthoFinder
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these groups where appropriate. Also contained in this
table are the results of the gene-tree/species-tree recon-
ciliation for each tree inferred from an OrthoFinder
orthogroup.
Taken together, using OrthoFinder to cluster transcrip-

tion factor genes resulted in the identification 687 (897
less the 210 that were the same) novel orthogroups of
transcription factors across 41 different species compris-
ing 7.7 million pairwise relationships (of which 6.9 mil-
lion are not detected by OrthoMCL). Thus using
OrthoFinder to cluster transcription factors has provided
significant new insight into the relationship of tran-
scription factor genes across plants. The number of
orthogroups for each transcription factor type is pro-
vided in Fig. 5g and the full classification including all
constituent accession numbers is provided in Additional
file 6: Table S2.
Algorithm implementation and evaluation criteria
OrthoFinder is an algorithm that infers orthogroups
across multiple species. The method does not classify
the pairwise relationships that exist between genes
within these orthogroups. The method does not require
synteny information and is thus equally suitable for
clustering protein sequences predicted from genome or
transcriptome datasets. OrthoFinder is run with a sin-
gle command and requires as input a directory contain-
ing one protein sequence FASTA file per species to be
clustered. OrthoFinder does not require preprocessing
of FASTA files (such as filtering of sequences) and does
not require knowledge or use of any relational database
management system such as MySQL. It outputs
orthogroups in two file formats: the Quest for Orthologs
community standard OrthoXML [33] and in plain text
format with one orthogroup per line.
There are two common problem definitions used by the

majority of homology inference algorithms. One is to pre-
dict pairs of orthologues (pairs of genes from two different
species descendent from a single gene in the last common
ancestor of the two species) and pairs of recent, within-
species paralogues (genes-pairs arising from a duplication
event since the last speciation event for that species). The
other approach, and the one used here for OrthoFinder, is
to predict orthogroups. An orthogroup is the set of genes
derived from a single gene in the last common ancestor of
all the species under consideration. This is the approach
used by OrthoMCL [13] and eggNOG [34]. OrthoFinder
follows this second approach to produce orthogroups of
protein coding genes as this is a logical extension of
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Fig. 6 A bootstrapped maximum likelihood phylogenetic tree of the OrthoFinder orthogroup containing the type IVc bHLH transcription factors
(bHLH 8). The OrthoMCL orthogroups that are subsets of the OrthoFinder orthogroup are indicated by different coloured fonts. Thirty-six of the
OrthoFinder clustered genes (coloured grey) failed to be clustered in any OrthoMCL orthogroup. The tree was inferred using RAxML using the
PROTGAMMAAUTO model (the JTT was model was selected as having the highest likelihood) with 100 bootstrap replicates. Scale bar indicates
the number of substitutions per site. Percentage bootstrap support values are indicated by coloured circles shown at internal nodes
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orthology to multiple species as it groups all genes
descended from a single gene in the last common ancestor
of all species being considered.

Methodological overview of the OrthoFinder algorithm
An overview of the algorithm in shown in Fig. 7, it pro-
ceeds in five phases corresponding to sections b-f in the
figure:

1. BLAST all-versus-all search (Fig. 7b). Protein
BLAST (blastp) with an e-value threshold of 10−3 is
used so as to avoid discarding putative good hits for
very short sequences. A relaxed threshold is used at
this stage of the method as subsequent steps filter
out false positive hits using stringent, orthogroup-
specific criteria for inclusion (described below).

2. Gene length and phylogenetic distance
normalisation of the BLAST bit scores (Fig. 7c).
This step models the all-vs-all BLAST hits for each
pairwise comparison between species to identify and
remove the gene similarity dependency on gene
length and phylogenetic distance. This is done so



Fig. 7 Overview of the steps in the OrthoFinder algorithm for two example orthogroups of genes from three species. a The unknown orthogroups
that the algorithm must recover, shown as a gene tree. b BLAST search of all genes against all genes. c Gene length and phylogenetic distance
normalisation of BLAST bit scores to give the scores to be used for orthogroup inference. d Selection of putative cognate gene-pairs from normalised
BLAST scores. e Construction of orthogroup graph, genes are nodes in the graph and pairs of genes are connected by an edge with edge weights
given by the normalised bit score. f Clustering of genes into discrete orthogroups using MCL

Emms and Kelly Genome Biology  (2015) 16:157 Page 9 of 14
that the best hits between all species achieve the
same scores regardless of sequence length or phylo-
genetic distance.

3. Delimitation of orthogroup sequence similarity
thresholds using RBNHs (Fig. 7d). This step uses
information from RBNHs (Reciprocal Best length-
Normalised hit) to define the lower limit of
sequence similarity for putative cognate genes of
each query gene. To be included in the orthogroup
graph a gene-pair must be an RBNH or produce a
hit that is better scoring than the lowest scoring
RBNH (irrespective of species) for either gene.

4. Constructing an orthogroup graph for input into
MCL (Fig. 7e). Putative cognate gene-pairs are
identified as above and are connected in the
orthogroup graph with weights given by the
normalised BLAST bit scores.
5. Clustering of genes into orthogroups using MCL
(Fig. 7f ).

The steps 2 to 4 are the novel parts of our algorithm
and are described in detail below.

Gene length and phylogenetic distance normalisation
The aim of this normalisation procedure is to remove
gene length bias from BLAST bit scores and to normal-
ise for phylogenetic distance between species. MCL con-
verts sets of similarity scores into clusters by breaking
apart clusters of genes that have low similarity scores
(and therefore are unlikely to be orthogroups) and pre-
serving clusters of sequences that have high similarity
scores. If the similarity scores between long sequences
are inherently larger than the similarity scores between
short sequences then the clustering will preferentially
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break apart clusters of short sequences while preserving
clusters of long sequences. This effect can be clearly seen
in the results of a typical OrthoMCL cluster. Here, long se-
quences are placed in overly large clusters leading to low
precision, and short sequences remain un-clustered leading
to low recall (Fig. 3a). The species-wise normalisation im-
plemented by OrthoFinder similarly ensures that ortholo-
gues from more distant species (that have inherently lower
similarity scores due to phylogenetic distance) are not pref-
erentially discarded and is similar to a step that is per-
formed in OrthoMCL wherein all scores are divided by the
average score between a given species pair [13].
Previous methods have exploited BLAST e-values (ra-

ther than bit scores) as a measure of similarity between
sequences. However, as can be seen in Fig. 1b the use of
e-values for assessment of similarity between sequences
is flawed. Here, the minimum e-value that can be
obtained for a given query sequence decreases with
increasing sequence length until, at a certain length, the
lower bound for e-values is reached and BLAST returns
an e-value of 0. This creates two problems: (1) long se-
quences will frequently have low quality hits with better
e-values than the best possible hits of short sequences;
and (2) the floor value for the e-value calculation means
that length bias is non-uniform and thus irreversible.
Specifically, beyond the floor-value e-values cannot be
used to distinguish between the qualities of hits as they
are all assigned the same e-value. As can be seen in the
heat map shown in Fig. 1b, many hits obtain this floor-
value for a given pairwise species comparison and thus
their similarities are indistinguishable. This length-bias
must be removed to prevent biasing downstream cluster-
ing applications.
In this method we construct a similarity measure

between sequences based on the bit-score normalised to
take into account the query and hit sequences lengths and
the phylogenetic distance between species. Unlike e-
values, the bit-scores do not suffer from the presence of a
threshold limit and thus different amounts of sequence
similarity can be distinguished regardless of the lengths of
the sequences involved. Let Lq be the length of the query
sequence and Lh be the length of the hit sequence. In an
analogous manner to the e-value calculation made by
BLAST and other sequence comparison methods, we use
the variable Lqh = LqLh to quantify the lengths of a pair of
sequences that are being compared.
The length normalisation procedure is shown in Fig. 2.

For each species pair, we:

1. Sort all BLAST hits according to Lqh = LqLh.
2. Put the hits into equal sized bins of 1,000 hits (put

the ‘shortest’ 1,000 hits according to Lqh into one
bin, the next 1,000 hits into the next bin and so on
for all the hits). If there are fewer than 5,000 hits
then we put the hits into bins of 200. Using fixed
sized bins means that it is not necessary for the
algorithm to specify the location of the bins in
advance.

3. Sort the hits in each bin according to BLAST bit
score and select the top 5 % of hits from each bin.
Find the parameters a and b that best describe the
fit between sequence similarity scores and gene
length for the selected hits using the equation
log10Bqh = a log10Lqh + b where Bqh is the BLAST
bit score between sequences q and h.

4. Normalise all obtained BLAST bit scores (not just
the top 5 %) between the given species pair
according to, Bqh

' = Bqh/10
bLqh

a , so that B'qh, (the
normalised score) is the BLAST bit score for a
hit divided by the BLAST bit score that would be
expected for the best hits between sequences of
that length for the species pair under
consideration.

The top 5 % of hits are used rather than RBHs as
selection of RBHs will be affected by the gene length-
bias that we wish to correct. Moreover, gene duplication
events can frequently cause RBHs to fail (Additional file
8: Figure S5) and thus reduce the number of data points
that are available for fitting. The normalisation proced-
ure ensures that the best hits between a given species
pair achieve (on average) the same scores irrespective of
their gene length.
OrthoFinder also normalises for phylogenetic dis-

tance, this is done so that the similarity scores
between orthologues will be independent of phylogen-
etic distance (that is, the true orthologues in distantly
related species will obtain similar scores to the true
orthologues in closely related species). If this step is
not done then true orthologues in distantly related
species will always obtain lower scores than true
orthologues in closely related species. Thus during
graph clustering (which is unaware of phylogenetic
relationship between species) distantly related true
orthologues (and cognates) will become disconnected
from each other more easily than closely related true
orthologues (and cognates) in the orthogroup graph.
Previous efforts to prevent this phylogenetic bias in-
clude dividing the observed similarity score for any
given gene-pair by the mean similarity score observed
for all reciprocal best hits between genes in that spe-
cies pair [13]. However, in the absence of gene length
information this means that short genes will always
be penalised more than long genes.
Though there is precedent for the use of Lqh = LqLh to

quantify the lengths of a pair of sequences that are being
compared [14], different functions for gene length nor-
malisation were also assessed. All other functions,
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including for example the use of the variable ~Lqh ¼ Lq
þLh in place of Lqh, gave a lower overall clustering
accuracy.
Identification of putative cognate gene-pairs for inclusion
in the orthogroup graph
Once scores are normalised OrthoFinder exploits
RBNHs to identify putative cognate gene-pairs. RBHs
are a high precision method to identify putative ortholo-
gues [25–27] and OrthoFinder uses the reciprocal
requirement exploiting its length and phylogenetic dis-
tance normalised BLAST scores. For each gene the
scores for its RBNHs are used to delimit the extent of
sequence similarity of that gene’s orthogroup. Specific-
ally, for each query sequence, q, any hit, h, with a nor-
malised score, B'

qh, greater than or equal to the score for
the lowest scoring RBNH of q is selected as a putative
cognate gene-pair of q and therefore is connected to q
in the orthogroup graph that is subsequently subjected
to MCL clustering.
The rationale for this approach is that the level of

normalised similarity of a query gene and its RBNHs can
be used to estimate the extent of similarity of other
genes within the same orthogroup. All genes more simi-
lar to a query gene than any of the query gene’s RBNHs
(irrespective of species) are likely members of the same
orthogroup. Therefore, the normalised similarity score
for the most dissimilar RBNH of a gene is used as a cut-
off for inclusion of additional cognate gene-pairs from
all species. That is q is connected to h in the orthogroup
graph if B'

qh > B'
qR where R is an RBNH of q. This pro-

vides a simple and robust method for recovering cognate
gene-pairs that may otherwise be difficult to detect due
to duplication events that can cause the RBNH method
to fail. Further details, explanation and worked examples
are provided in Additional file 8: Figure S5.
In summary, the novel method presented here gener-

ates, for each query gene, an independent prediction of
all the genes in its orthogroup. This orthogroup graph is
then clustered using MCL with its default inflation par-
ameter of 1.5. The effect of varying the MCL inflation
parameter on the OrthoFinder result is shown in
Additional file 9: Figure S6. The F-score of OrthoFinder
is relatively stable to variation in MCL inflation param-
eter, however it is possible to trade precision against re-
call by varying this parameter (Additional file 9: Figure
S6). For comparison the analogous analysis is also pre-
sented for OrhtoMCL (Additional file 10: Figure S7).
Implementation
OrthoFinder is written in python. It requires python
together with the numpy and scipy libraries [35] to be
installed. OrthoFinder requires the standalone BLAST+
and MCL algorithms that are freely available. These
standalone applications must be installed separately to
OrthoFinder and are not included in the OrthoFinder
package. The implementation makes use of sparse matri-
ces to store hits between sequences. This provides a
memory efficient method of storing the data and allows
key parts of the algorithm to be expressed using scipy’s
highly optimised C++ implementations of sparse matrix
operations. OrthoFinder can either run the BLAST
searches for you or can be run on pre-computed BLAST
searches. If you chose to run BLAST searches independ-
ently then instructions are provided in the documentation
for how to process your sequence names in the pre-
computed BLAST output. Similarly OrthoFinder will also
automatically run MCL for you. However if you wish to
run MCL separately using different parameter settings
then the MCL input files are stored for this purpose in a
working directory.

Evaluation
OrthoBench [5] is the only manually curated dataset of
orthogroups for the assessment of orthogroup prediction
algorithms. It was used in this work for assessing Ortho-
Finder as it has been independently evaluated, it under-
pins the testing of multiple different methods and it is a
well-defined and stringent test of the problem that
OrthoFinder was designed to solve. Criteria such as
functional similarity within orthogroups, expressed for
example using enzyme classification numbers [36], were
not used in this work since not all proteins with the
same function are members of the same orthogroup and
members of the same orthogroup do not necessarily all
have the same function. As we are using real benchmark
datasets for which only a subset of sequences have been
assigned to ‘true’ gene families the extent of true nega-
tive orthologue assignments is unknown (as is the case
for all methods tested on this dataset). Thus we cannot
use the Matthews correlation coefficient to assess the
performance of the orthogroup inference methods. In
the absence of this information the simplest and most
transparent evaluation of the accuracy of any prediction
method is to measure its precision and recall.

precision ¼ TP
TP þ FP

recall ¼ TP
TP þ FN

Where TP is the number of true positive orthogroup
assignments (that is, correct assignments), FP is the
number of false positive orthogroup assignments (that
is, incorrect assignments) and FN is the number of false
negative orthologue assignments (that is, missing assign-
ments). The F-score is the harmonic mean of these two
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measures, where the harmonic mean weights towards
the worst performing measure. We also provide other
evaluation measures from the original OrthoBench
analysis in Additional file 3: Figure S2.

Inference of transcription factor orthogroups
To infer transcription factor orthogroups we first identi-
fied the set of transcription factors present in all ge-
nomes present in Phytozome V9. This identification was
performed using the same rules for the presence and
absence of PFAM domains as has been previously
described [31]. The full set of protein coding genes from
these genomes (including all the transcription factors)
was then clustered using OrthoFinder and OrthoMCL
and the distribution of the transcription factors within
these orthogroups was analysed. OrthoMCL was se-
lected for comparison here as it is the method by which
all orthogroups of transcription factors are currently
defined [31]. An orthogroup of transcription factors was
defined as an orthogroup whose constituent genes com-
prised ≥50 % transcription factors of the same domain
classification.
To determine if OrthoFinder was correct in combin-

ing multiple separate OrthoMCL orthogroups each
orthogroup was subject to gene-tree—species-tree rec-
onciliation. Using, gene-tree species-tree reconciliation
it is possible to determine if OrthoFinder had incor-
rectly placed together genes that had diverged prior to
the last common ancestor of the species being analysed.
To do this, gene trees were inferred for each orthogroup
by aligning the sequences using mafft-linsi [37] and infer-
ring a maximum likelihood tree from this alignment using
FastTree [38]. DLCpar [39] was used to reconcile these
gene trees with the known species tree [28]. Using this
method, each gene tree was assessed to determine if it
contained bipartitions that occurred prior to the diver-
gence of the last common ancestor of all the species being
analysed. If such a bipartition was identified then the
orthogroup was considered not to be a true orthogroup as
it contained one or more genes that evolved by duplica-
tion prior to the last common ancestor of all species under
consideration.

Discussion
In this work we have presented OrthoFinder, a novel
method for inference of orthogroups. Our method is fo-
cused on a clear definition of an orthogroup, that is, that
an orthogroup contains all genes descended from a single
gene in the last common ancestor of the species whose
genes are being analysed. This definition avoids conflating
shared ancestry with other criteria that are not equivalent,
such as functional conservation. Our method is designed
to address the problem of orthogroup inference rather than
categorise the disparate relationships that occur between
individual genes within an orthogroup. These relationships
are best resolved by first inferring orthogroups using
OrthoFinder and then using multiple sequence alignment
and phylogenetic methods on these orthogroups.
The two key novel features of our method are: (1) a

method to automatically remove gene length bias and
phylogenetic distance from sequence similarity scores;
and (2) a novel method to define the sequence similarity
limits of an orthogroup. In the tests performed on the
only publicly available orthogroup benchmark dataset
(OrthoBench) OrthoFinder outperformed all of the com-
monly used orthogroup assignment methods by between
8 % and 33 %. Moreover we have shown OrthoFinder to
be scalable and robust to missing genes typical of incom-
plete genomes and de novo transcriptome assemblies. The
software is freely available and can take pre-computed
BLAST scores as input making it easy to test on any newly
developed benchmarks for which pre-computed BLAST
scores are available.
We further demonstrate the utility of OrthoFinder by

providing a novel classification of all transcription factors
in the available, fully-sequenced plant genomes present in
Phytozome V9. This analysis clusters 97.6 % of the 52,744
putative transcription factors into orthogroups. This novel
analysis identifies millions of relationships that have not
previously been reported providing new insight into the
relationship and evolution of transcription factor gene
families in plants.
Inferring orthologues underpins much of modern

biological research and is among the first steps in the
annotation and analysis of genome and transcriptome
sequencing projects. As sequencing technologies are
now within the budgets of most research groups these
data resources are increasing in number rapidly. Thus
there is a requirement for an orthogroup inference
method that is accurate, robust, scalable, and that can
be run easily by independent research groups on con-
ventional computing resources. Many orthogroup in-
ference methods are not available for general use but
are provided as static databases (for example, EggNog
and TreeFam). Thus the most widely used methods
are those that enable researchers to analyse their own
data resources. With this in mind OrthoFinder has
been developed with the aim of being easy to use.
The method is executed as a single command, has
minimal dependencies and requires as input just the
individual protein sequence FASTA files for each spe-
cies that is being clustered. The algorithm carries out
all calculations (including BLAST searches and MCL
clustering) and outputs the orthogroups in both a
plain tab delimited text file and in the OrthoXML
community format. The algorithm itself is small, fast
and memory efficient, making it suitable for use on
linux desktop computers. Further information about
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the algorithm can be found at [19] and a standalone
implementation of the algorithm is available under
the GPLv3 licence at [20].
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